Cámara trasera inteligente con Raspberry Pi. Parte 1

Me encanta la idea de coches smart, pero es difícil para mí justificar la compra de un coche nuevo para conseguir un par de campanas y silbatos. Por el momento, estoy atrapado con mi coche “tonto”, pero eso no significa que no puedo probar y hacerlo más inteligente yo!


El término “Coche inteligente” puede tener miles de significados diferentes dependiendo a quién le preguntemos., así que empecemos con una definición   modesta  de algunos componentes que podemos añadir :

  • Información básica sobre el coche, como la marcha engranada, eficiencia de combustible, horas de conducción ,etc.
  • Ayudas a la conducción de tipo ADAS , siendo   los mas comunes la puesta en marcha del  coche delantero, acceso involuntario a línea de separación de carril o aviso de colisión por vehículo delantero que circula  muy próximo
  • Cámara trasera inteligente que avise si un objeto está demasiado cercano
  • etc

Del primer punto lo hemos comentado en diferentes post , explicando que para automóviles de unos 10 años, es decir que cuentan con interfaz ODB2,  es relativamente simple añadir un HUD con toda esta información  con  un HUD conectado por ODB2

Resumidamente los sistemas ADAS  de ayuda  a  la conducción  mas usuales son las siguientes:

  • FCWS   del ingles  Forward Colission Warning Sytem (advertencia de colisión delantera) ayuda al conductor a mantenerse a una distancia segura del vehículo delantero y alerta a los conductores de una colisión inminente con advertencias visuales y audibles.Este sistema permite al dispositivo detectar cuando no se mantiene una distancia segura entre su vehículo y el vehículo delante de usted. El dispositivo determinará la velocidad de su vehículo calculando una distancia estimada de siguiente segura basada en su velocidad.Normalmente para que esta  función pueda estar habilitada se  debe estar  viajando a más de 48KM/H ( a una velocidad de menos de 32 KM/H, se suele  desactivar la función). Precisamente por esta limitacion el FCWS no puede detectar los vehículos que están  alejados más de 40m  o más cerca de 5m.

fcw.png

  • LDWS  del inglés Lane Departure Warning  System  ( SISTEMA DE  ADVERTENCIA DE SALIDA DE CARRIL) monitorea las marcas del carril y avisa al conductor con advertencias visuales y audibles cuando ocurre una salida involuntaria del carril sin la notificación de la señal de giro.Es un mecanismo diseñado para advertir al conductor cuando el vehículo empieza a moverse fuera de su carril (salvo que una señal de la vuelta en esa dirección) en las autopistas y carreteras de la zona. Este sistema está diseñado para minimizar los accidentes por abordar las principales causas de colisiones: error del conductor , distracción y somnolencia.

ldw

  • HMW( VIGILANCIA Y ADVERTENCIA DEL AVANCE DE PISTA)- Mide la distancia al vehículo que está por delante (“headway”) en segundos. Ayuda al conductor a mantener una distancia segura de conducción. Alerta al conductor al entrar en una zona predefinida de “avance peligroso”

.hmw.png

  • FVSA (ALARMA DE INICIO DEL VEHÍCULO DELANTERO ) Notifica al conductor si el vehículo delantero comienza a avanzar en el estado parado completo y el coche del conductor no se mueve en 2 segundos.

fvsa

Casi todas estas ayudas ADAS  están implementadas  en  numerosas cámaras  disponibles en el mercado como vismo en este post destacando por voz propia  el modelo Dash de Garmin

Respecto al ultimo punto de cámaras traseras  , hay muchos kits para  añadir una cámara  trasera a  nuestro vehículos usando una conexión analógica de video compuesto , lo cual se traduce en  que la mayoría de ellas requieren hacer modificaciones al coche  ,por  ejemplo para ubicar la cámara en el porta-matriculas  , o fijar la pantalla especifica   de modo que no siempre en sencilla su instalación .Además las cámaras traseras comentadas requieren una  fuente de alimentación externa alimentándose con los  cables de las luces de atrás de su coche para que automáticamente se enciendan cuando el coche está en marcha lo cual tampoco le  gusta a muchas personas .

Dado que el mercado no ofrece por  el momento soluciones mas avanzadas una idea es usar la Raspberry Pi pues es la plataforma perfecta  porque básicamente es un mini ordenador con un montón de entradas y salidas.

Al conectar una cámara a la Pi, se puede utilizar prácticamente cualquier webcam USB genérica, o  por supuesto  mejor puede usar una  Cámara Pi conectada al conector DSI pues estas ofrecen una mayor calidad , versatilidad y  no  requiere una fuente de alimentación separada (pero asegúrese de tener un montón de cable para ir a la parte posterior del coche)

Solución con Raspberry Pi

Gracias a una Raspberry Pi  por medio del procesamiento de imágenes en efecto  podemos  hacer más inteligente nuestro vehículo y añadir  nuevas funcionalidades

Para esta idea  podemos  usar  los siguientes componentes:

 

Conexión del módulo de cámara

El modulo de cámara de Pi  tiene un mayor rendimiento que una cámara USB  por lo que lo ideal es usar una cámara del tipo compatibles con Raspberry Pi  (se puede comprar por unos 15€ en Amazon) 

No es  problema  la distancia pues con un cable plano  de 200 cm suele ser suficiente para llevar la cámara  hasta la  posición de conducción (puede comprarlo   aqui en Amazon por unos 7,29€ )

Se puede pues llevar el cable plano al l frente del coche y luego conectado a una pantalla de táctil de 7″ de modo que  la Pi y la pantalla táctil pueden ser alimentados por el adaptador USB en el coche.

Estos  son los pasos para instalar la cámara especifica para su uso , con la Raspberry Pi 

    • Localice el puerto de la cámara y conecte la cámara:Connect the camera
    • Poner en marcha la Raspberry Pi 
    • Abra la Herramienta de configuración de frambuesa Pi desde el menú principal:Raspberry Pi Configuration Tool
    • Asegúrese de que está activado el software de la cámara:Camera software enabled
    • Si no está activado, habilítelo y reinicie su Pi para comenzar. Asimismo si va utilizar una pantalla táctil también necesitara activar I2C  y SPI

Es decir resumidamente;  con la Raspberry Pi apagada, debe conectar el módulo de la cámara al puerto de la cámara de la Raspberry Pi,ahora encienda el Pi  y asegúrese de que se activa el software.

Conexión de un pantalla táctil(opcional)

Existen pantallas TFT para Raspberry Pi con  resolución de 320×240 (16-bits) que además son táctiles con una pantalla resistiva. Se entregan montadas y suelen ser  compatible con los modelos Raspberry Pi Model A+, B+ y Pi 2  disponiendo  además de de un conector de 40 pines para los GPIO.

La pantalla y el digitalizador   utilizan los pines I2C (SDA y SCL), SPI (SCK, MOSI, MISO, CE0) y los pines GPIO #24 y #25. Todos los demás pines GPIO no se utilizan así que podrá conectar más cosas como sensores, LEDs etc. Algunos modelos disponen deposiciones para pulsadores miniatura (no incluidos) por si quiere hacer algún otro tipo de interfaz de usuario.

Puede utilizarla utilizar la librería PyGame u otra librería SDL para dibujar directamente en el frame buffer y hacer interfaces propios.

Tenga en cuenta que para que funcione debe tener activado el I2C en tu Pi o se quedará en blanco. Si utiliza la imagen de Adafruit funcionará sin problema, sino puedes ver su tutorial para ver cómo hacerla funcionar.

La conexión de este tipo de pantallas suele ser por el  propio conector de 25 pines  y por hdmi con un adaptador

Respecto al sw, estos son los pasos  que puede  seguir;

!Ojo el conector plano de la pantalla pues es MUY frágil y debe manejarse con cuidado.!

Montaje final

Una vez montada  la pantalla y la cámara , encender el coche, la Pi y la pantalla . Para ver la camara   de la Pi, abra el terminal y ejecute simplemente  el  siguiente  script:

raspivid -t 0

o

raspivid -t 0 --mode 7

Después de entrar esto ,   la imagen captada por la cámara debería aparecer  en pantalla  completa , pero  !ojo !  no lo veremos  si estamos conectado via VNC!, es decir ,solo si estamos conectados a la propia  Raspberry Pi .

Lo bueno de a Raspberry Pi  es que se puede mejorar  esta forma básica , y tal vez incluso establecer un sistema de alerta si un objeto esta   demasiado cerca , así que, ! vamos a trabajar en ese lado!

 

DETECCIÓN DE OBJETOS

Cuando se trata de aplicaciones de  cámaras de seguridad comerciales, generalmente hay al menos dos versiones  .La primera utiliza una superposición de una imagen estática con gamas de color para que visualmente puede determinarse cuánto de  cerca está un objeto. El segundo método utilizara una cámara junto con sw  que puede detectar un objeto qué tan cerca esta al coche y luego avisa cuando algo está demasiado cerca
Veamos en este post en primer lugar le método de overlay, el cual por cierto es el mas usado en los implementaciones de cámaras traseras de coches actuales.

 

 

Reloj gigante casero


En efecto hemos visto soluciones muy ingeniosas usando  tal vez medios humildes como por ejemplo cartón y leds para construir un reloj digital “gigante”, pero la idea de Leon van den Beukel ha sido  llegar aun mas lejos  pues   sustituye todos  los leds  convencionales  usados en proyectos convencionales por tiras de leds  RGB direccionables  del tipo  WS2812B .

Ademas por si fuese poso también  ha creado una  versión impresa en 3D para albergar  todo   usando como placa de control   una placa   Arduino  nano   al que se ha conectado un modulo bluetooth para sincronizarlo con un smartphone gracias a una aplicación personalizada que se conecta de forma inalámbrica al reloj a través de dicho  modulo  Bluetooth y de este modo puedo personalizar el reloj.

Para cortar algunas  piezas, el autor también   ha usado una máquina CNC casera.

Los componentes  usados en este diseño  son:

Esta es el esquema del reloj digital casero propuesto  donde ya se  aprecian la conexiones:

  • Del sensor de temperatura DHT11,  el cual se ha  conectado al pin D2  junto la típica resistencia de 10k entre la salida de datos  y  VCC
  • El modulo de bluetooh  conectado a los pines D5(tx) y D6(rx) sin omitir la alimentación  de vcc y gnd. El pin de RV también lleva una resistencia de 1k en serie  y otra de 2.2k entre este y masa para atenuar la  señal del modulo
  • La tira de leds conectado a D8 por medio de una resistencia en serie de 330 ohmios sin omitir la alimentación  de vcc y gnd
  • El modulo de tiempo real conectado a los pines analógicos A4 y A2 sin omitir la alimentación  de vcc y gnd
  • La  alimentación  de todo el conjunto de 5v DC

 

 

Schema.png

 

Por cierto si se esta preguntando por el orden de colocación de los leds , tenga en cuenta que ha usado 29 leds RGB  para los 4 dígitos y los dos puntos,  colocándoles de modo que compongan 4 cifras en código de 7 segmentos   conectando cada led  entre si  respetando la alimentación   y encadenando el pin de datos  pore medio de sus pines de entrada y salida

Esta es la configuración del orden de los  leds RGB empleada por el autor:

Respecto al  código fuente de Arduino nano  esta disponible  en https://github.com/leonvandenbeukel/3D-7-Segment-Digital-Clock/blob/master/3D-7-Segment-Digital-Clock.ino

Para el control del reloj  puede descargar la aplicación  Bluetooth Digital Clock App  para Android desde Play Story aquí: hhttps://play.google.com/store/apps/details?id=nl.leonvandenbeukel.BTDigitalClockApp

 

Por ultimo también en github   el autor ha dejado los ficheros stl para imprimir  el receptáculo  del reloj con una impresora 3d. La ruta de estos 11 piezas  para imprimir por separado  esta en https://github.com/leonvandenbeukel/3D-7-Segment-Digital-Clock/tree/master/STL

Para un mejor contraste, nos sugieren mejor imprimir las siguientes partes en negro:

  • BewteenSegments
  • DotRing
  • Dotbottom
  • Medio
  • OuterRingSegments

El resto de piezas se puede imprimir en blanco.

En el siguiente vídeo podemos ver este fantástico reloj en funcionamiento

 

 

 

Instalación sencilla de un display avanzado en un coche

Veremos como instalar nosotros mismos un display HUD muy potente que muestra información avanzada directamente sobre el salpicadero como por ejemplo el numero de marcha,idoneidad de marcha, recordatorio de parada, alarmas del motor , etc


Los HUD (Head-Up Display) básicamente son  displays orientados a la seguridad,  pues la idea fundamental de este tipo de dispositivos es que el conductor mantenga su mirada en dirección al frente  sin perder de vista la carretera mostrando a  la vez superpuesta esta información relevante  por tanto sin obligar al conductor a girar la cabeza cada vez que quiera comprobar algo. Actualmente  gracias a la fusión de estos displays  HUD  de nueva tecnología  con  la información proporcionada por el puerto de diagnóstico o OBDII de su vehículo , podemos proyectar la información útil de conducción  en su parabrisas  de modo que  no tenga que apartar la vista de la carretera para dirigirla  al cuadro de instrumentos por ejemplo  para saber a la velocidad  a la que se circula  o  las revoluciones del motor .

Una novedad ademas de los nuevos HUDs es que gracias a la evolución de la información  del OBDII   se  puede suministrar incluso mas información que el propio vehículo podía ofrecer por defecto  como por ejemplo  temperatura del agua ,varias  alarmas (voltaje,posición de la válvula de mariposa, ángulo de avance de encendido, tiempo de 100 km aceleración), consumo de combustible, kilometraje, aviso de   poco combustible, detalle de fallo del motor, indicación de marcha incorrecta, optimización de consumo, recordatorio de parada para el conductor, etc.

En esta ocasión vamos  a ver el modelo VGEBY Universal HUD  que  cuenta con una pantalla gigante de 5,5″  y se conecta al ODB 2  mediante  un cable especial que en un extremo cuenta con mini-usb ( para conectar al HUD)  y por otro un conector ODBII  para conectar al vehículo

Por cierto ,este cable suele ser muy fino para que pase desapercibido,por lo que  debe tenerse cuidado con el,  pues puede partirse fácilmente si hacemos mucha presión sobre el para disimularlo.Si llegase a romper el cable, no se alarme pues el cable es standard para este tipo de diplay: es decir conexión micro-usb por un lado y un conector ODB2 por el otro.

 

Aunque  podamos ver este  HUD    bajo diferentes marcas   y acabados , en realidad casi todos  se basan en el mismo modelo , con ligeras variaciones lo cual se traduce en diferentes calidades  o precios, pero todos pueden adaptarse automáticamente al tipo de vehículo que está en línea con OBDII o EUOBD (Sistema de diagnóstico a bordo).

La información ofrecida por  el   modelo VGEBY Universal HUD    es mucho mas rica que la mostrada por otros modelos anteriores  pues es concreto es la siguiente:

  • Velocidad en km/h
  • Revoluciones por minuto del motor
  • Consumo de combustible
  • Tiempo en marcha
  • Temperatura del radiador
  • Indicador del numero de  marcha engranada
  • Avisos de fallos del motor
  • Tensión de la batería
  • Presiones del sistema de admisión
  • Recordatorio de descanso
  • Tiempo de aceleración en 100 km
  • Alarmas , etc

El modo  de visualización puede ser seleccionado  por el propio conductor  , el cual puede elegir el modo de visualización normal, alta velocidad modo de visualización y modo de visualización automática.

Mediante la función de visualización se pueden mostrar : Velocidad de conducción, velocidad del motor(RPM)  , temperatura del agua, voltaje de la batería, consumo de combustible, conmutación libre entre kilómetro y milla, conmutación libre entre C y F.

En cuanto las alarmas  cuenta con las siguientes:  Alarma de sobre velocidad, alarma de alta temperatura, alarma de baja tensión, alarma de falla del motor y posibilidad de  eliminación del código de fallo, etc

Una peculiaridad  necesaria   es tenerlo configurado por defecto en   Km y no en  millas, función que viene configurada  normalmente en Europa (como otros parámetros)

Es interesante destacar que estos modelos incluyen un  sistema para  apagarse automáticamente   y por supuesto  para iniciarse   cuando el vehículo se ha arrancado (es  decir implementa la función  de   AUTO ENCENDIDO / APAGADO) , apagándose pues  cuando  el vehículo se  haya detenido  para proteger la batería del vehículo.

Por otra parte, aunque debería manipularse  lo mínimo posible , se pueden cambiar  las funciones  con una sola  mano para controlar el HUD, aunque no hace falta decir que debería hacerse con el vehículo parado.

Asimismo,  buscando la máxima comodidad  es muy útil el  modo de ajuste automático  del brillo de la pantalla  , aunque también en casi  todos los HUID  , este ajuste  se puede realizar  manualmente.

En cuanto   a la información que puede proporcionar  modelo VGEBY Universal HUD  es la siguiente:

 

Es muy importe destacar  que este tipo de dispositivos están  disponibles para coches con una interfaz OBD2 / EUOBD que en la mayoría de vehículos  de 8 a 10 años esta presente aunque no son compatible con Blade Electric Vehicle pero si en muchos modelos hibridos  ,y como vamos a  ver ,  son  muy fáciles de instalar , tanto es así  que podríamos decir que es “plug and play”.

Veamos en este breve video el  modelo VGEBY Universal HUD   en funcionamiento;

ATENCION:  Por favor, revise las reglas y regulaciones locales para el uso de este  tipo de dispositivos en  carretera   verificando que las regulaciones locales  autorizan  este tipo de instalaciones y es conforme  que  la posición del indicador esté dentro de distancias fijas del tablero para algunas ubicaciones.

Instalación del HUD

  • Antes de nada casi todos los vehículos modernos cuentan  con una interfaz OBD2 / EUOBD.  Para conocer si su  vehículo  lo es  puede abrir el capó del motor y debería encontrar una pegatina, si la etiqueta tiene la letra “OBDII CERTIFIED”, significa que puede instalar el HUD.   No obstante , aunque el vehículo no cuente con esta pegatina, lo normal es que si es un vehículo del 2010  en adelante , esta característica la soporte. 
ond2.PNG
  • Deberíamos ahora  comprobar  que disponemos del cable usb-odb2, el display  , el adhesivo para fijarlo  y la lamina translucida( en caso de que vayamos a ponerla)

  • Para verificar el conector de diagnóstico del vehículo debajo del volante, puede encontrar la  toma de 16 pins del vehículo.
figura2 IMG_20180120_162125[1].jpg
Una vez localizado  conecte el extremo del cable  suministrado en el conector del vehículos
IMG_20180120_162216[1].jpg
  • Haga pasar el cable por el borde de la puerta
IMG_20180120_162249[1].jpg
  • Ahora bordee  el parabrisas  con  el cable hasta llegar a su la posición  donde coloque  el  aparato
IMG_20180120_162352[1].jpg
  • Ahora ya conducido el cable  debe poner el circular antideslizante en posición plana delante sobre el  HUD  .Puede ajustar  ángulo del  HUD de modo qeu la imagen  reflejada en el parabrisas este  nivelada.
IMG_20180120_163331[1].jpg
  •  Pegar OPCIONALMENTE  la película reflectante sobre el parabrisas pues realmente eliminara el doble reflejo del display , aunque personalmente prefiero no pegar nada en el parabrisas pues de este modo no obstaculiza en absoluto la visión a través de este . Si se decide pegarlo , algunos consejos para pegar la película antirreflectante:
    • Puede rociar uniformemente agua sobre el parabrisas.
    • Rasgue la capa protectora de la película y rocíe un poco de agua para ambos lados, luego pégalo en el lugar que quiera.
    • Nivelar el agua debajo de la película con un objeto liso hasta que no haya agua y burbuja dentro.
    • Cuando el agua se evapore, puede limpiar el agua y el polvo alrededor del película.
  •  Para probar el dispositivo , debe encender el host de HUD y debería ver el voltaje de la batería del vehículo, y luego entrará  en el estado de investigación de
    la versión del ordenador de a bordo del vehículo reconociendo este con un pitido indicando con esto de que esta listo. 
  • Después de estos simples pasos podemos decir que HUD está instalado exitosamente.   

 

Ajustes   

Este display tiene una rueda en unlateral qeu cuenta con tres posiciones: izquierda , derecha y central

Una vez encendido puedem pulsar el botón  de control a  la izquierdo  para alternar la visualización de : 

  • reloj,
  • temperatura del agua,
  • presión de admisión
  • RPM del motor
  • angulo de aceleración
  • tiempo de acelaracion  para 100sg

Una pulsación, por cierto larga de 5 segundos, hacia el lado derecho conmuta entre sonidos activos  o no del HUD

Una vez encendido ,también puede pulsar el botón  de control a  la derecha  para alternar la visualización de : 

  • consumo de combustible
  • posición del throttle

Si pulsa el botón central  con una pulsación corta entra en el menú de configuración de un menú de 0 a 23 opciones  que vamos a  ver  a continuación (  una pulsación corta incrementa el menú)

Estas son las diferentes opciones del menú con sus valores por defecto , su función y el rango de valores posibles::

 

 

 

IMPORTANTE ; Observe especialmente   el menú nº 23 (Factory Reset)   , pues si se ajusta a la izquierda al valor 1, y luego con una pulsación larga  en el botón central por 5 segundos para salvar y salir  , llevara al modelo VGEBY Universal HUD a la  configuración de fábrica.

 

Borrar   Códigos de fallo

Es sin duda   una gran  utilidad  del modelo VGEBY Universal HUD  muy interesante y que incluso , si es  fortuita , nos puede ahorrar bastante  dinero en desplazamiento   y  taller   que sin duda amortizaran  la compara de este dispositivo .

El modo de borrar los codigos de  error de la centralita  de  nuestro vehículo es muy sencillo en este modelo VGEBY Universal HUD :cuando tenemos conectado el display al coche por el ODB2 , no arrancar al motor   pasando a ON , y esperar que se vaya a OFF el display . Ahora entonces  pulse el botón derecho  por 5 segundos  : el HUD   producirá un sonido   y finalmente el HUD borrara el código de error

 

 

Por cierto , si le interesa el HUD descrito  en este post  (modelo VGEBY Universal HUD)  , puede comprarlo en Amazon por unos 42€  en este enlace