Usos y fundamentos del ODB2


¿Ha notado que la luz indicadora de mal funcionamiento aparece en su tablero de instrumentos? Pues ese mensaje  le dice que hay un problema y que debe visitar a un mecánico. En el pasado, esto solo indicaría un problema, ¡pero hoy en dia gracias al interfaz ODB2  hay  más orientación pues  su mecánico utilizará un escáner OBD2 para identificar la causa, para lo cual  conectará el lector OBD2 al conector OBD2 de 16 pines cerca de la rueda del conductor y  esto le permitirá leer los códigos OBD2 AKA Códigos de diagnóstico de problemas (DTC) y comprender el problema. ¡Sin desarmar el coche!

El diagnóstico a bordo (OBD) es el sistema de autodiagnóstico incorporado en la mayoria de los  vehículos modernos indicando cuando hay un error a través de la ‘luz indicadora de mal funcionamiento’ permitiendo a un mecánico (o a usted) solucionar problemas al escanear códigos de diagnóstico de problemas (DTC) .OBD2 se ejecuta en bus CAN en la mayoría de los vehículos hoy y  lo mas importante; se puede acceder al sistema OBD2 a través de un conector OBD2 de 16 clavijas que se encuentra a 0,61 m del volante lo cual dará  muchas posibilidades para un sinfin de aplicaciones

 

 

 

Historia

El sistema se origina en California, donde la Junta de Recursos del Aire de California(CARB) que requirió en todos los automoviles nuevos a partir de 1991 para fines de control de emisiones determimando  que todos los automóviles a gasolina contaran con OBD (On Board Diagnostics), el cual  controlara los límites máximos de emisiones y además un autocontrol, el On Board Diagnostics de componentes relevantes de las emisiones de gas a través de dispositivos de mando electrónicos. Ademas ,para que el conductor detectese  un mal funcionamiento del OBD se impuso la obligación de tener una lámpara que indique fallos (MIL – Malfunction Indicator Lamp).

Medidas más estrictas en los límites de emisiones en 1996 llevó a la creación del OBD II.  El estándar OBD2 fue recomendado por la Society of Automotive Engineers (SAE) y los DTC estandarizados y el conector OBD en todos los fabricantes ( SAE j1962 )  y desde 1996 el OBD II es un requisito legal para automóviles nuevos en Estados Unidos. 

En Europa se introdujo el OBD ajustándose al OBD-II americano y con base en esta regla americana se impuso en los noventa la inclusión de sistemas de diagnóstico también para los automóviles destinados al mercado europeo,mas concretamente según la Directiva 98/69EG, los automóviles a gasolina del año 2000 en adelante, los diésel de 2003 en adelante, y los camiones de 2005 en adelante tienen que estar provistos de un OBD. La interfaz estándar del OBD-II no solamente es utilizada por el fabricante para sus funciones avanzadas de diagnóstico sino también por aquellos que van más allá de lo que la ley exige.

 

A partir de ahí, el estándar OBD2 se implementó paso a paso :

  • 1996: OBD2 se hizo obligatorio en Estados Unidos para automóviles y camiones ligeros.
  • 2001: Requerido en la UE para automóviles de gasolina.
  • 2003: Requerido en la UE también para autos diesel (EOBD)
  • 2005: OBD2 fue requerido en los EE. UU. Para vehículos de servicio mediano
  • 2008: los autos de los EE . UU. Debían usar ISO 15765-4 (una variante de CAN) como base para OBD2
  • 2010: Finalmente, se requirió OBD2 en vehículos pesados ​​de EE. UU.

¿Mi coche tiene OBD2?

La siguiente etapa planeada es el OBD-III, en el que los propios automóviles se comunican con las autoridades si se produce un empeoramiento de las emisiones de gases nocivos mientras está en marcha. Si esto sucede, se pedirá a través de una tarjeta indicativa, que se corrijan los defectos

Interfaz de diagnóstico OBD1

OBD I fue la primera regulación de OBD que obligaba a los productores a instalar un sistema de monitorización de algunos de los componentes controladores de emisiones en automóviles. Obligatorios en todos los vehículos a partir de 1991, sin embargo fue creada esta tecnología en 1983 así como implementada en algunos vehículos americanos en 1987 y 1988, los sistemas de OBD I no eran tan efectivos porque solamente monitorizaban algunos de los componentes relacionados con las emisiones, y no eran calibrados para un nivel específico de emisiones.

OBD II

OBD II es la segunda generación del sistema de diagnóstico a bordo, sucesor de OBD I. Alerta al conductor cuando el nivel de las emisiones es 1.5 mayor a las diseñadas. A diferencia de OBD I, OBD II detecta fallos eléctricos, químicos y mecánicos que pueden afectar al nivel de emisiones del vehículo. Por ejemplo, con OBD I, el conductor no se daría cuenta de un fallo químico del catalizador. Con OBD II, los dos sensores de oxígeno, uno antes y el otro después del catalizador, garantizan el buen estado químico del mismo.

El sistema verifica el estado de todos los sensores involucrados en las emisiones, como por ejemplo la inyección o la entrada de aire al motor. Cuando algo falla, el sistema se encarga automáticamente de informar al conductor encendiendo una luz indicadora de fallo (Malfunction Indication Lamp (MIL), también conocida como Check Engine o Service Engine Soon).

Para ofrecer la máxima información posible para el mecánico, guarda un registro del fallo y las condiciones en que ocurrió. Cada fallo tiene un código asignado. El mecánico puede leer los registros con un dispositivo que envía comandos al sistema OBD II llamados PID (Parameter ID).

Generalmente el conector OBD II suele encontrarse en la zona de los pies del conductor, consola central o debajo del asiento del copiloto.

Actualmente se puede conectar con la máquina de diagnosis de diferentes maneras, mediante Bluetooth, WiFi, USB, cayendo en desuso el protocolo de conexión por el puerto serie (RS232). Este enlace, unido a un software ejecutándose desde un ordenador o un terminal móvil permite la monitorización en tiempo real de códigos de error y diversos parámetros directamente de la centralita del motor tales como las revoluciones del motor, el consumo de combustible en tiempo real (sin que el automóvil lleve equipado ordenador de a bordo) o la temperatura del aceite, entre muchos otros parámetros dependiendo del modelo. El controlador ELM327 es el más extendido para establecer dichos enlaces entre la centralita del motor y el dispositivo con el software instalado.

Existen controladores más avanzados, clones del software original de los fabricantes, que permiten adicionalmente programar ciertas configuraciones del vehículo, como el equipamiento y la realización de testeos. OP-COM, VAG-COM, etc son algunos ejemplos.

EOBD

EOBD es la abreviatura de European On Board Diagnostics (Diagnóstico de a Bordo Europeo), la variación europea de OBD II. Una de las diferencias es que no se monitorizan las evaporaciones del depósito de combustible. Sin embargo, EOBD es un sistema mucho más sofisticado que OBD II ya que usa “mapas” de las entradas a los sensores basados en las condiciones de operación del motor, y los componentes se adaptan al sistema calibrándose empíricamente. Esto significa que los repuestos necesitan ser de alta calidad y específicos para el vehículo y modelo.

JOBD

JOBD es una versión de OBD-II para los vehículos vendidos en Japón.

 

 

Conector SAE-J1962

El conector OBD2 le permite acceder fácilmente a los datos de su automóvil, pero ¿qué es realmente?

El estándar OBD2 (SAE J1962) especifica dos tipos de conector hembra de 16 pines OBD2 (A y B).

A continuación se muestra un ejemplo de un conector pin OBD2 tipo A (también conocido como conector de enlace de datos, DLC):

 

pin descripción
2
SAE J1850 Bus +
4
Chasis
5
Señal de Masa (signal Ground)
6
ISO 15765-4 CAN BUS High
7
ISO9141 K Line
10
SAE J1850 Bus –
14
ISO 15765-4 CAN bus Low
15
ISO9141 L-Line
16
+12V  procedentes de  la bateria  del vehiculo   (siempre  activo)

Los pines 1,3,8,9,11,13  no se usan

El DLC OBD2 debe ubicarse en el compartimiento del pasajero o del conductor en el área delimitada por el extremo del conductor del panel de instrumentos a 300 mm (~ 1 pie) más allá de la línea central del vehículo, acoplado al panel de instrumentos y de fácil acceso desde el asiento del conductor . La ubicación preferida es entre la columna de dirección y la línea central del vehículo. 

 

De acuerdo con la norma SAE J1962, el DLC tipo A “debe estar ubicado en el compartimiento del pasajero o del conductor en el área delimitada por el extremo del conductor del panel de instrumentos a 300 mm (~ 1 pie) más allá de la línea central del vehículo, unido al panel de instrumentos y fácil para acceder desde el asiento del conductor. La ubicación preferida es entre la columna de dirección y la línea central del vehículo “. El DLC tipo B “se ubicará en el compartimiento del pasajero o del conductor en el área delimitada por el extremo del conductor del panel de instrumentos, incluido el lado exterior, y una línea imaginada de 750 mm (~ 2.5 pies) más allá de la línea central del vehículo. Será conectado al panel de instrumentos y de fácil acceso desde el asiento del conductor o desde el asiento del copiloto o desde el exterior. El conector del vehículo debe montarse para facilitar el acoplamiento y el desacoplamiento “.

 


El conector OBD2 está cerca del volante, pero puede estar oculto detrás de las cubiertas / panelesNo todos los conectores macho se adaptan a todos los enchufes hembra OBD2; verifique el tipo y las clavijas OBDEl pin 16 suministra energía a través de la batería del automóvil, a menudo también cuando el encendido está apagadoLos pines 6 (CAN-H) y 14 (CAN-L) son más relevantes ya que CAN (ISO 15765-4) es estándar en la mayoría de los automóviles modernos (incl. EVs)

 casi todos los vehículos modernos cuentan  con una interfaz OBD2 / EUOBD.  Para conocer si su  vehículo  lo es  puede abrir el capó del motor y debería encontrar una pegatina, si la etiqueta tiene la letra “OBDII CERTIFIED”, significa que puede instalar el HUD.   No obstante , aunque el vehículo no cuente con esta pegatina, lo normal es que si es un vehículo del 2010  en adelante , esta característica la soporte. 

ond2.PNG

Para verificar el conector de diagnóstico del vehículo debajo del volante, puede encontrar la  toma de 16 pins del vehículo.

figura2
IMG_20180120_162125[1].jpg

 

 

 

¿Por qué debería preocuparse por los datos OBD2?

Los mecánicos obviamente se preocupan por los DTC (quizás usted también lo haga), mientras que las entidades reguladoras lo necesitan para controlar las emisiones.

Pero OBD2 en realidad admite una amplia gama de ID de parámetros estándar (PID) que se pueden registrar en la mayoría de los automóviles lo cual  significa que, por ejemplo, puede obtener datos OBD2 en vivo legibles para el ser humano desde su automóvil en velocidad, RPM, posición del acelerador y más, datos que podemos vusualizar  bien en un HUD  en el parabrisas o  usando  una app movil( ODDB2 doctor por ejemplo)   por medio de un  dispositivo  odb2 con bluettoth .

 

 
OBD2 es la forma más sencilla de obtener datos básicos legibles por personas desde su vehículo.

Pero, ¿no puede obtener estos datos directamente del bus CAN? No necesariamente, ya que los datos CAN sin procesar en la mayoría de los autos son propietarios; para obtener más información, expanda lo siguiente:Decodificación – OBD2 vs CAN Bus Data

Wikipedia tiene un excelente artículo sobre los PID OBD2 estandarizados. También existe una herramienta de conversión en línea OBD2 donde puede ingresar un mensaje para devolver la información PID y los datos convertidos.

OBD2 PIDS Y MENSAJES EXPLICADOS

Para comenzar a grabar datos OBD2, es útil comprender los conceptos básicos de la estructura del mensaje .

En términos simplificados, un mensaje OBD2 se compone de un identificador y datos .

Además, los datos se dividen en modo, PID y bytes de datos Ah, Bh, Ch, Dh (en valores hexadecimales) – cf. la figura de abajo.

OBD2 PIDs Desglose de la estructura del mensaje OBD-ii explicado

Un ejemplo de un mensaje CAN de solicitud / respuesta para el PID ‘Velocidad del vehículo’ con un valor de 50 km / h puede verse así:

Solicitud: 7DF 02 01 0D 55 55 55 55 55 
Respuesta: 7E8 03 41 0D 32 aa aa aa aa aa

(Aquí el 32 es el valor hexadecimal de 50) .

 

A continuación, se explica cada parte del mensaje OBD2:

  • IDENTIFICADOR: Para los mensajes OBD2, el identificador es estándar de 11 bits y se utiliza para distinguir entre ” mensajes de solicitud ” (ID 7DF) y ” mensajes de respuesta ” (ID 7E8 a 7EF). Tenga en cuenta que 7E8 normalmente será donde el motor principal o la ECU responda.
  • LONGITUD: Esto simplemente refleja la longitud en número de bytes de los datos restantes (03 a 06). Para el ejemplo de Velocidad del vehículo, es 02 para la solicitud (ya que solo siguen 01 y 0D), mientras que para la respuesta es 03, ya que siguen 41, 0D y 32.
  • MODO: Para solicitudes, esto será entre 01-0A. Para las respuestas, el 0 se reemplaza por 4 (es decir, 41, 42, …, 4A). Hay 10 modoscomo se describe en el estándar SAE J1979 OBD2. El Modo 1 muestra los Datos actuales y, por ejemplo, se usa para observar la velocidad del vehículo en tiempo real, RPM, etc. Otros modos se utilizan para, por ejemplo, mostrar o borrar códigos de diagnóstico de problemas almacenados y mostrar datos de imágenes congeladas.
  • PID: para cada modo, existe una lista de PID OBD2 estándar, por ejemplo, en el Modo 01, PID 0D es la Velocidad del vehículo Cada PID tiene una descripción y algunos tienen una fórmula de conversión / mínimo / máximo especificada. La fórmula para la velocidad es, por ejemplo, simplemente A, lo que significa que el byte de datos Ah (que está en HEX) se convierte a decimal para obtener el valor convertido en km / h (es decir, 32 se convierte en 50 km / h arriba). Para, por ejemplo, RPM (PID 0C), la fórmula es (256 * A + B) / 4. 
  • > Ah, Bh, Ch, Dh: Estos son los bytes de datos en HEX , que deben convertirse a formato decimal antes de que se usen en los cálculos de la fórmula PID. Tenga en cuenta que el último byte de datos (después de Dh) no se utiliza.

 

¿CÓMO REGISTRAR DATOS OBD2?

El registro de datos OBD2 funciona de la siguiente manera:

  • Conectar un escáner OBD2 o un registrador de datos OBD2 al conector OBD2 de 16 pines.
  • A través de la herramienta, usted ingresa “ mensajes de solicitud ” (consultas) transmitidos a través del bus CAN
  • Las ECU relevantes reaccionan y envían ” mensajes de respuesta ” a través del bus CAN

Esto es importante:

Esto significa que no verá datos OBD2 si simplemente conecta un registrador o interfaz “pasivo” a su automóvil.(Sin embargo, esto produciría datos CAN sin procesar ya que se “difunde”).

Para registrar mensajes de respuesta OBD2 , su registrador de datos OBD2 debe poder enviar los mensajes de solicitud.

Solicitud de datos OBD2 de Car Response PID Velocidad del vehículo OBD-II

 

 

¿QUÉ GRABADORA OBD2 NECESITO?

Existen varias opciones: a continuación, describimos las principales categorías de analizadores OBD2 :

ESCÁNERES OBD2 / LECTORES DE CÓDIGO: se utilizan principalmente en la lectura / eliminación estática de códigos de diagnóstico de problemas. Por ejemplo, los mecánicos los utilizan para buscar el problema subyacente detrás de una lámpara indicadora de mal funcionamiento (MIL). 

REGISTRADORES DE DATOS OBD2: se utilizan para registrar datos OBD2 de un automóvil a lo largo del tiempo, por ejemplo, en una tarjeta SD ; esto puede ser útil para el análisis posterior y, por ejemplo, para analizar patrones, correlaciones, etc. Además, para fines de diagnóstico / optimización, un registrador de datos proporciona un cuadro “vista de patrones de datos antes y después de que un código de diagnóstico se haya activado.

Los registradores de datos OBD2 con Bluetooth o WiFi también se utilizan, por ejemplo , en la gestión de la flota de vehículos para mejorar la eficiencia del combustible, evitar la conducción insegura y permitir diagnósticos remotos proactivos a través de los parámetros compatibles con OBD2.

INTERFACES DE DATOS OBD2: Se utilizan para proporcionar datos en tiempo real en tiempo real sobre varios parámetros OBD2. Las aplicaciones pueden incluir pantallas / aplicaciones visuales que guían al conductor en cuanto a eficiencia de combustible o rendimiento, o como un chequeo de estado en vivo.

Las interfaces OBD2 más avanzadas también se pueden usar para transmitir datos OBD2 junto con datos de bus CAN patentados, que pueden ser útiles para el rastreo de CAN y el pirateo de automóviles .

Además, también existen híbridos : la serie CLX000 puede, por ejemplo, actuar como un registrador de datos y una interfaz OBD2 .

Shell scripting :funciones ,subshells y variables de entorno


Bash , c-shell  o simplemente shell scripting es  un lenguaje de script  creado a fines de la década de 1980 por un programador llamado Brian Fox, que trabajaba para la Free Software Foundation . Fue pensado como una alternativa de software libre para el shell Bourne (de hecho, su nombre es un acrónimo de Bourne Again SHell ), e incorpora todas las características de ese shell, así como nuevas características como la aritmética de enteros y el control de trabajo

Bash es un “shell de Unix”, es decir  una interfaz de línea de comandos para interactuar con el sistema operativo por lo que está ampliamente disponible, siendo el shell predeterminado en muchas distribuciones de GNU / Linux y en Mac OSX, con puertos existentes para muchos otros sistemas.

En post anteriores hemos hablado en una primera aproximación  al lenguaje c-sheall  con el primer ejemplo famoso de  Hello world y avanzando comandos ,tuberías ,variables ,parámetros y salidas posibles y en un segundo post  sobre el  uso de las Tuberías , sustitución de comandos,operadores ,asignación de variables ,Bucles , literales , variables   y aritmética no entera

En este  post  vamos  a continuar  avanzando en el conocimiento de este lenguaje con el uso de las funciones, subshells  y las  variables de entorno

close up code coding computer

 

 

 

Funciones de shell 

Una función de shell es un tipo especial de variable que es esencialmente un script dentro de otro script. Gracias a estas funciones c-shell  nos permite agrupar una secuencia de comandos en un solo comando con nombre, lo cual es particularmente útil si la secuencia de comandos necesita ejecutarse desde muchos lugares dentro del script  .

Como una función de shell puede incluso consistir en un solo comando; esto puede ser útil si el comando es particularmente complicado, o si su significado no sería inmediatamente obvio para un lector,es  decir, las funciones de shell pueden servir para dos propósitos:

  • pueden guardar la escritura
  • Pueden permitir un código más legible mediante la creación de comandos con nombres intuitivos

Como ejemplo considere la siguiente secuencia de comandos:

#! / bin / bash
# Uso: get_password VARNAME 
# Le pide al usuario una contraseña y lo guarda como $ VARNAME. 
# Devuelve un estado de salida distinto de cero si la entrada estándar no es un terminal, o si el 
comando # "leer" devuelve un estado de salida distinto de cero. 
get_password ()  { 
  si  [[ -t 0  ]]  ;  then
    read -r -p 'Contraseña:' -s "  $ 1  "  &&  echo 
  else 
    return  1
   fi
 }

get_password PASSWORD &&  echo  "  $ PASSWORD  "

El script anterior crea una función de shell llamada get_password que le pide al usuario que escriba una contraseña y almacena el resultado en una variable específica. Luego ejecuta get_password PASSWORD para almacenar la contraseña como $ PASSWORD ; y por último, si la llamada a get_password tuvo éxito (según lo determinado por su estado de salida), la contraseña recuperada se imprime en la salida estándar (que obviamente no es un uso realista pues  el objetivo aquí es simplemente demostrar el comportamiento de get_password ).

La función get_password no hace nada que no se pueda hacer sin una función de shell, pero el resultado es mucho más legible. La función invoca la lectura de comando incorporada (que lee una línea de entrada del usuario y la guarda en una o más variables) con varias opciones con las que la mayoría de los programadores de Bash no estarán familiarizados:

  • La opción -r desactiva un significado especial para el carácter de barra diagonal inversa;
  • la opción -p hace que aparezca un mensaje específico, en este caso Contraseña:, al principio de la línea;
  • la opción -s evita que se muestre la contraseña a medida que el usuario lo escribe. Desde la -s la opción también evita que se muestre la nueva línea del usuario,

El comando echo proporciona una nueva línea y además, la función usa la expresión condicional -t 0 para asegurarse de que la entrada del script proviene de un terminal (una consola) y no de una archivo o de otro programa que no sabría que se está solicitando una contraseña. (Esta última característica es discutible; dependiendo de la funcionalidad general del script,pues  puede ser mejor aceptar una contraseña de entrada estándar independientemente de su origen, suponiendo que la fuente se diseñó teniendo en cuenta el script). El punto general es que darle un nombre a la secuencia de comandos – get_password – hace que sea mucho más fácil para un programador saber qué hace.

Dentro de una función de shell, los parámetros posicionales$ 1 , $ 2 , etc., así como $ @ , $ * y $ # ) se refieren a los argumentos con los que se llamó a la función, no a los argumentos del script que contiene la función. Si se necesitan estos últimos, entonces deben pasarse explícitamente a la función, usando "$ @" . (incluso entonces, shift y set solo afectarán a los parámetros posicionales dentro de la función, no a los de la persona que llama).

Una llamada de función devuelve un estado de salida, al igual que un script (o casi cualquier comando). Para especificar explícitamente un estado de salida, use el comando return , que finaliza la llamada a la función y devuelve el estado de salida especificado. (El comando de salida no se puede usar para esto, ya que terminaría la secuencia de comandos completa, como si se llamara desde fuera de una función). Si no se especifica ningún estado de salida, ya sea porque no se da ningún argumento al comando de devolución o porque se llega al final de la función sin haber ejecutado un comando de retorno , a función devolverá el estado de salida del último comando que se ejecutó.

Incidentalmente, cualquiera de las funciones o () pueden omitirse de una declaración de función, pero al menos una debe estar presente. En lugar de , muchos programadores escriben  de manera similar, la notación {...} que no es exactamente necesaria y no es específica de las funciones; es simplemente una notación para agrupar una secuencia de comandos en un solo comando compuesto.

El cuerpo de una función debe ser un comando compuesto, como un bloque {…} o una instrucción if ; {…} Es la opción convencional, incluso cuando todo lo que contiene es un comando compuesto único y, por lo tanto, teóricamente podría prescindirse de él.function get_password ( )get_password ()

Subshells 

En Bash, uno o más comandos se pueden envolver entre paréntesis, lo que hace que esos comandos se ejecuten en una “subshell”(también hay algunas formas en que se pueden crear subshells implícitamente) Un subshell recibe una copia del “entorno de ejecución” del contexto circundante, que incluye cualquier variable, entre otras cosas; pero cualquier cambio que haga a subshell al entorno de ejecución no se vuelve a copiar cuando se completa la subshell.

Así, por ejemplo, este script: #! / bin / bash

foo  = barra
 echo  "  $ foo  "  # imprime 'barra'

# subshell:
 (
  echo  "  $ foo  "  # imprime 'barra' - la subshell hereda las variables de sus padres 
  baz  = bip
   echo  "  $ baz  "  # imprime 'bip' - la subshell puede crear sus propias variables 
  foo  = foo
   echo  "  $ foo  "  # imprime ' foo '- la subshell puede modificar variables heredadas
 )

echo  "  $ baz  "  # no imprime nada (solo una nueva línea) - se pierden las nuevas variables de la subshell 
echo  "  $ foo  "  # imprime 'barra' - los cambios de la subshell a las variables antiguas se pierden

La ejecución imprimirá esta salida:

bar

bar

bip

foo

bar

Si necesitase llamar a una función que modifica una o más variables, pero en realidad no desea que esas variables se modifiquen, puede ajustar la llamada a la función entre paréntesis, para que tenga lugar en una subshell. Esto “aislará” las modificaciones y evitará que afecten el entorno de ejecución circundante.Dicho esto: cuando sea posible, es mejor escribir funciones de tal manera que este problema no se presente para comenzar, pues la palabra clave local puede ayudar con esto.

Lo mismo ocurre con las definiciones de funciones; al igual que una variable regular, una función definida dentro de una subshell no es visible fuera de la subshell.

Una subshell también delimita los cambios a otros aspectos del entorno de ejecución; en particular, el comando cd (“cambiar directorio”) solo afecta a la subshell. Así, por ejemplo, este script:

  #! / bin / bash

cd /
 pwd  # imprime '/'

# subshell:
 (
  pwd  # prints '/' - la subshell hereda el directorio de trabajo 
  cd home
   pwd  # prints '/ home' - la subshell puede cambiar el directorio de trabajo 
)  # end of subshell

pwd  # prints '/': los cambios de la subshell en el directorio de trabajo se pierden

imprime esto:

/ / /casa /

Si su script necesita cambiar el directorio de trabajo antes de ejecutar un comando dado, es una buena idea usar una subshell si es posible,. de lo contrario, puede resultar difícil hacer un seguimiento del directorio de trabajo al leer un script. Alternativamente, los comandos incorporados pushd y popd se pueden usar para un efecto similar.

 

Una declaración de salida dentro de una subshell termina solo esa subshell. Por ejemplo, este script:

  #! / bin / bash
(  exit  0  )  &&  echo  'subshell successed' 
(  exit 1  )  ||  echo  'subshell failed'

imprime esto:

 subshell tuvo éxito
subshell falló

Al igual que en una secuencia de comandos en su conjunto, exit de los valores predeterminados  devuelve el estado de salida del comando de última ejecución, y una subshell que no tiene una instrucción de salida explícita devolverá el estado de salida del comando de última ejecución.

Variables de entorno

Ya hemos visto que, cuando se llama a un programa, recibe una lista de argumentos que se enumeran explícitamente en la línea de comandos. Lo que no hemos mencionado es que también recibe una lista de pares nombre-valor denominados “variables de entorno”.

Diferentes lenguajes de programación ofrecen diferentes formas para que un programa acceda a una variable de entorno; Los programas C pueden usar getenv (" variable_name ") (y / o aceptarlos como un tercer argumento para main ), los programas Perl pueden usar $ ENV {' variable_name '} , los programas Java pueden usar System.getenv (). Get (" variable_name ") , y así sucesivamente.

En Bash, las variables de entorno se convierten simplemente en variables regulares de Bash. Así, por ejemplo, la siguiente secuencia de comandos imprime el valor de la variable de entorno HOME :

#! / bin / bash
echo  "  $ HOME  "

Sin embargo, lo contrario no es cierto: las variables regulares de Bash no se convierten automáticamente en variables de entorno. Así, por ejemplo, este script:

#! / bin / bash
foo  = bar
bash -c 'echo $ foo'

Esto no imprimirá la barra , porque la variable foo no se pasa al comando bash como una variable de entorno. ( De bash -c scripts argumentos ... corre el Bash script de una línea de la escritura ).

Para convertir una variable Bash normal en una variable de entorno, tenemos que “exportarla” al entorno. La siguiente secuencia de comandos hace la impresión de barras :

#! / bin / bash
export  foo  = bar
bash -c 'echo $ foo'

Tenga en cuenta que la exportación no solo crea una variable de entorno; en realidad marca la variable Bash como una variable exportada, y las asignaciones posteriores a la variable Bash también afectarán a la variable de entorno. Ese efecto es ilustrado por este script:

#! / bin / bash
foo  = bar
bash -c 'echo $ foo'  # no imprime nada 
export foo
bash -c 'echo $ foo'  # imprime 'bar' 
foo  = baz
bash -c 'echo $ foo'  # imprime 'baz'

El comando de exportación también se puede usar para eliminar una variable de un entorno, incluyendo la opción -n ; por ejemplo, export -n foodeshace el efecto de export foo. Y múltiples variables pueden ser exportadas o no exportadas en un solo comando, como export foo barexport -n foo bar.

Es importante tener en cuenta que las variables de entorno solo se pasan a un comando; nunca se reciben de vuelta de un comando. En este sentido, son similares a las variables y subshells regulares de Bash. Así, por ejemplo, este comando:

#! / bin / bash
export  foo  = bar
bash -c 'foo = baz'  # no tiene efecto 
echo  "  $ foo  "  # print 'bar'

barra de estampados ; el cambio a $ foo dentro del script de una línea no afecta el proceso que lo invocó. (Sin embargo, podría afectar a cualquier script que fueron llamados a su vez por ese guión.)

Si se desea una variable de entorno dada para un solo comando, se puede usar la sintaxis, con la sintaxis de una asignación de variable (o múltiples asignaciones de variables) que precede a un comando en la misma línea. (Tenga en cuenta que, a pesar de usar la sintaxis de una asignación de variable, esto es muy diferente de una asignación de variable Bash normal, en que la variable se exporta automáticamente al entorno y en que solo existe para el comando. Si desea evitar la confusión de sintaxis similar hacer las cosas diferentes, se puede utilizar la común utilidad Unix env para el mismo efecto que la utilidad también hace que sea posible. eliminar una variable de entorno para un comando – o incluso para eliminar todas las variables de entorno para un comando) Si. $ varvar =value commandya existe, y se desea incluir su valor real en el entorno para un solo comando, que se puede escribir como .var = " $var " command

Aparte: a veces es útil colocar definiciones de variables, o definiciones de funciones, en un script de Bash (por ejemplo, header.sh ) que puede ser llamado por otro script de Bash (por ejemplo, main.sh ). Podemos ver que simplemente invocar ese otro script Bash, como ./header.sh o como bash ./header.sh , no funcionará: las definiciones de variables en header.sh no serán vistas por main.sh , ni siquiera si “exportado” esas definiciones. (Este es un punto de confusión común: exportar las variables de exportación al entorno para que otros procesos puedan verlas, pero solo las ven los procesos secundarios , no los padres.) Sin embargo, podemos usar el comando incorporado Bash (“punto”) o fuente , que ejecuta un archivo externo casi como si fuera una función de shell. Si header.sh se ve así:

 foo  = función de barra
 baz ()
 {
  echo  "  $ @  "
 }

entonces este script:

#! / bin / bash
. header.sh
baz "  $ foo  "

imprimirá 'barra' .

Alcance 

Ahora hemos visto algunos de los caprichos del alcance variable en Bash.

Para resumir lo que hemos visto hasta ahora:

  • Las variables regulares de Bash están orientadas al shell que las contiene, incluidas las subshells en ese shell.
    • No son visibles para ningún proceso secundario (es decir, para programas externos).
    • Si se crean dentro de una subshell, no son visibles para el shell principal.
    • Si se modifican dentro de una subshell, esas modificaciones no son visibles para el shell principal.
    • Esto también se aplica a las funciones, que en muchos aspectos son similares a las variables regulares de Bash.
  • Las llamadas de función no se ejecutan inherentemente en subshells.
    • Una modificación de variable dentro de una función generalmente es visible para el código que llama a la función.
  • Las variables de Bash que se exportan al entorno tienen un alcance al shell que las contiene, incluidas las subshells o procesos secundarios en ese shell.
    • El comando incorporado de exportación se puede utilizar para exportar una variable al entorno. (También hay otras formas, pero esta es la forma más común).
    • Difieren de las variables no exportadas solo en que son visibles para los procesos secundarios. En particular, todavía no son visibles para shells principales o procesos primarios.
  • Los scripts de Bash externos, como otros programas externos, se ejecutan en procesos secundarios. El o el comando integrado de origen se puede utilizar para ejecutar un script de este tipo internamente, en cuyo caso no se ejecuta de forma inherente en una subshell.

Ademas a  esto añadimos ahora:

  • Las variables de Bash que están localizadas en una función-llamada están sujetas a la función que las contiene, incluyendo cualquier función llamada por esa función.
  • El comando incorporado local se puede usar para localizar una o más variables a una llamada de función, usando la sintaxis local var1 var2o . (también hay otras formas, por ejemplo, el comando declarar incorporado tiene el mismo efecto, pero esta es probablemente la forma más común).local var1 = val1 var2 = val2)
  • Se diferencian de las variables no localizadas en que desaparecen cuando finaliza su función-llamada. En particular, todavía son visibles para subshells y llamadas de función hijo. Además, al igual que las variables no localizadas, se pueden exportar al entorno para que también las vean los procesos secundarios.

En efecto, usar local para localizar una variable en una función-llamada es como poner la función-llamada en una subshell, excepto que solo afecta a una variable; otras variables pueden dejarse sin ser “locales”.

 

Una variable que se establece dentro de una función (ya sea mediante asignación o mediante un comando for-loop u otro comando incorporado) debe marcarse como “local” utilizando el comando incorporado local , para evitar que se afecte accidentalmente el código fuera del función, a menos que se desee específicamente que la persona que llama vea el nuevo valor.

Es importante tener en cuenta que, aunque las variables locales en Bash son muy útiles, no son tan locales como las variables locales en la mayoría de los otros lenguajes de programación, ya que son vistos por llamadas de funciones secundarias. Por ejemplo, este script:

#! / bin / bash

foo  = bar

function f1 ()
 {
  echo  "  $ foo  "
 }

function f2 ()
 {
  local  foo  = baz
  f1 # imprime 'baz'
 }

 f2

En realidad se imprimirá baz en lugar de barra . Esto se debe a que el valor original de $ foo está oculto hasta que devuelve f2 . (En la teoría del lenguaje de programación, una variable como $ foo se dice que tiene un “ámbito dinámico” en lugar de un “ámbito léxico”).

Una diferencia entre local y subshell es que mientras que un subshell toma inicialmente sus variables de su shell principal, una declaración como local foo oculta inmediatamente el valor anterior de $ foo ; es decir, $ foo se desestabiliza localmente. Si se desea inicializar el $ foo local al valor del $ foo existente , debemos especificarlo explícitamente, mediante el uso de una declaración como local foo = "$ foo" .

Cuando una función sale, las variables recuperan los valores que tenían antes de sus declaraciones locales (o simplemente se anulan, si no se habían anulado). Curiosamente, esto significa que un script como este:

 #! / bin / bash

function f ()
 {
  foo  = baz
   local  foo  = bip
 }

foo  = bar
 F
echo  "  $ foo  "

Realmente imprimirá baz : la declaración foo = baz en la función surte efecto antes de que la variable se localice, por lo que el valor baz es lo que se restaura cuando la función regresa.Y dado que local es simplemente un comando ejecutable, una función puede decidir en tiempo de ejecución si localizar una variable dada, por lo que este script:

#! / bin / bash

function f ()
 {
  si  [[  "  $ 1  "  ==  'sí'  ]]  ;  entonces
    Foo
   local fi
  foo  = baz
 }

foo  = bar
f yes # modifica un $ foo localizado, por lo que no tiene ningún efecto 
echo  "  $ foo  "  # imprime 'barra' 
f # modifica el $ foo no localizado, configurándolo en 'baz' 
echo  "  $ foo  "  # imprime 'baz'

Este script en realidad se imprimirá

 bar
baz

 

Radio por internet con Raspberry pi


Desde Adafruit nos enseñan como construir  un  controlador de pantalla táctil para nuestra  Raspberry pi   con la idea de usar  esta  con la pantalla táctil , como  un Radio Reproductor por internet  gracias al  número creciente de emisoras de radio de internet disponibles. Obviamente  esta idea de instalar una pantalla táctil  a nuestra raspberry pi es ideal no solo para usar nuestra Pi como a radio por internet sino también para muchísimas  mas funciones como  reproductor mp3,cámara Ip, como tableta, para modding  y una infinidad de ideas      

Concretamente este interesante proyecto combina la versatilidad de la Raspberry Pi y el económico  PiTFT 2,8″ con pantalla táctil TFTdisplay. Una interfaz de visualización personalizada le permite controlar el volumen, la estación y ver lo que se está reproduciendo siendo ideal para personas que tienen una Raspberry Pi  y no le encuentran  otra  utilidad o simplemente para probar la funcionalidad del interfaz táctil

Como vamos a ver  hay bastantes pasos, pero el resultado merece la pena .

Resumidamente estos son los pasos a seguir:

  1. Montar  la PiTFT 320 x 240 2,8″ con pantalla táctil (esto puede no ser necesario si su PiTFT esta ya  premontado)
  2. Calibrar la pantalla táctil
  3. Instalar Music Player Daemon (MPD) y el cliente de reproductor de música (MPC) en laPi
  4. Encontrar y añadir emisoras de radio internet a mpc
  5. Descargar el código de radioplayer 
  6. Disfrutar de streaming de radio por internet en su escritorio Deben completarse todos los pasos de configuración y calibración para la pantalla de PiTFT.

Como adelanto en el siguiente vídeo podemos ver el proyecto en funcionamiento

 

 

Sin duda  es una idea muy interesante , veamos los pasos más en detalle.

 

1-Preparación y calibrado del sensor tactil 

Si su PiTFT de Adafruit pantalla táctil de 2,8″ vino como un kit ( por ejemplo el de Adafruit) necesitara completar las instrucciones para montar la pantalla,  aunque resumidamente hay que descargar y grabar la imagen PiTFT o bien utilizar una instalación existente de Raspbian e instalar el script de configuración sencilla. 

Si usa una  imagen para  instalar o utiliza el script instalador,entonces  todos los  pasos que vamos a ver  no son necesarios pues  ya están hechos  de modo que lo que vamos  a ver  es sólo para usuarios avanzados que tengan curiosidad sobre cómo configurar y personalizar la pantalla táctil siendo el procedimiento  idéntico para el 2.4″, 2.8″, 3.2″y 3.5″ PiTFTs resistivas.
Lo realmente interesante de este procedimiento es que ademas puede ser útil para otras pantallas diferentes a la de Adafruit en Amazon , pues  existen opciones razonables  por 25€ ( pantallas , soporte  y dializador incluidos )   que tendremos que configurar .
Como vamos a  ver el procedimiento es superable  aunque es cierto  que tengamos que pasar por un proceso de  calibración , pero no es difícil en absoluto.
Pantalla táctil de 3,5 pulgadas TFT LCD pantalla con protector caja de acrílico para Raspberry Pi 3 B+ [3 x disipador de calor de aluminio, CD con sistema instalado, lápiz capacitivo]
En este el caso  de comprar un kit , el montaje  físico es bastante sencillo  pues se reduce a  montar sobre la respberry pi sobre el  conector  de la GPIO  ,colocar el puente de hdmi  (segun el  modelo  especialmente en las pantallas mas grandes )   y montar finalmente los acrílicos
Este vídeo  nos puede servir para hacernos idea  de modo que nos  puede ayudar https://www.youtube.com/watch?v=gVK9MpPzK44,
No obstante  aun siendo sencillos  loa pasos , según el modelo puede haber variaciones  asi que lo recomendables es consultar las instrucciones que del fabricante del kit 
 
Veamos los  pasos a seguir una vez hayamos ,montado  la pantalla sobre la Raspberry Pi
 
  • Antes de empezar, vamos a hacer una regla udev para la pantalla táctil. Eso es porque el nombre eventX del dispositivo va a cambiar mucho y su molesto para averiguar lo que su llamada dependiendo de si tiene un teclado o el otro ratón instalado.   Ejecutar   sudo nano /etc/udev/rules.d/95-stmpe.rules   para crear un nuevo archivo de udev y copia y pega la siguiente línea: SUBSYSTEM==”input”, ATTRS{name}==”stmpe-ts”, ENV{DEVNAME}==”*event*”, SYMLINK+=”input/touchscreen” 
  •  Quite y vuelva a instalar la pantalla táctil con  sudo rmmod stmpe_ts; sudo modprobe stmpe_ts  
  • A continuación  realize un listado del directorio  escribiendo ls -l /dev/input/touchscreen  debe apuntar a eventX donde X es algún número, que número será diferente en diferentes configuraciones ya que otros teclados/ratones y dispositivos USB se llevará una ranura de evento
  • Hay algunas herramientas que podemos utilizar para calibrar y depurar la pantalla táctil. Instalar el “evento de prueba” y “biblioteca de pantalla táctil” paquetes con sudo apt-get install evtest tslib libts-bin
  • Evtest corriente :Ahora usted puede utilizar algunas herramientas como  sudo evtest /dev/input/touchscreen  ,  que le permitirá ver eventos de la pantalla táctil en tiempo real, pulsar en la pantalla táctil para ver los informes.
  • Script de calibración AutoMagic :Si se gira la pantalla necesita volver a calibrar la pantalla táctil para trabajar con la nueva orientación de la pantalla. Puede ejecutar manualmente los procesos de calibración en la sección siguiente, o puede volver a ejecutar el script instalador y seleccionar una nueva rotación.Intente utilizar este script de calibración por defecto para calibrar fácilmente su pantalla táctil. Tenga en cuenta que los valores de calibración pueden no ser adecuados para la pantalla, pero deben ser lo suficientemente cercanas para la mayoría de las necesidades. Si usted necesita la calibración de pantalla táctil más precisa, siga los pasos en la siguiente sección manualmente calibrar la pantalla táctil.
  • Calibración manual :Si la técnica de calibración “automagic” no funciona para usted o si tiene alguna otra instalación donde tiene que calibrar cuidadosamente te puede hacer ‘manualmente’se quiere calibrar la pantalla una vez pero no tiene que hacer más que eso. Empezaremos por la calibración en la línea de comandos ejecutando sudo TSLIB_FBDEVICE=/dev/fb1 TSLIB_TSDEVICE=/dev/input/touchscreen ts_calibrate .Siga las instrucciones en la pantalla, tocando cada punto. Utilizando un lápiz es sugerido para obtener un toque preciso. No uso algo de metal, plástico.Veremos cinco objetivos de punto de mira. Si ve menos que esos, la pantalla táctil probablemente genera señales múltiples de un solo toque, y usted debe tratar de calibrar otra vez.A continuación se puede ejecutar sudo TSLIB_FBDEVICE=/dev/fb1 TSLIB_TSDEVICE=/dev/input/touchscreen ts_test que le permitirá dibujar-prueba de la pantalla táctil. Volver atrás y volver a calibrar si sientes que la pantalla no es suficientemente precisa.
  • X calibración :También puede calibrar el sistema de entrada de X pero tienes que usar un programa diferente llamado xtcal (xinput_calibrator ya no funciona).Puede hacer esto si la calibración de la pantalla no es de tu agrado o cualquier momento cambiar la rotación = XX ajustes del módulo de la pantalla. Puesto que el controlador de pantalla y touch son completamente separados, la pantalla táctil no rotara automáticamente
sudo apt-get install libxaw7-dev libxxf86vm-dev libxaw7-dev libxft-dev
git clone https://github.com/KurtJacobson/xtcal
cd xtcal
make
  • Debe estar ejecutando PIXEL (GUI) mientras se calibra.Antes de empezar el calibrador tendrá que ‘reiniciar’ el viejo calibración datos entonces ejecutar DISPLAY=:0.0 xinput set-prop "stmpe-ts" 'Coordinate Transformation Matrix' 1 0 0 0 1 0 0 0 1 Ahora tendrá que ejecutar el calibrador mientras se ejecuta también X. Puede hacerlo abriendo el programa terminal y ejecuta el comando xtcal (que es difícil hacerlo en una pequeña pantalla) o se puede hacer lo que hacemos que es crear un shell SSH/Terminal y ejecutar el calibrador de la misma cáscara , que requiere el siguiente comando:DISPLAY=:0.0 xtcal/xtcal -geometry 640x480
  • Tenga en cuenta que el puede variar!geometry .Si está utilizando un 2.4″/2.8″/3.2 “pantalla de 320 x 240 con orientación horizontal, utilizar 640 x 480. Si es retrato, utilizar 640 x 480.Si está utilizando una pantalla de 3.5” con paisaje, utilizar 720 x 480, retrato es 480 x 720   Siga las instrucciones en pantalla
 
  • Ejecute sudo nano /usr/share/X11/xorg.conf.d/20-calibration.conf y copiar la linea número 9 en la opción de TransformationMatrix por lo que parece:
  1. Section “InputClass”
  2. Identifier “STMPE Touchscreen Calibration”
  3. MatchProduct “stmpe”
  4. MatchDevicePath “/dev/input/event*”
  5. Driver “libinput”
  6. Option “TransformationMatrix” “-0.000087 1.094214 -0.028826 -1.091711 -0.004364 1.057821 0 0 1”
  7. EndSection
  • Por ultimo hay que  reiniciar tu Pi para comprobar que está hecho Si esa asi ¡Su pantalla táctil esta ahora super calibrado, Lai lá!
¡No se debe usar con el PiTFT capacitiv pues no funcionara! Encontrara que para el uso más efectivo de la pantalla táctil es necesario llevar a cabo la calibración manual de la pantalla táctil.
Ahora que la pantalla está funcionando muy bien, nos encargamos de la pantalla táctil.

2-Instalar el Daemon

Ya tenemos  una raspberry Pi  con una pantalla táctil  de modo qeu podemos continuar .
En esta etapa es digno  la comprobación que la Raspberry Pi está actualizada antes de continuar, por lo que debe ejecutar el siguiente comando. 

sudo aptget update

Ahora ya podemos instalar el mpc y mpd  y añadir algunas emisoras de radio a tu lista de reproducción.

Las estaciones de ejemplo se enumeran a continuación son canales de la BBC del Reino Unido, pero  existen muchos mas disponibles en otros paises  

  • sudo aptget install mpd mpc
  • mpc add http://bbcmedia.ic.llnwd.net/stream/bbcmedia_intl_lc_radio1_p?s=1365376033&e=1365390433&h=a0fef58c2149248d6bff1f7b7b438931
  • mpc add http://bbcmedia.ic.llnwd.net/stream/bbcmedia_intl_lc_radio2_p?s=1365376067&e=1365390467&h=d43dc8ae0f888809462a6cb7c389b46b
  • mpc add http://bbcmedia.ic.llnwd.net/stream/bbcmedia_intl_lc_radio3_p?s=1365376123&e=1365390523&h=d53cf2a92272f3289b314a2251d23bc8
  • mpc add http://bbcmedia.ic.llnwd.net/stream/bbcmedia_intl_lc_radio4_p?s=1365376126&e=1365390526&h=ed9a0642b30c422b07fbcd8683c52335
  • mpc add http://bbcmedia.ic.llnwd.net/stream/bbcmedia_intl_lc_5live_p?s=1365376271&e=1365390671&h=e0d82133f35ae74d41d5eab6b9c150a6

Usted puede ahora comprobar con el comando mpc funciona a partir de una emisora sin olvidar conectar sus auriculares en el jack de 3 1/2 de  la salida de audio de la raspberry 

mpc play

Una copia de la lista de reproducción se puede guardar con el comando   mpc save my_playlist

La lista de reproducción se guarda en /var/lib/mpd/listas/  y  a lista de reproducción puede ser editada a mano con

sudo nano /var/lib/mpd/playlists/my_playlist

Una vez editada la lista de reproducción se puede cargar en mpc con

mpc load /var/lib/mpd/playlists/my_playlist

De esta forma podemos tener  un número de listas de reproducción guardadas en /var/lib/mpd/playlists con diversos géneros dependiendo del  estado de ánimo

 

3-Instalar Radio Player

El software de front-end Radioplayer se ha escrito en Python con Pygame y es específico para la pantalla TFT de 320 x 240 2,8″. Sin embargo, es relativamente sencillo adaptar el código para trabajar en una ventana de  mayor tamaño

Debe descargar el código de Python y los iconos desde el enlace Descargar el código de Python y los iconos. Extraiga los archivos en un memory stick y copielos  en una carpeta en la Raspberry Pi. (O puede colocarlo en el directorio de tarjeta SD en el ordenador de casa, los archivos en boot al arranca la tarjeta SD en la Pi)

Guardar en una carpeta llamada pi-radio 

Asegúrese de que todos los iconos y python código se guarda en la carpeta /home/pi/pi-radio

¡En esta etapa todo debería estar listo para funciona asi que solo tiene que ejecutar los siguientes comandos

cd /home/pi/piradio

sudo python radioplayer.py

 

 

Uso de Radioplayer

La interfaz ha sido funestamente mantenida simple para que puede accionarse con los dedos en lugar de un lápiz.
projects_Raspberry_Pi_Radio.jpg
  • Play – mpc inicia en la lista de reproducción
  • Pausa – mpc se detiene en la lista de reproducción
  • Bajar volumen – reduce el volumen
  • Subir volumen – aumenta el volumen de
  • Mute – volumen cero
  • Refrescar – para la reproduccion, vuelve a reproducir  y actualiza la pantalla.
  • Exit – cierra radioplayer interfaz pero mantiene mpc ejecutandose

 

Se extrae la información de la estación de la salida  con el comando  mpc status

Muchas estaciones de usan un formato común de  Nombre de emisora: nombre/información del circuito, es decir 

  • Nombre de la estación se muestra en la primera línea de la pantalla.
  • El nombre de la pista se muestra en la segunda línea de la pantalla.
  • Si no hay ningún nombre de la pista se muestra un mensaje de “ninguna información adicional“.

 

 

 

 

 

Mas   información en  https://learn.adafruit.com/raspberry-pi-radio-player-with-touchscreen/

Almacenamiento ilimitado para los clientes de Movistar Fusion



Conexión Segura, Movistar Junior y Movistar Cloud son los nuevos servicios gratis para Fusión que se han presentado recientemente

  • Con Movistar Cloud, tendremos almacenamiento ilimitado en la nube de forma gratuita. 
  • Conexión Segura es un servicio que protege nuestra conexión y dispositivos de las diferentes amenazas que pululan por la red.
  • Movistar Junior es  una app  de entretenimiento infantil online para smartphones y tablets, en un entorno seguro y protegido para los niños en el que  los padres pueden estar tranquilos de lo que ven sus hijos, al existir una zona de padres donde pueden limitar el tiempo de uso de la aplicación.

 Movistar Cloud

Este servicio de almacenamiento  en la nube   pasa a tener capacidad ilimitada y a ser gratuito para los clientes Fusión y para los clientes con líneas #15 y #25. Para los que tengan contrato y líneas adicionales #1,5, #4 o #8 el servicio costará 3 euros al mes. Se puede activar Movistar Cloud   bien  llamando al 1004 o desde su   nuevo sitio web https://micloud.movistar.es/ui/html/mobileconnect.html#start

Por cierto  desde micloud.movistar.es se pude descargar también las aplicaciones para iOS y Android. Los  links de la app son :  en Google Play  y en App Store

Con este servicio se puede guardar cualquier  contenido en la nube y acceder a ellos desde cualquier dispositivo en cualquier lugar siendo  accesible  desde  una app para móvil, tablet y ordenador y una página web de disfrute del servicio.
 
Con el servicio se pueden compartir fotos, vídeos o documentos por email, whatsapp o redes sociales y ver sus fotos y vídeos de su cuenta de Facebook o Instagram,  archivos de Dropbox o incluso archivos anexados a sus emails de Gmail de manera inmediata.
 
 

Puede acceder a Movistar Cloud desde un ordenador (PC Windows 7 o superior o Mac OS IX o superior) y desde un smartphone o tablet con sistema operativo Android (4.x y superior), iOS (6.x, 7.x, 8.x y superior).

En el caso de que prefiera usar  un navegador  web, puede utilizar los navegadores Mozilla Firefox v25 o posterior, Google Chrome v31 o posterior, o Internet Explorer v9 o posterior.

Movistar Cloud no tiene ningún compromiso de permanencia y podemos activarlo en tantas líneas móviles de contrato como tengamos.

Por cierto ,el servicio  se ha lanzado hace unos días  es del segmento de Gran Público, y no el de Empresas. El servicio Conexión Segura Empresas se lanzará próximamente

Conexión Segura de Movistar

Este nuevo servicio para los clientes de Movistar Fusión ofrece protección eficaz e inmediata al bloquear las amenazas de malware y fraude que se puedan encontrar al navegar tanto en la red fija como en la red móvil como en los dispositivos conectados a la primera. Se trata de un servicio gratuito si somos cliente Fusión   (4 líneas móviles fuera del hogar (3G/4G) y  5 licencias multidispositivo) o  si tenemos una línea móvil(1 licencia móvil).

La protección de la navegación por tu red de Movistar no requiere de instalaciones ya que esta se presta desde la red tanto en 3G/4G como en la red Wifi del hogar.

  •  Si se cuenta con  equipamiento Smart Wifi(antiguo HGU)   la seguridad por la red wifi del hogar se presta desde el router,
  •  Si no dispone de equipamiento Smart Wifi(antiguo HGU) , la protección de la red Wifi del hogar se presta desde la red y aplica sólo a la navegación por tráfico abierto (webs http) y no tráfico encriptado (webs https).

El servicio Conexión Segura chequea la reputación de la página web a la que quiere acceder y si esta, es de dudosa reputación  alerta y bloquea el acceso, pudiendo continuar bajo la responsabilidad del usuarios.De esta manera  mantiene protegido en tiempo real de potenciales amenazas del tipo Malware, así como de Fraude (suplantaciones de identidad conocidas como Phishing). 

Puede descargar la app Seguridad Dispositivo Movistar desde:

  •  El portal https://conexionsegura.movistar.es una vez tengas activado el servicio Conexión Segura, accediendo con las credenciales Movistar del titular de la línea.
  •  Accediendo a través del línk de descarga que se muestra en las páginas de bloqueo.
  • A través de la app Smart Wifi (sólo para clientes Fusión con equipamiento Smart Wifi)

 Si activamos Conexión segura y descargamos la App Seguridad Dispositivo podremos:

  • Localizar del dispositivo en todo momento, ante robo o perdida.
  • Gestionar dispositivo en remoto. Hacer una foto a quien intenta manipularlo e identificar el lugar donde se encuentra quién se lo haya llevado.
  • Activar Conexión Segura

Compartimos un vídeo muy divertido sobre el servicio Conexión Segura (de Gran Público)

Reciclar un módem usb 3G y de paso mejorar la cobertura Wifi


En efecto  estos simples dispositivos de almacenamiento de datos que permiten conectarse   desde su  ordenador  a Internet mediante un puerto USB  mediante tecnología 3G o 4G a través de una de las redes del operador de telefonía móvil con el que tenga suscrito el contrato  también llamados “ llaves 3G” o “pinchos 3G ”   son dispositivos claramente en desuso  .

Estos  módem USB no solo son compatibles tanto con ordenadores  convencionales como con ordenadores  portátiles sino también con cualquier tipo de sistema operativo y además incluso  se pueden utilizar con tabletas, siempre y cuando estas dispongan de un puerto USB, por lo que en efecto son dispositivos bastante compatibles con una enorme cantidad de equipos  y diferentes sistemas operativos .

Estos dispositivos  ciertamente nos reafirmamos han dejado de sernos útiles desplazados por las facilidades de creación de zona wifi  de  todos los smartphone tanto Android como Ios, lo cual ha hecho que estos dispositivos queden definitivamente relegados  a ser olvidados en un triste cajón.

 

 

A pesar de sus puntos negativos, estos  módems USB aun pueden ser una gran solución si necesita conectarse de forma temporal a Internet. Entre sus grandes ventajas están:

  • Algunos operadores ofrecen tarifas para tener Internet móvil con un módem USB sin necesidad de contratar un plan de voz ni pagar una cuota de alta.  Este tipo de tarifas de Internet prepago era una gran solución  durante viajes  o en una segunda residencia.
  • La instalación rápida y sencilla. Nada de recibir al técnico ni añadir más cables a su salón. Los módem USB son auto-instalables.
  • Los módem USB multi-banda solucionan en gran parte el problema de la cobertura  ya que son capaces saltar de una red a otra buscando la mejor cobertura.

Debemos puntualizar que los módem USB se siguen utilizando en determinados ámbitos por su facilidad de transporte, pero sin duda , aparte de la facilidad de la zona wifi que cualquier smartphone  puede crear , en  el caso de necesitar algo mas especifico  hay opciones  como por ejemplo los router 4G, que no dejan de ser  dispositivos  similares, pero con evidentes mejoras pues no solo dotan de conexión a Internet a un solo dispositivo compatible con la conexión USB, sino que generan una red WiFi a la que pueden conectarse cuantos dispositivos sean necesarios.

 

Instalación de un módem 3G

Bien  si tenemos algún que otro módem 3g guardado en el cajón porque  ya no es util en su función principal ¿ para que nos puede servir?  pues  sencillamente como  adaptador wifi  pues la mayoría de estos pinchos también soportan este tecnología

Tomemos como  ejemplo un pincho Huawei E173 de la operadora Movistar dado que  el proceso sera muy similar con otros modelos

Si lo pinchamos en un puerto USB libre enseguida, debería aparecemos una unidad adicional con 0 bytes disponibles donde solo tenemos acceso a  lectura dado que se encuentran los drivers del módem usb.

 

Si hacemos doble click  sobre la unidad , enseguida se ejecutará el autorun que hará que comience la instalación del sw, la cual seleccionaremos que sea personalizada dado que solo queremos usar el módem como adaptador wifi 

 

Ahora solo seleccionaremos zona wifi ( ocupa unos 42,5Mb)   ,le daremos a siguiente para que lo instale en el directorio por defecto 

 

según las necesidades que tengamos si lo  deseamos podemos bien que se inicie automáticamente o  simplemente que se ejecute a demanda

Ahora ya simplemente se ejecutaría el escritorio donde lo importante  a la derecha del logo de movistar aparezca el nombre del módem ( en este caso HUAWEI) pues es señal de que se han instalado correctamente los drivers del módem y este esta funcionando correctamente

Para conectarnos por wifi, solo pulsaremos en Redes disponibles y acto seguido introduciremos  la clave de la red wifi  y desde ese momento ya podemos navegar mediante la red wifi  seleccionada  a través del viejo  pincho 3G  que teníamos  relegado  en un cajón  

 

 

Con total seguridad observara  que la calidad de la conexión es mucho mejor que  muchos adaptadores genéricos  e incluso propietarios incluidos en equipos de fabrica ( que quizás se hayan averiado  o no sean capaces de lograr conexiones estables) . Ademas sobre todo disfrutara  de una mayor   cobertura y mejor alcance  , todo ello reciclando equipamiento electrónico  que  ya nos era útil dándole ahora una segunda oportunidad ! reciclemos todos en pro de un mundo mejor!!

 

Introdución a OpenScad


Para el modelado en 3D,  la famosa aplicación web de AutoDesk  Tinkercad debería ayudarnos ante cualquier diseño inicial  de una manera  más sencilla con el proceso de modelado 3D, tanto es así, que incluso los modeladores experimentados lo hacen  explorando las formas de Tinkercad,  pues curiosamente, una herramienta “simple” como Tinkercad puede utilizarse para crear formas complejas.

Lógicamente detrás del interfaz gráfico de  Tinkercad  ( o de cualquier otro programa de modelado 3D),   está el código que procesa las manipulaciones del diseñador , de modo que a medida que arrastra y suelta formas, los algoritmos complejos están trabajando para calcular cómo aparecerán los gráficos en la pantalla  y generando las formas 3d.

 

OpenSad   en efecto surgen ante el dilema de que  también debería ser posible crear figuras geométricas directamente mediante código, de un  modo  mucho mas eficiente   y conciso   que el  proceso de diseño que cualquier otra herramienta gráfica como por ejemplo Tinkercad.

A diferencia de Tinkercad, OpenSCAD no es una aplicación basada en la web , de  modo que si esta interesado  en la herramienta   tendrá que descargarla  gratuitamente   desde http://www.openscad.org  ( está disponible para Windows, Mac OS X y Linux)   e instalarla en su PC para usarla.

La interfaz OpenSCAD es sencilla  en comparación con Tinkercad ,constando  de sólo tres ventanas, siendo la ventana de la izquierda un editor de texto utilizado para ingresar el código.

panel

Con OpenSCAD pues está diseñando código, pero no se preocupe: escribir código con Open SCAD es muy similar a la sintaxis  HTML  siendo el código para crear objetos  autoexplicativo   ,por ejemplo, el comando del cubo crea cubos, el comando de esfera crea esferas y el comando del cilindro crea cilindros, etc.

Probablemente haya alrededor de 60 comandos en OpenSCAD , algunos de ellos que enunciaremos mas abajo, muchos de los cuales  permitirán manipular la geometría ,  como por ejemplo mover, rotar, escalar y usar operaciones booleanas para combinar objetos, pero no se preocupe porque  para modelar  la mayoría de la piezas solo necesitaran  unos pocos comandos como  son union , difference, translate, cylinder o  cube.

Es facil deducir que en base a esos , es decir mediante secuencias de comandos en el lenguaje de OpenSCAD , se utilizaran para crear modelos en 2D o 3D.

Este script es una lista de formato libre de instrucciones de acción.

 object(); variable = value;
operator() action();
operator()
{ action();
action();
}
operator()
operator()
{ action();
action();
}
operator()
{ operator()
action();
operator()
{ action();
action();
}
}

Como vemos  en el ejemplo  hay  objetos, acciones  y operadores para construir una pieza:

  • Objetos:Los objetos son los bloques de construcción de modelos, creados por primitivas 2D y 3D. Los objetos terminan en un punto y coma ‘;’.
  • Acciones: Instrucciones de acción  que incluyen la creación de objetos usando las primitivas y asignar valores a variables. Las instrucciones de acción también terminan en un punto y coma ‘;’.
  • Operadores :Los operadores o las transformaciones, modifican la ubicación, color y otras propiedades de los objetos. Los operadores usen llaves ‘{}’ cuando su ámbito de aplicación abarca más de una acción. Más de un operador puede usarse para la misma acción o grupo de acciones. Varios operadores se procesan de derecha a izquierda, es decir, el más cercano a la acción del operador se procesa primero. Los operadores no terminan en punto y coma ‘;‘, pero la persona hacen acciones que contienen.

Por ultimo y no menos importante sobre todo para llevar las piezas modeladas al mundo real por ejemplo mediante impresion en 3d, as unidades en OpenSCAD son genéricas  de modo que no hay sistemas de medición en OpenSCAD, es decir , no hay designación para las unidades, y le corresponde al diseñador definir el tamaño del objeto al configurar el archivo antes de la impresión 3D.

 

A modo de resumen  vamos a ver de forma sintetica los entresijos del lenguaje OpenScad;

 

 

RESUMEN DE LAS FUNCIONES MAS IMPORTANTES

Sintaxis de elementos principales

Los usuarios pueden ampliar el lenguaje  definiendo sus propios módulos y funciones. Esto permite agrupar partes de secuencia de comandos de fácil reutilización con diferentes valores. Nombres bien escogidos también ayudan a documentar la secuencia de comandos.

OpenSCAD proporciona: funciones que devuelven valores. módulos que realizan acciones pero no devuelven valores.

OpenSCAD calcula el valor de variables en tiempo de compilación, no tiempo de ejecución. La última asignación variable dentro de un ámbito se aplicará en todo el mundo en ese ámbito. También se aplica a los ámbitos internos, ni los niños, sus. Ver alcance de variables para obtener más detalles. Puede ser útil pensar en ellos como constantes capaz de anular en lugar de variables.

En resumen estas son las cinco construcciones mas usadas ; 

var = value;
Variables en OpenSCAD son creadas por una declaración con un nombre o identificador, asignación a través de una expresión y un punto y coma. El papel de los arreglos de discos, en muchos lenguajes imperativos, se maneja en OpenSCAD mediante vectores.
module name(…) { … } 
Módulos pueden utilizarse para definir objetos o, mediante children(), definir los operadores. Una vez definido, módulos temporalmente se agrega al lenguaje.
function name(…) = … 
Las funciones operan sobre valores para calcular y devolver valores nuevos.
include <….scad>

actúa como si el contenido del archivo incluido fueron escrito en el archivo incluido
use <….scad>

importaciones de módulos y funciones, pero no se ejecuta ningún comando que no sea de esas definiciones

2D

circle (r=radius | d=diameter)

Se crea un círculo en el origen. Todos los parámetros, excepto la r, deben ser nombrados.


Parámetros
radius: radio (debe antecederse la r)
diameter:diametro ( debe antecederse la d)

polygon ([points])

Crea un polígono en base a una  lista de x, y puntos del polígono. : Un vector de vectores elemento 2. (los puntos son indizados desde 0 hasta n-1)

 

polygon ([points], [paths])

Crea una forma echada a un lado múltiples de una lista de coordenadas x, y. Un polígono es el más poderoso objeto 2D. Nada puede crear ese círculo y plazas pueden, y mucho más. Esto incluye formas irregulares con los bordes cóncavos y convexos. Además puede colocar agujeros dentro de esa forma
square ([width, height], center)

Crea un cuadrado o un rectángulo en el primer cuadrante. Cuando el centro es cierto la plaza se centra en el origen. Nombres de argumento son opcionales si en el orden que se muestra a continuación
text (text, size, font, halign, valign, spacing, direction, language, script)

El módulo crea texto como un objeto geométrico 2D, utilizando tipos de letra instalados en el sistema local o como archivo de fuente independiente.

3D

cube (size)

Crea un cubo en el primer octante. Cuando el centro es cierto, el cubo se centra en el origen. Nombres de argumento son opcionales si en el orden que se muestra a continuación.
Al teber solo un valor,el  cubo tiene los lados de esta longitud

cube ([width, depth, height])



Crea un cubo en el primer octante. Cuando el centro es cierto, el cubo se centra en el origen. Nombres de argumento son opcionales si en el orden que se muestra a continuación.
Array de 3 valores [x, y, z] que responde  a las dimensiones x, y y z.

parámetros:
tamaño
solo valor, cubo con los lados de esta longitud
3 valor array [x, y, z], cubo con dimensiones x, y y z.
Centro
falso (predeterminado), 1 º octante (positivo), una de las esquinas en (0,0,0)
cierto, cubo está centrado en (0,0,0)
cylinder (height, BotttonRadios,TopRadius, center)

Crea un cilindro centrado sobre el eje z. Cuando el centro es cierto, también se centra verticalmente a lo largo del eje z.
Nombres de los parámetros son opcionales si en el orden que se muestra Si un parámetro se denomina, deben también llamarse todos los parámetros siguientes.

cylinder (h, r1|d1, r2|d2, center)

Crea un un cono centrado sobre el eje z. Cuando el centro es cierto, también se centra verticalmente a lo largo del eje z. 
Nombres de los parámetros son opcionales si en el orden que se muestra Si un parámetro se denomina, deben también llamarse todos los parámetros siguientes
 Si se utilizan r, d, d1 o d2 deben llamarse.

Parámetros
h : altura del cilindro o de cono
r : radio del cilindro. R1 = r2 = r.
R1 : radio, parte inferior del cono.
R2 : radio superior del cono.
d : diámetro del cilindro. R1 = r2 = 2 d.
D1 : diámetro, parte inferior del cono. R1 = d1/2
D2 : diámetro superior del cono. R2 = d2/2
(Nota: d, d1, d2 requiere 2014.03 o posterior. Debian en la actualidad se sabe que detrás de esto)
Centro
falso (por defecto), z va desde 0 a h
cierto, rangos de z de -h/2 a + h/2

polyhedron (points, triangles, convexity)

Un poliedro es el sólido primitivo 3D más general. Puede utilizarse para crear cualquier figura regular o irregular, incluyendo aquellos con características tanto cóncavos como convexos. Superficies curvas se aproximan por una serie de superficies planas.

Parámetros
puntos
Vector 3d puntos o vértices. Cada punto es a su vez un vector [x, y, z], de sus coordenadas.
Puntos pueden definirse en cualquier orden. N puntos se hace referencia en el orden definido como 0 a N-1.
triángulos (obsoleto en 2014,03, caras de uso versión)
Vector de caras que incluyen colectivamente el sólido. Cada cara es un vector que contiene los índices (basado en 0) de 3 puntos desde el vector de puntos.
caras (introducido en la versión 2014.03)
Vector de caras que incluyen colectivamente el sólido. Cada cara es un vector que contiene los índices (basado en 0) de 3 o más puntos el vector de puntos.
Caras pueden definirse en cualquier orden. Definir bastante caras para incluir completamente el sólido, sin traslapo.
Puntos que describen una sola cara deben estar en el mismo plano.
convexidad
Entero. El parámetro de convexidad especifica el número máximo de caras puede penetrar un rayo que se intersecan el objeto. Este parámetro sólo es necesario para visualizar correctamente el objeto en modo de vista previa OpenCSG. Tiene ningún efecto en la prestación del poliedro. Para problemas de la pantalla, ponerla a 10 debería funcionar bien para la mayoría de los casos.

sphere (radius | d=diameter)

Crea una esfera en el origen del sistema coordinado. El nombre de argumento de r es opcional. Para utilizar d en lugar de r, d debe ser nombrado.

 

 

Parámetros

Radio. Este es el radio de la esfera. La resolución de la esfera se basará en el tamaño de la esfera y el $fa, $fs y $fn variables. Para obtener más información sobre estas variables especiales: 
Diámetro. Esto es el diámetro de la esfera.

(Nota: d sólo está disponible en versiones de 2014.03. Debian en la actualidad se sabe que detrás de esto)

$fa 
Ángulo de fragmento en grados
$fs 
Dimensión en mm del fragmento
$fn 
Resolución

Transformaciones

translate ([x, y, z])

Se traduce (se mueve) en sus elementos secundarios a lo largo del vector especificado. El nombre de argumento es opcional.
rotate ([x, y, z])

Gira su child  ‘a’ grados sobre el eje del sistema coordinado o alrededor de un eje arbitrario. Los nombres de argumento son opcionales si los argumentos se dan en el mismo orden como se especifica.
scale ([x, y, z])

La escala de sus elementos secundarios mediante el vector especificado. El nombre de argumento es opcional.
resize ([x, y, z], auto)

Modifica el tamaño del objeto secundario para que coincida con el dado x,y y z

mirror ([x, y, z])

Refleja el elemento en un plano que pase por el origen 
multmatrix (m)

Multiplica la geometría de todos los elementos secundarios con la matriz de transformación de 4 x 4 dada.
Uso: multmatrix (m = […]) { … }
color (“colorname”)

Los nombres de los colores disponibles son los de lista del color SVG la World Wide Web consortium.

color ([r, g, b, a])

Muestra los elementos secundarios mediante el color RGB especificado + valor alfa. Sólo se utiliza para la previsualización de F5 como CGAL y STL (F6) actualmente no admiten color. El valor de alfa por defecto 1.0 (opaco) si no se especifica.

offset (r|delta, chamfer)

Desplazamiento permite mover contornos 2D hacia afuera o hacia adentro por una cantidad dada.
hull()

Muestra el casco convexo de los nodos secundarios.

minkowski()


Muestra la suma de minkowski de nodos secundarios. Se suele utilizar para hace figuras redondeadas en las aristas 


Operaciones booleanas

union()

Crea una Unión de su hijo nodos. Es la suma de todos los hijos (lógica de o).
Se puede utilizar con objetos 2D o 3D, pero no mezclarlas.
difference()

Resta los nodos hijo 2 º (y todos los otros) de la primera ( y no).
Se puede utilizar con objetos 2D o 3D, pero no mezclarlas.
intersection()

Crea la intersección de todos los nodos secundarios. Esto mantiene la porción traslapada (lógica y).
Se conserva sólo la zona que es común o compartido por todos los hijos.
Se puede utilizar con objetos 2D o 3D, pero no mezclarlas.

Modificadores de carácter

*Desactivar
!Mostrar sólo
#Destacar / debug
%Transparente / antecedentes

Matemáticas

abs

Corresponde a la funcion del valor absoluto. Devuelve el valor positivo de un número decimal con signo.
acos

arcoseno, o coseno inverso, expresado en grados.
asin

arco seno, o seno inverso, expresado en grados
atan

arco tangente, o tangente inversa, matemática. Devuelve el valor principal de la arco tangente de x, expresada en grados.
atan2

atan dos argumentos , tomando y como su primer argumento. Devuelve el valor principal de la arco tangente de y / x, expresada en grados

ceil

Función matemática techo .
Devuelve el valor de entero más próximo por redondeo el valor si es necesario.
cos

Función matemática coseno de grados.

exp

Función matemática exp . Devuelve la función exponencial de base e de x, que es el número e elevado a la potencia x.
floor

Función matemática flooro . Floor(x) = el entero más grande no es mayor que x
len

Función matemática longitud . Devuelve la longitud de una matriz, un vector o un parámetro de cadena.

let

Asignación secuencial de variables dentro de una expresión. La siguiente expresión se evalúa en el contexto de las tareas que y puede utilizar las variables. Esto es principalmente útil para realizar complicadas expresiones más legible mediante la asignación de resultados provisionales a las variables.
ln

Función matemática logaritmo natural.
log

Función matemática del logaritmo en base 10.

max

Devuelve el máximo de los parámetros. Si se da un único vector como parámetro, devuelve el máximo elemento de ese vecto
min

Devuelve el mínimo de los parámetros. Si se da un único vector como parámetro, devuelve el mínimo elemento de ese vector.

pow

Función matemática potencia
rands

Generador de números aleatorios. Genera un vector constante de pseudo números aleatorios, al igual que una matriz. Los números son dobles no enteros. Cuando se genera un único número, se llama todavía con variable [0]
round


El operador devuelve la parte entera más o menos, respectivamente, si la entrada numérica es positivo o negativo
sign


Función matemática signum . Devuelve un valor de unidad que extrae la señal de un valor
sin

Función matemática seno
sqrt

Función matemática de raíz cuadrada .
tan

Función de la tangente de matemática.

Funciones

chr

Convertir a números en una cadena que contiene caracteres con el código correspondiente. OpenSCAD utiliza Unicode, por lo que el número se interpreta como punto de código Unicode. Números fuera del intervalo de punto de código válido producirá una cadena vacía.
concat

Devuelven un vector que contiene los argumentos.
Donde argumento es un vector de los elementos del vector se agregan individualmente al vector resultado. Cadenas son diferentes de vectores en este caso
cross


Calcula el producto cruzado de dos vectores en el espacio 3D. El resultado es un vector que es perpendicular a ambos vectores de entrada.
Utilizando parámetros de entrada no válidos (por ejemplo vectores con una longitud diferente de 3 o de otro tipo) producirá un resultado indefinido.
lookup

Buscar valor en tabla e interpolar linealmente si no hay ninguna coincidencia exacta. El primer argumento es el valor a buscar. La segunda es la tabla de búsqueda–un vector de pares de clave y valor.
norm

Devuelve la norma euclideana de un vector. Tenga en cuenta que esto devuelve la longitud numérica real mientras que len devuelve el número de elementos en el vector o matriz.

parent_module (idx)

$parent_modules contiene el número de módulos en la pila de ejecución. parent_module(i) devuelve el nombre del módulo niveles por encima del módulo actual en la pila de ejecución. La pila es independiente de donde se definen los módulos. Es donde ellos son instancias que cuenta. Esto puede usarse para construir por ejemplo, las listas de materiale
search

Buscar valor en tabla e interpolar linealmente si no hay ninguna coincidencia exacta. El primer argumento es el valor a buscar. La segunda es la tabla de búsqueda–un vector de pares de clave y valor.
str

Convertir todos los argumentos a las cadenas y concatenar.
version

devuelve el número de versión de OpenSCAD.

version_num

devuelve el número de versión de OpenSCAD

Otros

children ([idx])


Los objetos se indizan mediante enteros de 0 a $children-1. OpenSCAD establece $children el número total de objetos en el ámbito de aplicación. Objetos agrupados en un ámbito sub se tratan como un hijoo.
echo (…)

Esta función imprime el contenido de la ventana de compilación (también conocido como consola). Útil para depurar código.
Valores numéricos se redondean a 5 dígitos significativos.
La consola OpenSCAD soporta un subconjunto de lenguaje de marcado HTML
for (i = [start:end]) { … }

Bucle para evaluar cada valor en un rango, aplicándola a la acción siguiente.


Parámetros
start – valor inicial
end – parada cuando el siguiente valor sea final
for (i = [start:step:end]) { … }

Bucle para evaluar cada valor en un rango , aplicándola a la acción siguiente.


Parámetros
start – valor inicial
step o paso – cantidad para aumentar el valor, opcional, por defecto = 1
end – parada cuando el siguiente valor sea final
for (i = […, …, …]) { … }

Bucle evaluando cada valor en un  vector, aplicándola a la acción siguiente.
if (…) { … }

Estructura condicional realizando una prueba para determinar si las acciones en un ámbito secundario deben realizarse o no.

import (“….stl”)

Importa un archivo para su uso en el modelo actual de OpenSCAD. OpenSCAD actualmente soporta importación de DXF, apagado y ficheros STL (ASCII y binario). La extensión de archivo se utiliza para determinar el tipo.
intersection_for (i = [start:end]) { … }

Iterar sobre los valores en un rango y crear la intersección de objetos creados por cada pasada.
Además de crear instancias independientes para cada paso, el estándar for() también agrupa todas estas instancias de creación de una Unión implícita.

Parámetros
start – valor inicial
end – parada cuando el siguiente valor sea final

intersection_for (i = [start:step:end]) { … }


Iterar sobre los valores en un rango y crear la intersección de objetos creados por cada pasada.
Además de crear instancias independientes para cada paso, el estándar for() también agrupa todas estas instancias de creación de una Unión implícita.

Parámetros
start – valor inicial
step o paso – cantidad para aumentar el valor, opcional, por defecto = 1
end – parada cuando el siguiente valor sea final
intersection_for (i = […, …, …]) { … }


Iterar sobre los valores en un  vector y crear la intersección de objetos creados por cada pasada.
Además de crear instancias independientes para cada paso, el estándar for() también agrupa todas estas instancias de creación de una Unión implícita.
linear_extrude (height, center, convexity, twist, slices)



Es una operación de modelado que toma un polígono 2D como entrada y extiende en la tercera dimensión de modo que se crea así una forma 3D. Tenga en cuenta que la protuberancia se realiza siempre del plano XY a la altura indican a lo largo del eje Z ; así que si se gira o aplicar otras transformaciones antes de extrusión, la extrusión se aplica a la proyección del polígono 2D en el plano XY.


Parámetros

height -altura, 
center -centro, 
convexity-convexidad, 
twits-torcedura, 
slices-rodajas
projection (cut)


Utilizando la función, puede crear dibujos en 2d de modelos en 3d y exportarlos al formato dxf. Funciona proyectando un modelo 3D (x, y) plano, con z en 0. If, sólo puntos con z = 0 se considerará (cortando efectivamente el objeto), con (el valor predeterminado), puntos por encima y por debajo del plano se considerarán así (creando una proyección adecuada).
projection()cut=truecut=false
render (convexity)

Las fuerzas de la generación de una malla incluso en modo de vista previa. Útil para ser demasiado lentos para seguir las operaciones booleanas.

rotate_extrude (convexity)

Gira alrededor del eje z para formar un sólido que tiene simetría de rotación una figura en 2D. Una forma de pensar de esta operación es imaginar un torno de alfarero colocada en el plano X-Y con su eje de rotación hacia arriba hacia + Z. Luego colocando el objeto por el hecho de ser en esta virtual de alfarero (posiblemente extendido hacia abajo por debajo del plano X-Y a -Z, tomar la sección de este objeto en el plano X-Z pero mantener solamente el derecho de la mitad (X > = 0). Es la forma 2D que necesitan ser alimentados a rotate_extrude() como el niño con el fin de generar este sólido.
Desde una forma 2D se procesa por OpenSCAD en el plano X-Y, una manera alternativa de pensar de esta operación es la siguiente: hace girar una figura en 2D alrededor del eje y para formar un sólido. El sólido resultante se coloca de modo que su eje de rotación se encuentra a lo largo del eje z.
No puede utilizarse para producir una hélice o rosca.
La forma 2D necesita mentir completamente en el derecho de cualquiera de los dos (recomendado) o el lado izquierdo del eje y. Más precisamente hablando, cada vértice de la forma debe tener ya sea x > = 0 o x < = 0. Si la forma cruza el eje X una advertencia aparecerá en la ventana de consola y se ignorará el rotate_extrude(). Para OpenSCAD versiones anteriores a 2016.xxxx, si la forma es en el eje negativo las caras será al revés, que puede causar efectos no deseados
surface (file, center, invert, convexity)


Lee mapa información de archivos de texto o imagen.

Parámetros
file : La ruta del archivo que contiene los datos del mapa.
center:Esto determina la posición del objeto generado. Si es cierto objeto se centra en x y el eje y. De lo contrario, el objeto se coloca en el cuadrante positivo. Por defecto false.
invert: Invierte como los valores de color de imágenes importadas se traducen en valores de altura. Esto no tiene ningún efecto al importar archivos de datos de texto. Por defecto false.
convexity. El parámetro de convexidad especifica el número máximo de partes delanteras (lados traseros) podría penetrar un rayo que se intersecan el objeto. Este parámetro sólo es necesario para visualizar correctamente el objeto en modo de vista previa OpenCSG y no tiene ningún efecto en la prestación final.

Compresiones de listas

Generar[ for (i = range|list) i ]
es decir

[para (i = rango | lista) i]
Condiciones[ for (i = …) if (condition(i)) i ]

es decir 
[para (i =…) si (conditcon(i)) i]
Asignaciones[ for (i = …) let (assignments) a ]

es decir

[para (i =…) que (asignaciones) un]

Variables especiales

$childrenNúmero de hijos de módulo
$faÁngulo mínimo
$fsTamaño mínimo
$fnNúmero de fragmentos
$tPaso de la animación
$vprRotación de la vista
$vptTraducción de ventanilla
$vpdDistancia de la cámara de ventanilla

Mas información en  https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/

htt

Shell scripting : variables y operaciones


Bash , c-shell  o simplemente shell scripting es  un lenguaje de script  creado a fines de la década de 1980 por un programador llamado Brian Fox, que trabajaba para la Free Software Foundation . Fue pensado como una alternativa de software libre para el shell Bourne (de hecho, su nombre es un acrónimo de Bourne Again SHell ), e incorpora todas las características de ese shell, así como nuevas características como la aritmética de enteros y el control de trabajo

Bash es un “shell de Unix”, es decir  una interfaz de línea de comandos para interactuar con el sistema operativo por lo que está ampliamente disponible, siendo el shell predeterminado en muchas distribuciones de GNU / Linux y en Mac OSX, con puertos existentes para muchos otros sistemas.

Además del modo interactivo, donde el usuario escribe un comando a la vez, con ejecución y respuesta inmediatas, Bash (como muchos otros shells) también tiene la capacidad de ejecutar un script completo de comandos, conocido como “Bash shell script” (o “Bash script” o “shell script” o simplemente “script”)  que es justo   lo que vamos a tratar en este post como continuación de un  post anterior introductorio donde exponimos ale tipico Hello world en c-shell

close up code coding computer

Tuberías y sustitución de comandos 

Como hemos visto, el valor de retorno de un comando, tomado estrictamente, es solo un pequeño entero no negativo destinado a indicar el éxito o el fracaso. Su salida real es lo que escribe en el flujo de salida estándar. De forma predeterminada, el texto escrito en el flujo de salida estándar se imprime en el terminal, pero hay algunas formas en que se puede “capturar” y usar como el verdadero valor de retorno del comando.

Tuberías 

Cuando una secuencia de comandos se vincula entre sí en una tubería, la salida de cada comando se pasa como entrada al siguiente. Esta es una técnica muy poderosa, ya que nos permite combinar varios programas de utilidad pequeños para crear algo complejo.

Sustitución de comandos 

La sustitución de comandos es un poco como expansión de variable, pero ejecuta un comando y captura su salida, en lugar de simplemente recuperar el valor de una variable. Por ejemplo, considere nuestro ejemplo de get_password anterior:

#! / bin / bash

función get_password (  ) 
# Uso: get_password VARNAME 
#Le pide al usuario una contraseña; lo guarda como $ VARNAME.
# Devuelve un estado de salida distinto de cero si la entrada estándar no #es un terminal, o si el comando  "leer" devuelve un estado de salida #tinto de cero.
{
  if [[ -t 0 ]] ; then
    read -r -p 'Password:' -s "$1" && echo
  else
    return 1
  fi
}
 
get_password PASSWORD && echo "$PASSWORD"

Realmente no hay razón para que la persona que llama deba guardar la contraseña en una variable.

Si get_password simplemente imprimió la contraseña en su salida estándar, entonces la persona que llama podría usar la sustitución de comandos y usarla directamente:

 #! / bin / bash
 
función get_password (  ) 
# Uso: get_password 
# Pide al usuario una contraseña; Imprime para capturar llamando al código. 
# Devuelve un estado de salida distinto de cero si la entrada estándar no es un terminal, o si 
# salida estándar * es * un terminal, o si el comando "leer" devuelve un 
estado de salida distinto de cero #.
 {
  if [[ -t 0 ]] && ! [[ -t 1 ]] ; then
    local PASSWORD
    read -r -p 'Password:' -s PASSWORD && echo >&2
    echo "$PASSWORD"
  else
    return 1
  fi
}
 
echo "$(get_password)"

Para evaluar "$ (get_password)" , Bash ejecuta el comando get_password en una subshell, capturando su salida estándar y reemplaza $ (get_password) por la salida capturada.

Además de la notación $ (...) , también se admite una notación más antigua  (con comillas inversas), y aún se encuentra con bastante frecuencia. Las dos notaciones tienen el mismo efecto, pero la sintaxis de  es más restrictiva y, en casos complejos, puede ser más complicado acertar.

La sustitución de comandos permite anidar como vemos .  Se permite, expresiones  "$ (b" $ (c) ")" . (es decir ,ejecuta el comando c , usando su salida como un argumento para b , y usando la salida de eso como un argumento para a .)

Una sustitución de comando puede contener una secuencia de comandos, en lugar de un solo comando de modo que se captura la salida de todos estos comandos.

Como hemos visto anteriormente, se pueden usar puntos y coma en lugar de líneas nuevas para separar los comandos, lo cual  es particularmente común en la sustitución de comandos.

Una sustitución de comando puede incluso contener asignaciones de variables y definiciones de funciones (aunque, como los comandos sustituidos se ejecutan dentro de una subshell, las asignaciones de variables y las definiciones de funciones dentro del comando no se verán fuera de ella; solo son útiles si se usan dentro de los comandos sustituidos ).

Aritmética de shell 

Las expresiones aritméticas en Bash se modelan estrechamente en las de C, por lo que son muy similares a las de otros lenguajes derivados de C, como C ++, Java, Perl, JavaScript, C # y PHP.

Una diferencia importante es que Bash solo admite aritmética de enteros (números enteros), no aritmética de punto flotante (decimales y fracciones); Por ejemplo  algo como 3 + 4 significa lo que esperarías (7), pero algo como 3.4 + 4.5 es un error de sintaxis. Algo así como 13/5 está bien, pero realiza una división de enteros, por lo que se evalúa en 2 en lugar de en 2.6.

Expansión aritmética 

Quizás la forma más común de usar expresiones aritméticas es en la expansión aritmética , donde el resultado de una expresión aritmética se usa como un argumento para un comando

. La expansión aritmética se denota $ ((...)) . Por ejemplo, este comando:

 echo  $ ((  3  +  4  *  (  5  -  1  )  ))

impresiones 19 .

expr (en desuso) 

Otra forma de usar expresiones aritméticas es mediante el programa Unix “expr”, que era popular antes de que Bash admitiera las matemáticas.  Similar a la expansión aritmética, este comando:

 echo  ` expr 3 + 4  \ *  \ (  5 - 1  \)  `

impresiones 19 .

Tenga en cuenta que el uso de “expr” requiere un carácter de escape “\” antes del operador de multiplicación “*” y los paréntesis. Tenga en cuenta los espacios entre los símbolos de cada operador, incluidos los paréntesis.

Operadores numéricos

Además de las notaciones familiares + (adición) y - (resta), las expresiones aritméticas también son compatibles con * (multiplicación), / (división entera, descrita anteriormente), % (división de módulo, la operación “resto”; por ejemplo, 11 dividido por 5 es 2 el resto 1, entonces 11% 5 es 1 ), y ** (“exponenciación”, es decir, involución; por ejemplo, 2 4 = 16, entonces 2 ** 4 es 16 ).

Los operadores + y - , además de sus sentidos “binarios” (dos operandos) de “suma” y “resta”, tienen sentidos “unarios” (un operando) de “positivo” y “negativo”. Unary + tiene básicamente ningún efecto; unary - invierte el signo de su operando. Por ejemplo, - (3 * 4) evalúa a -12 , y - (- (3 * 4)) evalúa a 12 .

Referente a variables 

Dentro de una expresión aritmética, se puede hacer referencia a las variables de shell directamente, sin usar expansión variable (es decir, sin el signo de dólar $ ).

Por ejemplo, esto:

 i  =  2 +3
 echo  $ ((  7  * i ))

impresiones 35 . (Tenga en cuenta que primero se evalúa i , que produce 5 y luego se multiplica por 7. Si hubiéramos escrito $ i en lugar de i , se habría realizado una mera sustitución de cadenas; 7 * 2 + 3 es igual a 14 + 3, es decir, 17 – Probablemente no sea lo que queremos.

El ejemplo anterior se muestra usando “expr”:

 i  =  ` expr 2 + 3  ' 
eco  ' expr 7  \ *  $ i  `

impresiones 35 .

Asignación a variables 

Las variables de shell también se pueden asignar dentro de una expresión aritmética. La notación para esto es similar a la asignación de variables regulares, pero es mucho más flexible.

Por ejemplo, el ejemplo anterior podría reescribirse así:

 echo  $ ((  7  *  (  i  =  2  +  3  )  ))

excepto que esto establece $ i a 5 en lugar de a 2 + 3 .

Tenga en cuenta que, aunque la expansión aritmética parece un poco a la sustitución de comandos, se no se ejecuta en un subnivel; este comando realmente establece $ i a 5 , y los comandos posteriores pueden usar el nuevo valor. (Los paréntesis dentro de la expresión aritmética son solo el uso matemático normal de paréntesis para controlar el orden de las operaciones).

Además del operador de asignación simple = , Bash también admite operadores compuestos como + = , - = , * = , / = y % = , que realizan una operación seguida de una asignación. Por ejemplo, ((i * = 2 + 3)) es equivalente a ((i = i * (2 + 3))) . En cada caso, la expresión en su conjunto se evalúa al nuevo valor de la variable; por ejemplo, si $ i es 4 , entonces ((j = i * = 3)) establece tanto $ i como $ j en 12 .

Por último, Bash soporta operadores de incremento y decremento.

El operador incremental ++ incrementa el valor de una variable en 1; si precede al nombre-variable (como el operador “pre-incremento”), entonces la expresión se evalúa al nuevo valor de la variable , y si sigue al nombre-variable (como el operador “post-incremento”), entonces la expresión se evalúa al valor antiguo de la variable .

Por ejemplo, si $ i es 4 , entonces ((j = ++ i)) establece tanto $ i como $ j en 5 , mientras que ((j = i ++)) establece $ i en 5$ j a 4 . El operador de disminución - es exactamente el mismo, excepto que disminuye el valor de la variable en 1. La reducción previa y posterior de la reducción son completamente análogas al incremento previo y al incremento posterior.

Las expresiones aritméticas como sus propios comandos 

Un comando puede consistir completamente en una expresión aritmética, usando cualquiera de las siguientes sintaxis:

 ((  i  =  2 + 3  ))
 let  'i = 2 + 3'

Cualquiera de estos comandos establecerá $ i en 5 . Ambos estilos de comando devuelven un estado de salida de cero (“exitoso” o “verdadero”) si la expresión se evalúa como un valor distinto de cero, y un estado de salida de uno (“falla” o “falso”) si la expresión se evalúa como cero. Por ejemplo, esto:

 ((  0  ))  ||  echo zero
 ((  1  ))  &&  echo non-zero

imprimirá esto:

zero
non-zero

La razón de este comportamiento contraintuitivo es que en C, cero significa “falso” y los valores distintos de cero (especialmente uno) significan “verdadero”. Bash mantiene ese legado dentro de las expresiones aritméticas, luego lo convierte en la convención habitual de Bash al final.

El operador de coma 

Las expresiones aritméticas pueden contener múltiples sub-expresiones separadas por comas , . El resultado de la última sub-expresión se convierte en el valor general de la expresión completa. Por ejemplo, esto:

 echo  $ ((  i  =  2 , j  =  2  + i, i * j ))

establece $ i en 2 , establece $ j en 4 e imprime 8 .

De hecho , la función incorporada admite múltiples expresiones directamente sin necesidad de una coma; por lo tanto, los siguientes tres comandos son equivalentes:

 ((  i  =  2 , j  =  2 + i, i * j ))
 let  'i = 2, j = 2 + i, i * j'
 let  'i = 2'  'j = 2 + i'  'i * j'

Operadores de comparación, booleanos y condicionales 

Las expresiones aritméticas son compatibles con los operadores de comparación de enteros < , > , <= (significado ≤), > = (significado ≥), == (significado =) y ! = (Significado). Cada uno evalúa a 1 para “verdadero” o 0 para “falso”.

También son compatibles con los operadores booleanos:

  • && (“and”), que se evalúan como 0 si cualquiera de sus operandos es cero, y 1 de lo contrario;
  •  ||(“or”), que se evalúa en 1 si alguno de sus operandos es distinto de cero, y en 0 en caso contrario;
  • ! (“not”), que se evalúa en 1 si su operando es cero, y en 0 en caso contrario.

Aparte de que utilizan cero para significar valores “falsos” y valores distintos de cero para significar “verdaderos”, son como los operadores && , || , y ! que hemos visto fuera de expresiones aritméticas. Al igual que esos operadores, estos son operadores “abreviados” que no evalúan su segundo argumento si su primer argumento es suficiente para determinar un resultado. Por ejemplo, (((i = 0) &&(j = 2))) no evaluará el (j = 2)parte, y por lo tanto no establecerá $ j en 2 , porque el operando izquierdo de && es cero (“falso”).

¿Y soportan el operador condicional b ? e1 : e2 . Este operador evalúa e1 y devuelve su resultado, si b es distinto de cero; de lo contrario, evalúa e2 y devuelve su resultado.

Estos operadores se pueden combinar de formas complejas:

 ((  i  =  (  ( a> b && c <d + e ||  f  == g + h ) ? j: k )  ))

Aritmética de bucles 

Arriba, vimos un estilo de for-loop, que se veía así:

# imprimir todos los enteros del 1 al 20: 
for i in {1..20} ; do
  echo $i
done

Bash también admite otro estilo, modelado en los bucles for de C y lenguajes relacionados, usando aritmética de shell:

# imprimir todos los enteros del 1 al 20: 
for (( i = 1 ; i <= 20 ; ++i )) ; do
  echo $i
done

Este bucle for utiliza tres expresiones aritméticas separadas, separadas por punto y coma (y no comas , son expresiones completamente separadas, no solo subexpresiones):

  • La primera es una expresión de inicialización, se ejecuta antes de que comience el bucle.
  • El segundo es una expresión de prueba; se evalúa antes de cada posible iteración del bucle (incluida la primera), y si se evalúa a cero (“falso”), entonces el bucle sale.
  • El tercero es una expresión de conteo; Se evalúa al final de cada iteración de bucle. En otras palabras, este bucle for es exactamente equivalente a este bucle while:
# imprimir todos los enteros del 1 al 20: 
(( i = 1 ))
while (( i <= 20 )) ; do
  echo $i
  (( ++i ))
done

pero, una vez que se acostumbre a la sintaxis, se hace más claro lo que está sucediendo.

Operadores bitwise 

Además de aritméticas y booleanas operadores regulares, Bash también ofrece a los operadores bit a bit “”, significa que los operadores que operan sobre números enteros qua cadenas de bits en lugar de qua enteros.

Si aún no está familiarizado con este concepto, puede ignorarlo de manera segura.

Al igual que en C, los operadores bitwise son :

  • & (bitwise “and”),
  • (bitwise “or”),
  • ^ (bitwise “exclusive or”),
  • ~ (bitwise “not”),
  •  << (desplazamiento a la izquierda en modo bit), y
  • >> (desplazamiento a la derecha en modo bit), así como
  •  & =
  •  | =
  • ^ = (que incluyen la asignación, al igual que + = ).

Literales enteros 

Una constante entera se expresa como un entero literal . Ya hemos visto muchos de estos; 34 , por ejemplo, es un literal entero que denota el número 34.

Todos los ejemplos anteriores  han sido decimales (base diez) literales enteros, que es el valor predeterminado; pero, de hecho, los literales pueden expresarse en cualquier base en el rango 2–64, utilizando el valor de base de notación # (la propia base se expresa en base diez).

Por ejemplo, esto:

 echo $ (( 12 )) # usa el valor predeterminado de base diez (decimal)
 echo $ (( 10 # 12 )) # especifica explícitamente base diez (decimal)
 echo $ (( 2 # 1100 )) # base dos (binario)
 echo $ (( 8 # 14 )) # base ocho (octal)
 echo $ (( 16 # C )) # base dieciseis (hexadecimal)
 eco $ (( 8 + 2 # 100 )) # ocho en base diez (decimal), más cuatro en base dos (binario)

Imprimirá 12 seis veces. (Tenga en cuenta que esta notación solo afecta a cómo se interpreta un literal entero. El resultado de la expansión aritmética todavía se expresa en base diez, independientemente).

Para las bases 11 a 36, ​​las letras inglesas A a Z se usan para los valores de dígitos 10 a 35. Esto no distingue entre mayúsculas y minúsculas. Sin embargo, para las bases 37 a 64, son las letras inglesas en minúsculas las que se usan para los valores de dígitos 10 a 35, mientras que las letras mayúsculas se usan para los valores de dígitos 36 a 61, el signo at @ se usa para las cifras el valor 62, y el subrayado _ se usa para el valor de dígitos 63. Por ejemplo, 64 # @ A3 indica 256259 ( 62 × 64 2 + 36 × 64 + 3 ).

También hay dos notaciones especiales: el prefijo de un literal con 0 indica la base ocho (octal), y el prefijo de 0x o 0X indica la base dieciséis (hexadecimal). Por ejemplo, 030 es equivalente a 8 # 30 , y 0x6F es equivalente a 16 # 6F .

Variables enteras 

Una variable se puede declarar como una variable entera, es decir, su “atributo entero” se puede “establecer”, usando esta sintaxis:

declare -i n
Después de ejecutar el comando anterior, cualquier asignación subsiguiente a n hará que el lado derecho se interprete automáticamente como una expresión aritmética. Por ejemplo, esto:
declare -i n
n='2 + 3 > 4'
 Es más o menos equivalente a esto:
 n  =  $ ((  2  +  3 > 4  ))

excepto que la primera versión declare -incontinuará afectando las tareas posteriores también.

En la primera versión, note el uso de comillas en el lado derecho de la tarea. Si hubiéramos escrito n = 2 + 3> 4 , habría significado “ejecutar el comando + con el argumento 3 , pasando la variable de entorno n configurada a 2 y redirigiendo la salida estándar al archivo 4 “; es decir, establecer el atributo entero de una variable no afecta el análisis global de las declaraciones de asignación, sino que simplemente controla la interpretación del valor que finalmente se asigna a la variable.

Podemos “anular” el atributo entero de una variable, desactivando este comportamiento, usando el comando opuesto:


declare +i n

El comando declare incorporado también tiene otros usos: hay algunos otros atributos que una variable puede tener, y declare tiene algunas otras características además de activar y desactivar los atributos. Además, algunas de sus propiedades destacan:

  • Al igual que con local y export , el argumento puede ser una asignación de variable; por ejemplo, establece el atributo entero de $ n y lo establece en 5 .declare -i n = 2 +3
  • Al igual que con local y export , se pueden especificar múltiples variables (y / o asignaciones) a la vez; por ejemplo, declare -i n=2+3 establece tanto el atributo entero de $ m como el de $ n .
  • Cuando se usa dentro de una función, declare implícitamente localiza la variable (a menos que la variable ya sea local), lo que también tiene el efecto de desarmarla localmente (a menos que se use la sintaxis de asignación).

Aritmética no entera 

Como se mencionó anteriormente, Bash shell arithmetic solo admite aritmética de enteros. Sin embargo, los programas externos a menudo se pueden usar para obtener una funcionalidad similar para valores no enteros.

En particular, la utilidad de Unix común bc se usa a menudo para esto. El siguiente comando:

 echo  "  $ (  echo  '3.4 + 2.2'  | bc )  "

impresiones 5.6 .

No hace falta decir que, dado que bc no está tan estrechamente integrado con Bash como lo es la aritmética de shell, no es tan conveniente; por ejemplo, algo como esto:

# imprimir las potencias de dos, de 1 a 512: 
for (( i = 1 ; i < 1000 ; i *= 2 )) ; do
  echo $i
done

sería, para soportar no enteros, convertirse en algo como esto:

# imprimir los poderes de la mitad, de 1 a 1/512: 
i=1
while [ $( echo "$i > 0.001" | bc ) = 1 ] ; do
  echo $i
  i=$( echo "scale = scale($i) + 1 ; $i / 2" | bc )
done

Parte de esto se debe a que ya no podemos usar un aritmética for-loop; parte de esto se debe a que hacer referencia a las variables y asignarlas a las variables es más complicado ahora (ya que bc no es consciente de las variables de la shell, solo de las suyas, no relacionadas); y parte de ello se debe a que bc se comunica con el shell solo a través de entrada y salida.

!Y  esto  es todo por hoy!Pero no se preocupe en proximos post trataremos otrso temas como entrada/salida, funcionaes complejas y mucho mas

Mas informacion en  https://en.wikibooks.org/wiki/Bash_Shell_Scripting