Actualización de la batería de una bicicleta eléctrica


A lo largo de los años  las baterías tanto  las de Ni/Cd como las iones de Litio terminan perdiendo su capacidad  , siendo necesaria su sustitución ,lo cual por cierto no es una tarea sencilla dado que no siempre están accesibles los recambios de estas.

Normalmente la baterías instaladas en las bicicletas eléctricas corresponden a configuraciones especificas  para cada modelo a la que se conecta, por lo que   dado a  que existen múltiples formatos ,tanto de compartimientos como de características eléctricas (tensión y capacidad en amperios /hora) se hace muy complicado reemplazarlas .

Para terminar de empeorar las cosas , en el caso de las batería de Ni/Cd  , éstas están compuestas por múltiples  células  que agrupándolas en serie o en paralelo nos producen la tensión y capacidad final, eso si unidas por laminas de niquel ,lo cual nos hace complejo su sustitución , a no ser que nos construyamos nosotros nuestra propia soldadora de puntos  para realizar precisamente las conexiones entre las diferentes celdas, las cuales  se pueden adquirir aparte en portales web especializados.

Como ejemplo ,vemos una batería  real  formada  por 20 celdas de 1,2V 7AH que en total nos viene a dar unos 24V (20X 1,2) y 7AH dado que  todas están conectadas en serie

 

IMG_20170714_230447[1]

Un procedimiento para reparar la citada batería , seria adquirir 20 baterías de Ni/Cd 1,2V 7AH  y sustituir las antiguas por las nuevas  usando laminas de Niquel  con  una soldadora de puntos  para realizar precisamente las conexiones entre las diferentes celdas.

Afortunadamente la tecnología de las baterías Litio proporciona ventajas superiores a la vieja tecnología de NiCD,    entre ellas una densidad de energia mucho mayor , con el consiguiente ahorro de espacio   y peso .

Como actualmente el precio no es una barrera ( de hecho  se ha invertido la tendencia), lo ideal es reemplazar las viejas baterias de nicd por una nueva  de Iones de Litio , siempre  que la tensión sea la misma y la capacidad sea igual o superior.

Para el ejemplo de    una bicicleta eléctrica de bajo coste,  usando una batería de  24v 10ah de litio  nos seria suficiente para alimentar un  motor de 24v   y de potencias comprendidas entre 350w  o 250w.

Las especificaciones de la batería elegida son las siguientes:

  • Tensión nominal: 24V
  • Voltaje de salida: 16.5-25.2 V
  • Capacidad de la batería: 10Ah
  • Dimensiones: 68x100x112mm
  • Peso total: 2kg alrededor
  • Circuito interno de la protección: sobrecarga, sobre la descarga, sobre la corriente, protección del cortocircuito
  • Peso de la batería: cerca de 1825g
  • Embalaje: PVC azul
  • Celdas de la batería dentro: Células grandes modelo 18650.
  • Ciclos de vida: Más de 1000 veces
  • Descarga de la batería :La corriente de pico máxima: 36A/Corriente máxima de funcionamiento: 18A

 

 

bateria

 

La mejora en cuanto a  dimensiones y peso suelen ser considerables , tal y como se puede ver en la siguiente imagen , donde prácticamente  por una tercera parte doblamos la capacidad con una batería de Litio:

IMG_20170714_230525[1]

 

Para controlar la bicicleta, dado que la caja de antigua  batería es demasiado grande, lo mas sencillo  es optar por una sencilla caja transparente donde  ademas del voltímetro de leds  (que suelen ir integrados en la caja de la batería) podemos conectar hasta 9 leds de alta potencia y los dos interruptores de corte del motor   y de la iluminación.

El esquema de conexiones de la caja propuesta es bastante sencillo pues se limita a solo dos interruptores , el voltimetro de leds que puede obtenerse de la caja original  y 9 leds de alta potencia que  se han obtenido de una luminaria de leds cuya fuente se habia quemado:

 

bicicleta lectrica

Resumidamente estos serian los pasos  a seguir  para realizar la conveersión:

  • Empezamos ubicando el voltimetro de leds que solo cuenta con dos cables : el negro o negativo que conectaremos a la mas general   y el rojo que conectaremos a la salida del interruptor general

 IMG_20170714_231241[1].jpg

  • Practicaremos dos agujeros en la caja para los dos interruptores ( el general   y el de la iluminación)

IMG_20170715_005900[1].jpg

  • Seguidamente contrariamos las conexiones de los dos interruptores  que irán  tanto a los leds como al cable del motor

IMG_20170715_005907[1]

 

  • El resultado como vemos es bajo la opinión del que escribe  bastante aceptable, mejorando  ademas en aspectos como la usabilidad pues ahora los controles de las luces y del motor se colocarían mucho mas accesibles

 

IMG_20170822_072409[1].jpg

 

 

 

  • Aunque el interruptor de encendido y  el voltímetro se podrian colocar en el mismo lugar  de la batería ( y nos ahorraríamos el cableado de tres hilos ) , en aras a mejorar la usabilidad se ha optado por llevar tres cables de 1 mm a la caja controladora:
    •  El negativo general   que ira conectado tanto  al motor  como  al negativo de la nueva batería
    • El positivo de la batería  , que nos servirá para alimentar los leds  o el motor en función de la posición de los interruptores
    • El positivo del motor  , el cual lógicamente viene de la caja para alimentar o no el motor brushless
  • Por ultimo , respecto a la nueva  batería , esta iría  donde  va el porta-baterías original  .

    IMG_20170822_072423[1]

Anuncios

Diagnosis de su coche con Raspberry Pi


OBD-II PID ( Diagnóstico a bordo de parámetros IDs ) son códigos utilizados para solicitar datos de un vehículo, que se utiliza como herramienta de diagnóstico  que tradicionalmente se ha reservado a los  técnicos automotrices que usan PID con una herramienta de análisis conectado al conector OBD-II del vehículo.

  • El técnico entra en el PID
  • La herramienta de análisis lo envía al del vehículo red controlador-área (CAN) la parada de microbus, VPW, PWM, ISO, KWP . (Después de 2008, sólo CAN)
  • Un dispositivo en el bus reconoce el PID como uno es responsable de, y reporta el valor para ese PID al bus
  • La herramienta de análisis lee la respuesta, y lo muestra al técnico

Un  adaptador   OBD-II  funciona  en cierta manera  como el USB de un ratón que usamos con el ordenador, ya que se conecta a la centralita del coche y convierte los datos que lee en información que podemos procesar desde nuestro móvil.

Estos adaptadores se puede encontrar  fácilmente en internet y a precios que empiezan en los 6 euros y van subiendo hasta los varios cientos, dependiendo de la calidad y cantidad de opciones que necesitemos. Pero para un uso completamente ‘amateur‘, tenemos suficiente con los más económicos. Eso sí, antes de comprarlo debe   compruebe que la centralita de su coche tiene la conexión de 16 pines del estándar y es compatible  con dicho  interfaz.

 

 

Adaptadores ODB2 bluetooth

elm37

Algunas centralitas de vehículos puede soportar más o menos funciones que otros.,pero en todo caso  no olvide  que la aplicación necesita un adaptador Bluetooth OBD2 para trabajar.

Estos  adaptadores  son  pequeños y se conectan a la toma de diagnóstico en el coche que le da a su acceso a los teléfonos.Uno de los adaptadores mas usados  es el modelo el ELM327 OBD2 el cual funciona igual de bien que otros aparatos similares de tamaño mucho mayor y   aún precio bastante menor (como por ejemplo el  adaptador Scantool.net, el adaptador de OBDKey y PLX Kiwi ).

El modelo ELM 327  es el clásico lector de parámetros del motor y de códigos de error OBD II mini, en carcasa de plástico transparente  de  reducido tamaño(otros modelos mayores  estorban en la zona de los pedales)   que es capaz de enviar los datos vía Bluetooth   y que se puede adquirir  a muy buen precio.

Para usarlo, hay que enchufar el dispositivo  al conector que suelen traer casi todos los coches modernos  junto a la fusiblera principal que suele estar  debajo del volante.

Después hay que instalar  la aplicación  Torque en su smartphone   ( en su versión gratuita o de pago )  y automáticamente al ejecutarla  debería empezar a ver en la app  una cantidad ingente  de información sobre el funcionamiento de su vehículo.

Los usuarios  se abruman   del  impresionante volumen de datos aportado pues aplicación es 100% configurable para mostrar los parámetros que prefiera. De hecho los datos ofrecidos son prácticamente similares a una maquina de diagnosis de cualquier taller en sus manos, aportando ademas de un sinfin de parámetros informativos sobre el estado de motor, consumos, temperaturas, posibles averías etc

Resumidamente  estas son algunas de las utilidades  de la combinación  del adaptador  ELM327 OBD2 junto con el programa  Torque:

  • Leer los códigos diagnóstico, genéricos y específicos del fabricante, y mostrar su significado (sobre 3000 definiciones genéricas del código en la base de datos).
  • Borrar los códigos de problemas y apagar el MIL (“Check Engine” de luz)
  • Mostrar los datos actuales del sensor

Según el modelo de coche podrá ver más o menos datos, pues eso no depende de este aparato  en su .De hecho ,hay usuarios que no han conseguido hacerlos funcionar con determinados modelos de vehículos, pero en cambio en otros modelos  funciona perfectamente:

 

Por cierto ,esta versión  del  ELM327  se puede comprar por menos de 6€  con gastos de envió incluidos  aqui (Amazon.es)

Adaptadores ODB2 USB

Hay muchos ejemplos de entusiastas que  están usando estos adaptadores ODB2 no solo desde dispositivos Android sino incluso desde PC standard ,pero ¿ y si se pudiera usar desde otros dispositivos  como por ejemplo desde una Raspbery Pi?

Pues en  efecto desde pistonheads.com  nos demuestra como es posible desde una RPi de  leer datos de su moto a través de un lector USB OBD-II  usando  como registrador de datos para una moto gracias  a que cabe perfectamente  debajo del asiento

Para ello , se usa un   cable USB -> OBD2 , el cual  soporta muchas versiones diferentes del puerto estándar OBD2

La RPi toma la  alimentación  una conexión micro del USB que se alimenta a su vez  de la batería (lo ideal es desde luego hacerlo desde  la llave de encendido / apagado, pero esto llevar mucho más trabajo y se corre el peligro de  dañar el cableado de la moto) así que el usuario opto  por compro un interruptor y un fusible  que  termina en un puerto USB hembra lo cual permite  apagar la RPpi al final de un viaje

Lo siguiente es  el código, basado en  la  librería python  desarrolla en 2009 llamado pyobd. Esta fue  la  base para lo que quería hacer, encontrando algunos errores en el código pues , en general, estaba escrito para ser utilizado por una aplicación  grafica GUI que venía con ella. Como el autor no quería una aplicación GUI, obviamente, bajo su asiento se bajo su repositorio y comenzó a trabajar en hacerlo más parecido a un datalogger

El trabajo esta en su  repositorio : https://github.com/roflson/pyobd

 

Gracias al trabajo excelente de Salgar , Martin quiso ir mas lejos  conectando ademas una cámara ,    utilizando  los datos OBD para superponer mph, rpm, temperatura y la posición del acelerador sobre el vídeo tomado con la placa de la cámara construyendo realmente un dispositivo bastante interesante

Resumidamente  el  proceso de desarrollo de  la nueva herramienta fue muy similar a la anterior adaptación de Salgar , basándose también en un  adaptador  USB al cable de interfaz de OBD2 del tipo ELM 327 1.5V USB CAN-BUS Scanner ELM327 , por cerca de £ 10 disponibles en  amazon.com o amazon.co.uk .( en España un no esta )

Otro elemento importante es conectar la cámara a su Raspberry Pi 2 usando el conector propietario especifico

Un modelo asequible compatible con la Raspberry Pi2   es el Módulo de cámara Raspberry Pi de SainSmart  que cuesta unos 14€ 

 

Luego  una vez adquirido el hardware , descargo el  software de salgar de su repositorio github, https://github.com/roflson/pyobd , como base para el nuevo programa (el software de salgar es una bifurcación de un proyecto llamado pyobd, https://github.com/peterh/pyobd , que es una aplicación basada en GUI para leer datos OBD-II).

Utilizo el autor  este  nuevo software  como base para un programa que se conectaría a través de la interfaz OBD-II, interrogando al coche qué sensores soportaba y luego leyendo los sensores de datos en un bucle cada 0,5 segundos  escribiéndolos en la pantalla de modo que la RP2 no solo registra el video , también registra  los  datos dinámicos superponiendolos al video cumpliendo pues una doble función

Descargar y ejecutar

El autor   finalmente  ha puesto a la disposición de todos los usuarios su  sw  de modo que puede descargar el código directamente desde github  en ,https://github.com/martinohanlon/pyobd ,

 

Resumidamente estas son las instrucciones de instalación:

 

Si le “pica”la curiosidad en el vídeo podemos ver la Rp2 con el sw en acción

Fabricación casera de baterias de alta densidad energética


Las baterías de fosfato de hierro y litio (LiFePO4 o LFP), son las baterías tradicionales de Li-Ion más seguras. Una característica fundamental de estas e  que la tensión nominal de una celda de LFP es de 3,2V, cuando en las de plomo-ácido suele ser de 2V por celda.

Por ejemplo una batería LFP de 12,8V, por lo tanto, consiste en  4 celdas conectadas en serie; y una batería de 25,6V consiste de 8 celdas conectadas en serie.

Una batería de plomo-ácido fallará prematuramente debido a la sulfatación si:

  • Funciona en modo de déficit durante largos periodos de tiempo (esto es, si la batería raramente o nunca está completamente cargada).
  • Se deja parcialmente cargada o, peor aún, completamente descargada (yates o caravanas durante el invierno).

Por el contrario  las  baterías  LFP no necesitan estar completamente cargadas. Su vida útil incluso mejorará en caso de que esté parcialmente cargada en vez de estar completamente cargada (de hecho esta suele ser  una ventaja decisiva de las LFP en comparación con las de plomo-ácido).

Otra ventaja fundamental es  su mucho mayor densidad energética ahorrando hasta un 70% de espacio y hasta un 70% de peso .

Otras ventajas interesantes de estas baterias  son el amplio rango de temperaturas de trabajo, excelente rendimiento cíclico, baja resistencia interna y alta eficiencia

Como desventaja clara   de las baterias de LiFePO4 o LFP,  destacar que las baterías LFP son caras en comparación con las de plomo-ácido ,pero si se usan en aplicaciones exigentes, el alto coste inicial se verá más que compensado por una vida útil mayor, una fiabilidad superior y una excelente eficiencia  debido a su mayor densidad energética ,razón por la cual son mucho mas pequeñas y ligeras que el resto .
En el mercado podemos encontrar baterías de iones de litio, si buscamos en profundidad , a partir de 120€(12v /10AH) por ejemplo en Amazon siguiendo este enlace 

Aunque evidentemente podemos comprar la batería  ya montada,  vamos a ver como podemos montar nuestro propio pack de baterías de iones de litio por mucho menos precio de lo que nos ofrecen  las grandes marcas , pues no necesitamos mucha experiencia, ya que  la única complejidad estriba en elegir bien los componentes y ensamblarlos de forma correcta.

 

Para construir pues una batería de celdas  necesitamos  pues dos componentes esenciales:

  • Por un lado , un numero determinado de  celdas en función de la tensión e intensidad que se precise  ( las mas típicas son las  del tipo 18650)
  • El circuito de control de carga PCB (protection circuit modules PCB/PCM/BMS/CMB)   de las celdas , el cual también estará en función de la tensión e intensidad que se precise.

Seleccion del cicruito de carga  para baterías de litio

Los pack de baterías Li-ion y Li-Poly siempre deben ser usadas con un circuito de protección para prevenir que las celdas tengan sobrecarga, sobre-descarga o exceso consumo. Los distintos controladores de carga se presentan con diferentes versiones dependiendo del número de células, voltaje y capacidad. Elegir el circuito correcto ( y aplicarlo)  es vital para asegurar la longevidad de las baterías e incluso también  por nuestra propia seguridad.Como norma general podemos seleccionar un controlador de carga en función de la tensión  necesaria:

  • Para celdas > 5 o 18,5v li-ion packs, debería escoger un PCM con función de equilibrio para mantener cada celda en el mejor balance y otorgue un buen servicio durante su vida útil.
  • Para un pack de baterías Li-ion de alto voltaje (celdas > 20) debemos escoger un BMS (battery manage system) para supervisar el rendimiento de cada celda y asegurar que la batería trabaja de forma correcta. BMS (o sistema de gestión de baterías) es un sistema electrónico que controla una batería recargable monitorizando su estado, calculando los datos secundarios, protegiendo la batería, controlando el entorno y haciendo que trabaje en equilibrio.El BMS monitoriza diversos datos como:
    • Voltaje: Voltaje total, o voltaje individual de cada celda.
    • Temperatura: Temperatura media o temperatura de las celdas individuales
    • Estado de carga (SOC) o profundidad de descarga (DOD) para ajustar el nivel de la batería.
    • Estado de la salud (SOH) medidas sobre el estado general de la batería
    • Corriente, Entrada ó salida de la batería.

 

En cuanto  a las especificaciones del circuito de carga, ademas de las consideraciones anterioes ,es interesante  seleccionar este   en función de sus especificaciones electricas  como pueden ser:

  • Tensión de protección de sobrecarga para una sola célula: Debido a que la delicada química de la batería de iones de litio se puede dañar si se carga con una tensión demasiado alta, el PCB se encarga de cortar la corriente a las células. Esto no debería ser un problema si realizamos la carga con un cargador inteligente el cual se apagará una vez que la batería ha terminado de cargar.
  • Tension de  protección  ante descarga de una sola célula:Si el voltaje de una batería de iones de litio caé a cero, o incluso simplemente por debajo de 2 voltios, se verá seriamente perjudicada, y nunca serás capaz de volver a cargarla. Los teléfonos móviles tienen esta misma protección. Si mides el voltaje de una batería de un móvil “muerto” verás que entrega 2.5 voltios.
  • Protección de detección ante exceso de corriente: Sobre la protección de exceso de corriente es necesario porque un controaldor de carga es relativamente pequeño con componentes diminutos y no puede manejar demasiada corriente.
  • Máxima corriente de descarga continua:es la  corriente máxima que es capaz de gestionar en modo descarga
  • Consumo de Corriente: nos indica  el consumo  de los componentes electrónicos en el controlador. Es prácticamente nada y no agotará en ningún caso la batería.
  • Protección del cortocircuito: La protección por  cortocircuito significará que el controlador se apagará si detecta un cortocircuito; si un cable se desconectó , si tenemos un cable pelado,etc.
  • Resistencia de los circuitos de protección:Relacionado con el consumo de corriente  podríamos decir que es la resistencia causada por el PCB.. Una vez más el consumo es tan pequeño que no se aprecia.

 

Baterías o celdas se usan indistintamente, la diferencia es que una celda es la parte más pequeña e indivisible de la batería, la cual almacena la energía y una batería puede estar hecha de muchas celdas.

 

La capacidad de la batería se mide en vatios hora. Para saber los Watt horas debemos utilizar la fórmula (Watts = Voltios x Amperios) para multiplicar la capacidad (en  amperios hora) con tensión(voltios) para obtener X vatios hora.

Todas las celdas tienen un formato común, por lo tanto puede encontrarlas con facilidad y con precios asequibles en muchos sitios por internet.

El formato mas habitual es 18650s , cuya numeración en realidad   solo corresponde a  sus  dimensiones físicas de 18 mm por 65 mm (medidas muy similares a una pila AA).

Las celdas nuevas de LI-ion recargables pueden costar  en torno a los 8€ por cada (  tensión  de voltaje: 3.6v-4.2v, capacidad: 2600mAh, salida: 4.2v,   carga máxima: 1.5 , resistencia interna: por debajo 50milliohm ,tiempo de carga: 1000 veces , peso: 48 y Tamaño: 65 mm x 18 mm )

18650 - A123 baterias

Una vez seleccionemos el numero de celdas en función de la tensión y la corriente a obtener mediante asociación de celdas en serie  para obtener la tensión necesaria y en paralelo para obtener la capacidad requerida el siguiente paso será conectar todas las celdas.

La conexión  eléctrica de las celdas podemos hacerlo de muchas , desde cinta aislante ó americana (aunque no es la mejor opción pues seguro que en un momento u otro se acaba soltando), con portapilas ,  soldándolas  con estaño   o incluso mediante maquinas de soldadura por puntos, que es lo que usan los fabricantes profesionales, lo cual como vamos  a ver, tampoco es tan complicado:

La soldadura por puntos se basa en presión y temperatura. Dos piezas se sueldan entre si cuando una parte de ellas se calienta a temperaturas próximas a la fusión y se hace presión entre ellas. En el caso de esta soldadura el calentamiento de la pieza se hace por una alta corriente eléctrica entre dos electrodos y la presión la realizan precisamente estos electrodos en forma de pinza.

Como generalmente la resistencia de las piezas a soldar es muy baja la corriente que debe pasa por la zona a soldar debe ser muy alta del orden de los 500 amperios, pero sin embargo los voltajes son muy bajos, de 1 a 3 voltios pero la potencia total si es alta en torno a  uno o dos kilovatios.

Los hornos microondas llevan un transformador de aproximadamente 2 kilovatios de potencia. El primario acepta los 220 V y tiene dos secundarios. Uno de ellos para alimentar el magnetrón suministra unos 2200 voltios eficaces, otro bobinado consiste en una o dos espiras y sirve para alimentar el filamento del magnetrón.

Al observar el transformador se puede ver que los bobinados de primario y secundario de alta tensión están perfectamente separados. El primario es de hilo mas grueso y el secundario no lo necesitamos porque además es peligroso debido a  las altas tensiones que produce y además necesitamos el espacio que ocupa para el secundario de nuestra soldadura.Por ello para eliminarlo, cortar el bobinado con una sierra y extraer las espiras hasta que se quite completamente. Si tiene un carrete aislante dejarlo, nos puede venir bien aunque no es imprescindible.

El secundario que nosotros necesitamos, debe producir unos 2 voltios y unos 500 amperios aunque sea de manera temporal. Para este secundario necesitamos un par de espiras de hilo de unos 10 0 o 15 mm de diámetro.  Arrollarlo directamente en el núcleo ( un par de espiras ) y su salidas  a dos electrodos   qeu pueden realizarse con una barra de cobre de unos 10 mm de diámetro, necesitaremos dos electrodos de unos 50 mm que limaremos mediante una lima  para afilarla con forma cónica uno de los dos extremos de cada electrodo.

Téngase en cuenta que los tres voltios con que se alimentan las puntas no son peligrosos.

Por ultimo sólo falta equipar un interruptor que alimente el transformador. Lo mas sencillo es activarlo con el pie pues las manos suelen estar ocupadas sujetando la pieza.

Antes de dar paso a la corriente las piezas deben estar aprisionadas. En caso contrario las puntas chisporrotean. Después de hacer unas pruebas se puede decidir aumentar o bajar el voltaje, arrollando mas o menos espiras en el transformador. Cuando se tenga un montaje definitivo acortar todo lo posible los cables del secundario.

En el siguiente vídeo podemos verlo de una forma mas clara como es el proceso de construcción del soldador:

 

Una vez resuelta la conexión eléctrica de las celdas es recomendable usar algún soporte  que haga de aislamiento entre las capas de baterías  siendo  lo mas típico usar unos anillos concéntricos de plástico  con orificios del diámetro de las células que se colocan lógicamente tanto en la parte superior como la inferior

Si su pack de baterías sufre un cortocircuito, lo más probable es que se calentará de forma desmesurada, pudiendo  salir incluso  humo negro o ver la propia placa ennegrecida. No es extraño que pueda ocurrir y para evitarlo solo tenemos que poner una buena capa de aislamiento entre las pilas de baterías.Eso no significa que crear un pack de baterías sea un proyecto terriblemente peligroso, pero hay que tener cuidado.

 

En esta web encontrará diagramas de cableado y  diferentes formas de cablear las baterías según configuraciones.

 

La primera vez que conecta todo, la preocupación por descubrir que no esta bien conectado aflora, ¿y si lo conectamos y se quema todo? Una vez completado todo el montaje tenemos que asegurarnos que todo esta bien conectado, que las baterías tienen carga y que el PCB esta activado y funciona correctamente.

 

 

Por ultimo  acerca del Ratio C  ,la  C significa capacidad y representa lo que pasa a ser la capacidad de la batería. Si tenemos una batería de 8 amperios horas y carga a 8 amperios, entonces se está cargando a 1C de carga y podría terminar en una hora. Si carga a 2 amperios hora, como la mayoría de cargadores, entonces estaría cargando a un cuarto C, y tardaría 4 horas en cargar. Si agoto una batería de 8 amperios tendrá una duración de una hora; Eso es un consumo de 1C.

Fuente aqui

Bicicleta estatica mejorada


Me ha gustado  mucho la idea de con un simple rele reed /iman , la electroncia de un teclado y el programa autohotkey  y un pequeño script del autor jopama, y como no un ordenador nos presenta en pantalla las imágenes de Street View del Google Maps en sincronia con nuestras pedaladas.
Así, el sistema  diseñado por jopama  , consta de:
-Un teclado númerico usb
-Una ampolla de  rele Reed: El reed switch consiste en un par de contactos ferrosos encerrados al vacío dentro un tubo de vidrio. Cada contacto está sellado en los extremos opuestos del tubo de vidrio. El tubo de vidrio puede tener unos 10 mm de largo por 3 mm de diámetro. Al acercarse a un campo magnético, los contactos se unen cerrando un circuito eléctrico. La rigidez de los contactos hará que se separen al desaparecer el campo magnético.
-Un iman ( por ejemplo puede recuperarse de un disco duro roto pues son de neodimio).
 -Dos pulsadores
-Conector(no imprescindibles pero conveniente, puede servir uno subd de 9 pines o cualquierade otro tipo para 6 contactos)
– Programa gratuito que permite personalizar centenares de combinaciones de teclas con las que llevar a cabo multitud de operaciones diversas: modificar el volumen, ejecutar aplicaciones, abrir una página web, utilizar abreviaturas cuando escribes, etc.
Prácticamente cualquier tecla se puede utilizar en combinaciones, mediante un sistema de scripts que viene explicado con todo detalle en la Ayuda del programa, además de tutoriales en la página web del autor.
Nosotros, mediante un pequeño programa (Script) lo usaremos para disminuir la frecuencia del cambio de imágenes con cada pedalada. Así, la imagen cambiara (avanzará) solo al dar 3, 4, 5 pedaladas o las que nosotros queramos.

Cuando activamos el Street View en Google Maps, podemos movernos por las calles con las teclas cursores del teclado numérico si desactivamos la tecla de Bloqueo Numérico (Bloq Num); por tanto debemos sacar del teclado los conectores de esas teclas para manejarlas desde fuera
Prácticamente cualquier tecla se puede utilizar en combinaciones, mediante un sistema de scripts que viene explicado con todo detalle en la Ayuda del programa, además de tutoriales en la página web del autor.
Nosotros, mediante un pequeño programa (Script) lo usaremos para disminuir la frecuencia del cambio de imágenes con cada pedalada. Así, la imagen cambiara (avanzará) solo al dar 3, 4, 5 pedaladas o las que nosotros queramos.
>Cuando activamos el Street View en Google Maps, podemos movernos por las calles con las teclas cursores del teclado numérico si desactivamos la tecla de Bloqueo Numérico (Bloq Num); por tanto debemos sacar del teclado los conectores de esas teclas para manejarlas desde fuera
Fases
Del teclado numérico las teclas presionan sobre una hoja de plastico doble con dos pistas conductoras superpuestas. Como es imposible soldar en el plastico, buscaremos (con el tester) a partir del conector donde donde van a morir las pistas del plastico (conector blanco sobre la “gota” negra del chip) las pistas de cobre donde hacer las soldaduras

Prácticamente cualquier tecla se puede utilizar en combinaciones, mediante un sistema de scripts que viene explicado con todo detalle en la Ayuda del programa, además de tutoriales en la página web del autor.Nosotros, mediante un pequeño programa (Script) lo usaremos para disminuir la frecuencia del cambio de imágenes con cada pedalada. Así, la imagen cambiara (avanzará) solo al dar 3, 4, 5 pedaladas o las que nosotros queramos.Cuando activamos el Street View en Google Maps, podemos movernos por las calles con las teclas cursores del teclado numérico si desactivamos la tecla de Bloqueo Numérico (Bloq Num); por tanto debemos sacar del teclado los conectores de esas teclas para manejarlas desde fuera.
El conector superior lleva los cables a los pulsadores y al relé reed . El relé  reed esta pegado con cinta de doble cara y el imán  en la barra del pedal que no necesita pegamento. Si se usa un imán normal (no de neodimio) hay que ajustar mucho mejor la distancia al relé.

Por último veremos el programa AutoHotKey y el Script para su control con la bicicleta.
Descargamos AutoHotKey desde  http://www.autohotkey.com
Abrimos el block de notas de Windows. Copiar y pegar en el block de notas el programa inferior y guardarlo con el nombre   AutoHotkey.ahk
Asegurarse que la extensión es .ahk

SetNumlockState AlwaysOff   ;NumLock desactivado (aunque no apague la luz del teclado supletorio) Contador:=0                              ;Inicializa variable
NumpadUp::                              ;Pulsaciones de número 8 de teclado numérico (con NumLock desactivado) 
if Contador = 4                         ;Número de pedaladas para siguiente foto (a elegir)
  {
  Send {up down}                       ;Presiona up
  Sleep 30                                   ;Espera 30 milisegundos
  Send {up up}                             ;Suelta up
  Contador=0                              ;Reinicializa el conteo de pedaladas
  }
Contador += 1                           ;Aumenta una pedalada
Return  

Finalmente enchufamos nuestro invento a un USB del ordenador. Nos reconocerá el nuevo teclado.
Arrastramos el fichero AutoHotkey.ahk sobre el AutoHotkey.exe y se ejecutará el Script. Veremos que se apaga la luz del Bloq Num. El programa se ejecuta en segundo plano, en la barra de tareas.
Abrimos Google Maps en nuestro navegador y lo maximizamos y ya podemos recorrer el mundo con nuestra bicicleta estatica


Mas informacion la puedes encontrar aqui
Licencia Creative Commons
solo-electronicos por Carlos Rodriguez Navarro se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 3.0 Unported.