Construir una consola retro con Orange Pi PC


RetrOrange Pi es un proyecto sin fines de lucro. Se compone de una configuración básica de Retropie con la mayoría de los núcleos de Libretro encima de una versión de Jessica Desktop de Armbian preinstalada incluyendo   ademas  OpenELEC .Mas especificamnte RetrOrangePi  es por tanto una distribución de juegos y medios basada en Armbian (Debian 8), es decir  Full Armbian 5.23 con versión de escritorio de Jessie con el núcleo 3.4.113 (backdoors fijados)  que es  compatible con dispositivos H3 / Mali , como por ejemplo la Orange Pi PC . Ha sido  desarrollado y mantenido por Stevie Whyte y Alerino Reis con la colaboración de Wang Matt.

Gran parte del software incluido en la imagen tiene licencias no comerciales. Debido a esto, vender una imagen RetrOrange preinstalada no es legal, ni incluirla con su producto comercial .

Las plataformas soportadas  por esta distribución son las siguientes:  Nintendo DS, Neo Geo Pocket, Neo Geo, Neo Geo, Neo Geo, Nintendo, Neo Geo, Neo Geo, Neo Geo Pocket Color, PC Engine (TurboGrafx), Playstation 1, Playstation Portable, Sega32x, SegaCD, SG-1000, Super Nintendo, Vectrex, ZxSpectrum

Ademas, recientemente se han incorporado  otras plataformas como Amiga (emulador FS-UAE, fullscreen ahora, sonido de disquete, lanzador),Atari 5200 ,Atari 8bit (modelos 400 800 XL XE) ,Coco / Tandy ,Colecovision (ColEm emu * Colección personalizada BlueMSX núcleo **),Creativision ,Daphne (emulador Philips Cdi),Dosbox (versión GLES) y Dreamcast (fijo reicast-joyconfig),OpenMSX (con soporte .dsk) ,PPSSPP (nueva versión 1.3 de repo odroid),TI99 / 4A (Texas Instruments) entre otras.

Retrorange Pi incluye además OpenELEC (Kodi Jarvis 16.1) con el apoyo de la CEC por Jernej krabec y  Kodi Krypton beta6 (populares reproductores multimedia  que sirven ademas para ver estaciones de TV por internet,ect )  ,  pero tenga cuidado ,pues si ejecuta cualquiera de ellos cada que arranque su OrangePi arrancará con Kodi/OpenELEC y no podrá volver a Emulation Station sin hacer una serie de pasos que pueden ser complicados para muchos usuarios.

kodi01 kodi02

Ademas también tenemos un escritorio Linux completamente funcional bajo el eficiente Xfce

Incluye  teclado en pantalla con fácil configuración wifi y control de almacenamiento con características adicionales añadidas por el equipo ROPi: configuración de visualización, OpenELEC / Desktop launcher y switcher de música de fondo integrado en el menú principal.

También soporta  Plug n ‘Play – USB roms autoload (lee desde / media / usb0) (buggy) entre sus muchas carasterictics

Instrucciones  de instalación

Lo primero  es descargar la imagen correspondiente  en su ordenador, segun la  placa  que tenga , descargue la última imagen del sitio oficial  http://www.retrorangepi.org/#download  .

Por ejemplo para Orange Pi PC el fichero descargado seria RetrOrangePi-3.0.1.Orangepipc.tar.gz

Para descomprimir la imagen,  si estamos en Windows  primero en un fichero tar lo mejor es usar  el  famoso descompresor 7-Zip

Para descomprimir el tar obtenido por el 7-zio    ahora si podemos usar el  Winrar  para obtener el fichero .iso

Para crear la imagen en la sd existen dos métodos  principalmente  , veamos el procedimiento tradicional:

  • Inserte la tarjeta SD en el lector de tarjetas SD  de su ordenador comprobando cual es la letra de unidad asignada. Se puede ver fácilmente la letra de la unidad, tal como G :, mirando en la columna izquierda del Explorador de Windows.
  • Puede utilizar la ranura para tarjetas SD, si usted tiene uno, o un adaptador SD barato en un puerto USB.
  • Descargar la utilidad Win32DiskImager desde la página del proyecto en SourceForge como un archivo zip; puede ejecutar esto desde una unidad USB.
  • Extraer el ejecutable desde el archivo zip y ejecutar la utilidad Win32DiskImager; puede que tenga que ejecutar esto como administrador. Haga clic derecho en el archivo y seleccione Ejecutar como administrador.
  • Seleccione el archivo de imagen ISO  que ha extraído anteriormente
  • Seleccione la letra de la unidad de la tarjeta SD en la caja del dispositivo. Tenga cuidado de seleccionar la unidad correcta; si usted consigue el incorrecto puede destruir los datos en el disco duro de su ordenador! Si está utilizando una ranura para tarjetas SD en su ordenador y no puede ver la unidad en la ventana Win32DiskImager, intente utilizar un adaptador SD externa.retro
  • Haga clic en Write  Escribir y esperar a que la escritura se complete.
  • Salir del administrador de archivos  y expulsar la tarjeta SD.

Existe un procedimiento alternativo que permite usar diferentes funcionalidades en diferentes sistemas operativos en una única herramienta

  • Ir a etcher.io donde podemos descargar el software para cada sistema operativo
    pudiéndose e elegir aquí el sistema operativo que desea para Mac, linux o Windows
  • Una vez descargado el sw  instale en su equipo y  ejecute
  • Ahora seleccione la imagen ISO
  • Seleccione la unidad de tarjeta sd donde desee crear la imagen
  • Luego haga clic en flash, y la imagen será transferido a su tarjeta SD

etcher.PNG

 

Al finalizar de crear la imagen extraiga de su pc de  forma ordenadas

Coloque la sd en su Orange Pi PC ( o la placa que tenga)

El usuario y la contraseña predeterminados son:

user – pi
pass – pi
root – orangepi

Los emuladores ya están instalados (al menos los más comunes). Para agregar ROMs, simplemente coloque los archivos en la ~/RetroPie/roms/$CONSOLE , donde $CONSOLE es el nombre de la consola de destino, por ejemplo, snes o arcade.

Para usar la GUI, seleccione Desktop desde el menú EmulationStation, inserte la unidad USB con sus ROMs, cópielos en la RetroPie/roms/$CONSOLE (acceso directo en su escritorio).

Información importante:
 

  • En caso de que su placa no parezca arrancar, trate de reformatear su tarjeta SD con SDFormatter 4.0 por Trendy (con ajuste de tamaño )  pruebe con una fuente de alimentación diferente (real 2A) y  otra  sdcard (Original, class10 recomendado), y por último, pero no menos importante, asegúrese de estar conectado al televisor compatible con HDMI 720 (sin adaptadores DVI)
  • En el primer arranque se instalará automáticamente el sistema, cambiara el tamaño de la tarjeta SD y se reiniciara de nuevo asi que por favor tenga paciencia
  • Los emuladores ya están instalados , pero sólo aparecen en EmulationStation cuando se agregan roms.
  • Para agregar ROMs, simplemente coloque los archivos en la carpeta / home / pi / RetroPie / roms / $ CONSOLE, donde $ CONSOLE es el nombre de la consola de destino, por ejemplo, snes o arcade. Puede iniciar Desktop desde EmulationStation y conectar una unidad USB con sus ROMs. Las carpetas de Roms también son partes de samba.
  • Debido a nuestra configuración personalizada, no ejecute ‘sudo apt-get upgrade’. Puede romper algunas cosas.

 

 

Web oficial de RetroRangePiorange314.com/RetrOrangePi

Anuncios

Cómo instalar ArmBian en Orange Pi PC


Armbian es una distribución ligera basada en Debian o Ubuntu especializada para placas de desarrollo ARM. Compilado desde cero, contando con poderosas herramientas, desarrollo de software, y una comunidad vibrante.Otras placas ARM pueden ser las Raspberry PI, Odroid, Cubieboard… cada una de un fabricante distinto y luchando por hacerse con su espacio

Para instalar Armbian, primero debemos elegir entre un entorno gráfico o linea de comandos pues dependiendo lo que queramos hacer, elegiremos uno u otro sistema. Según la placa tendremos soporte completo con una de cuatro sistemas básicos  Debian Wheezy  (Jessie)  o   Ubuntu Trusty  (Xenial)

Ademas  dentro de esas distribuciones, podemos elegir entre “Legacy” y “Vanilla”,ambos estables y listos para producción, pero se debe elegir en base a nuestras necesidades, ya que su soporte básico es diferente:

  • Legacy: aceleración de vídeo, sistema al que conectar pantallas y otros periféricos, como teclado, ratón…
  • Vanilla: servidores sin monitor o periféricos, que se vayan a controlar remotamente por ssh ( por ejemplo desde el putty)

Más información acerca de Armbian se puede encontrar: Aquí  y se puede encontrar la guía de instalación: Aquí

Ok, ¿qué necesitamos para iniciar este pequeño proyecto?

Hardware necesario:

  1. Orange Pi PC
  2. 5V / 2A con el barril del CC Jack o el cable grueso del USB (utilicé 5V / 1,5A de mi teléfono viejo)
  3. Tarjeta SD – Clase 10!
  4. Teclado y ratón
  5. Cable HDMI
  6. Cable ethernet de LAN
  7. Lector de tarjetas

Software necesario:

  1. Descargar Armbian – Jessie,versión servidor  para el Orange Pi PC   Aquí
  2. Descargar SDFormatter: aqui
  3. Descargar Etcher: Here
  4. Descargar 7-Zip: Aquí
  5. Descargar Putty: aqui

Upzip, formato e instalación de Armbian a la tarjeta SD

Upzip, Formato e Instalación de Armbian a Tarjeta SD
  • Empezar a descargar Armbian (ver enlaces anteriores) e instalar SDFormatter, Etcher y 7-zip.
    (No estoy explicando cómo instalar esas aplicaciones porque es bastante sencillo.
  • Cuando esto se hace, abra la carpeta donde descargó la imagen de Armbian,
    Esto debe ser nombrado así:
    “Armbian_5.20_Orangepiplus_Debian_jessie_3.4.112_desktop.7z
  • Abra 7-zip y descomprima este archivo en un nuevo directorio para que tenga algo como: “Armbian_5.20_Orangepiplus_Debian_jessie_3.4.112_desktop.img 
  • Conecte su tarjeta SD a su computadora, en este caso utilicé un lector de tarjetas USB
  • Iniciar SDformatter
    • Drive: Seleccione su tarjeta SD ( Compruebe esto! )
    • Vaya a las opciones -> “Ajuste del tamaño del formato” -> YES (El valor predeterminado es “No”) -> OK
    • Compruebe nuevamente si la tarjeta SD está seleccionada en la sección “Drive”.
    • Haga clic en “Formato”
  • Iniciar Etcher (ejecutar como Administrador!)
    • ” Seleccionar imagen ” -> Seleccione su unzipt:
      Archivo “Armbian_5.20_Orangepiplus_Debian_jessie_3.4.112_desktop.img”
    • Seleccione ” Cambiar ” para cambiar su letra de unidad para usted Tarjeta SD
    • Seleccione “Flash!” Y esperar hasta que esto se haga
  • Desconecte su tarjeta SD cuando se haya completado este proceso, use la opción “Quitar hardware y expulsar material de forma segura” en Windows para asegurarse de que está bien

Conecte su Orange Pi PC  y arranque por  primera vez con Armbian

 Ok, ahora es el momento de conectar todos sus dispositivos y cables para iniciar su Orange Pi!
  • Conecte un teclado + mouse a USB
  • Conecte su cable HDMI a su TV  o monitor
  • Conecte el cable LAN al enrutador / conmutador
  • Inserte la tarjeta SD en la ranura de la tarjeta SD
  • Por último, pero no menos importante, conecte el cable de alimentación a su Orange Pi (recuerde que no hay soporte en el Micro USB como fuente de alimentación)
  • ¡Que empiece la diversión!

¿Cómo arrancar?

El primer arranque toma alrededor de 3 minutos y luego se reinicia y tendrá que esperar otro minuto para iniciar sesión. Este retraso se debe a que el sistema actualiza la lista de paquetes y crea SWAP de emergencia de 128Mb en la tarjeta SD.

¿Cómo iniciar sesión?

Ingrese como nombre de usuario ” root” en la consola o mediante SSH y use la contraseña ” 1234″ . Se le pedirá que cambie esta contraseña en el primer inicio de sesión. A continuación, se le pedirá que cree una cuenta de usuario normal que esté sudo (admin) habilitada.
Incluso te está preguntando si quieres cambiar la resolución de la pantalla, pero para mí está bien en 720P.
Estoy usando la línea de comandos con SSH (masilla) la mayor parte del tiempo.

Su escritorio ya está listo para usar! :

Le mostrará algo como esto: donde como vemos aparece la dirección IP a la que nos podemos conectar por ssh

Inicie Putty y conéctese a la dirección IP de su Orange Pi así (ver captura de pantalla):

Nombre de host (o dirección IP): 192.168.1.48 (sólo mi ejemplo, cambie a su IP)
Puerto 22 (predeterminado)
Y haga clic en “Abrir”

Putty le dará un mensaje de seguridad la primera vez, simplemente haga clic en “Sí”.

Ingrese con “root” como nombre de usuario, y su propia contraseña.

Actualizar, establecer una IP estática y deshabilitar raíz para iniciar sesión.

Su Orange Pi debe ejecutar el escritorio y SSH ahora mismo, pero queremos hacer más!

Estos 3 pasos no son obligatorios, pero me gustaría recomendarlo o al menos echarle un vistazo.

  • Actualizar / actualizar su Armbian
    Inicie sesión con Putty en su Orange Pi, y use este comando para actualizar / actualizar su Armbian:
    ” Sudo apt-get update  o simplemente   “apt-get update” si esta logado como root
    Después de esto:
    Sudo apt-get upgrade -y ” o simplemente apt-get upgrade -y  si esta logado como root     .En caso de error puede que tenga   que selecionar la opcion -f , es decir            apt-get -f install
  • Configurar un IP estático
    Quiero tener una dirección IP estática (no DHCP) en mi Orange Pi, así que sé con seguridad que estoy conectando a mi Orange Pi en la misma dirección IP todo el tiempo.
    Inicie sesión con Putty en su Orange Pi y utilice este comando ifconfig  para ver los detalles de su IP actual:

    [email protected]:~# ifconfig
    eth0 Link encap:Ethernet HWaddr d2:94:6d:f5:41:56
    inet addr:192.168.1.48 Bcast:192.168.1.255 Mask:255.255.255.0
    inet6 addr: fe80::d094:6dff:fef5:4156/64 Scope:Link
    UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
    RX packets:20090 errors:0 dropped:0 overruns:0 frame:0
    TX packets:9527 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:1000
    RX bytes:24031895 (24.0 MB) TX bytes:757452 (757.4 KB)
    Interrupt:114
    lo Link encap:Local Loopback
    inet addr:127.0.0.1 Mask:255.0.0.0
    inet6 addr: ::1/128 Scope:Host
    UP LOOPBACK RUNNING MTU:16436 Metric:1
    RX packets:1 errors:0 dropped:0 overruns:0 frame:0
    TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:0
    RX bytes:104 (104.0 B) TX bytes:104 (104.0 B)

    [email protected]:~#

  • En este caso, quiero usar esta dirección IP 192.168.1.48 como una dirección IP estática, pero usted tiene que comprobar qué dirección IP que desea utilizar en este rango.Tipo:
    nano / etc / network / interfaces “, el texteditor Nano se abrirá y le mostrará la configuración de red, busque los detalles de “eth0”, como esto:

source /etc/network/interfaces.d/*

# Wired adapter #1
allow-hotplug eth0
no-auto-down eth0
iface eth0 inet dhcp
#address 192.168.0.100
#netmask 255.255.255.0
#gateway 192.168.0.1
#dns-nameservers 8.8.8.8 8.8.4.4
# hwaddress ether # if you want to set MAC manually
# pre-up /sbin/ifconfig eth0 mtu 3838 # setting MTU for DHCP, static just: mtu 3838

# Wireless adapter #1
# Armbian ships with network-manager installed by default. To save you time
# and hassles consider using ‘sudo nmtui’ instead of configuring Wi-Fi settings
# manually. The below lines are only meant as an example how configuration could
# be done in an anachronistic way:
#
#allow-hotplug wlan0
#iface wlan0 inet dhcp
#address 192.168.0.100
#netmask 255.255.255.0
#gateway 192.168.0.1
#dns-nameservers 8.8.8.8 8.8.4.4
# wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
# Disable power saving on compatible chipsets (prevents SSH/connection dropouts over WiFi)
#wireless-mode Managed
#wireless-power off

# Local loopback
auto lo
iface lo inet loopback

  • Ahora necesitamos cambiar la parte ” dhcp ” a ” static “, y llenar todos los detalles de la dirección

    IP.Cambiarlo así:# Wired adapter #1
    allow-hotplug eth0
    no-auto-down eth0
    iface eth0 inet static
    address 192.168.1.48
    netmask 255.255.255.0
    gateway 192.168.0.1
    #dns-nameservers 8.8.8.8 8.8.4.4
    # hwaddress ether # if you want to set MAC manually
    # pre-up /sbin/ifconfig eth0 mtu 3838 # setting MTU for DHCP, static just: mtu 3838# Wireless adapter #1
    # Armbian ships with network-manager installed by default. To save you time
    # and hassles consider using ‘sudo nmtui’ instead of configuring Wi-Fi settings
    # manually. The below lines are only meant as an example how configuration could
    # be done in an anachronistic way:
    #
    #allow-hotplug wlan0
    #iface wlan0 inet dhcp
    #address 192.168.0.100
    #netmask 255.255.255.0
    #gateway 192.168.0.1
    #dns-nameservers 8.8.8.8 8.8.4.4
    # wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
    # Disable power saving on compatible chipsets (prevents SSH/connection dropouts over WiFi)
    #wireless-mode Managed
    #wireless-power off# Local loopback
    auto lo
    iface lo inet loopback

    Guarde este documento pulsando ” ctrl + x “, ” Y ” y pulse enter ( no cambie el nombre de archivo! )
    Ahora necesitamos reiniciar el servicio de red en Armbian, pero no sé por qué, reiniciando Armbian funciona muy bien aquí. Puede reiniciar tecleando este “reboot”.

  • Putty le dará un mensaje ” Server inesperadamente cerrado conexión de red “, pero eso no es extraño, que está reiniciando el Orange Pi.
    En putty utilice el botón “Restart ression” para reiniciar la conexión a su Orange Pi.Ahora cambiamos una dirección IP DHCP a una dirección IP estática para ” ETH0 “.
  • Desactivar la conexión root de SSH en Armbian
    ¿Por qué debemos desactivar la cuenta de root para el inicio de sesión de SSH? Bastante simple, la seguridad !
    Casi todas las distribuciones de Linux tienen la cuenta “root”, así que si alguien quiere hackear / fuerza bruta
    Un servidor Linux que están intentando iniciar sesión con esta cuenta. Al deshabilitar esta cuenta, primero deben encontrar una cuenta de usuario.Para solucionar este problema, debemos editar el archivo ” sshd_config “, que es el archivo de configuración principal del servicio sshd. ¡Asegúrese de que su segunda cuenta funcione! Al principio, Armbian le pidió que creara una segunda cuenta de usuario con una contraseña. Cierre sesión en Putty e intente iniciar sesión con esta cuenta. En mi caso creé una cuenta ” orangepi “.Tipo:
    ” Sudo nano / etc / ssh / sshd_config “Encuentre esta parte: (en Nano puede buscar con “ctrl + w”)
    ” PermitRootLogin “Te mostrará:
    # Autenticación:LoginGraceTime 120
    PermitRootLogin sí
    StrictModes síCambie el “ PermitRootLogin  ” a ” PermitRootLogin no ”
    Guardar esto golpeando ” ctr + x “, Y (es) y pulse enter (no cambie el nombre del archivo!)
    Reinicie SSH escribiendo:
    ” Sudo service ssh restart “Cierre la sesión e intente ingresar con “root”, si ha cambiado esto correctamente, le dará un error ahora.
    “Acceso denegado”.
    Inicia sesión con tu segunda cuenta ahora, en mi caso es “orangepi” y ya está!

Software adicional

Estos son sólo extra como: 

  • GPIO 
    Al igual que la Raspberry Pi (RPI), el Orange Pi (OP o OPI) tiene algunos GPIO para jugar.
    El RPI usa un programa llamado “WiringPi”, pero para el Orange Pi tenemos “WiringOP”!
    Se puede encontrar más información: aquí y aquí

    • Ir a su homedirectory
    • Tipo: “clon de git https://github.com/zhaolei/WiringOP.git -b h3″
    • Tipo: “cd WiringOP”
    • Tipo: “sudo chmod + x ./build”
    • Tipo: “sudo ./build”
    • Tipo: “gpio readall” para ver una visión general de todos los puertos GPIO.
  • VNC sobre SSH
    Puedo copiar pasado este sitio web completo, pero toda la información es:Aquí
  • RPI-Monitor
    Puedo copiar pasado este sitio web completo, pero toda la información es:Aquí
  • Webmin 
    Puedo copiar pasado este sitio web completo, pero toda la información es: Aquí

Convierta en mini PC una Raspberry Pi


Hablamos de un curioso Kit   que   permite cambiar completamente la funcionalidad de una Raspbrry  pi 3 conviertiendo ésta  en un  funcional minipc con una estética muy lograda

El kit se conecta a una Raspberry Pi( que por   cierto no va incluida)   a través del   puerto GPIO de 40 pines del que hemos hablado en este blog  permitiendo que luego conectemos una unidad SSD a esa placa auxiliar gracias a la interfaz mSATA y a la presencia de un pequeño adaptador de corriente que suministra la energía necesaria para que tanto la Raspberry Pi como la unidad de almacenamiento funcionen sin problemas. Obviamente precisamente uno de los puntos interesantes de este kit es que gracias a  este puerto  la Raspberry Pi puede iniciarse desde el SSD, y no necesariamente desde una tarjeta microSD como es lo habitual . Incluso la placa HAT lleva un conector macho superior para encadenar con otra placa HAT adicional que necesitemos.

 

rp3

Además ofrece un reloj en tiempo real (RTC) para mantener el reloj en hora incluso sin alimentación (incluye batería CR2032),

 

pila.png

Otro detalle interesante que se hecha en falta en su versión  de caja tradicional  es contar   con  un botón  un control de alimentación inteligente  que permite encender y apagar la Raspberry Pi de forma segura  sin perder datos y sin necesidad de quitar el cable de alimentación.

caja.png

 

Respecto a  la elegante caja esta aprovecha los puertos de la Raspberry Pi 3, contando con refrigeración mediante un pequeño disipador, un adaptador USB y una pila para el reloj del sistema,botón de encendido  e incluso una abertura para puede instalar una Raspberry Pi Cam en la parte frontal de la caja.
El kit incluye:

  • HAT para instalar disco SDD mSATA
  • Disipador de calor para la Raspberry Pi 3
  • Adaptador USB externo (Micro-Type A)
  • Espaciadores largo (x4) ,  corto (x4) y tornillos para sujetar la Raspberry Pi (x4)
  • Elegante caja 18x18x4,5cm
  • Batería (CR2032)
  • No incluye la Raspberry Pi 3.

 

 

Respecto al al software  recomiendan  RaspAnd OS que también incorpora de inicio varias aplicaciones recientemente actualizadas entre las que podemos mencionar Spotify TV 1.2.0, Rotation Control Pro 1.1.2, Google Play Games 3.9.08, Clash of Clans 9.24.9, el gestor de correo Gmail 7.4.23 o Aptoide TV 3.2.1.

Además merece la pena saber que también se ha incluido el paquete GAPPS para que los usuarios que se decanten por esta interesante alternativa, a su vez también tengan acceso a los servicios de la firma Google. Llegados a este punto decir que GAPPS incluye Google Play Services, pero no la tienda oficial Google Play Store.

 

Como vemos pues con este kit  por  unos 65€   podremos  convertir  una  Raspberry Pi 3 en un ordenador con WiFi, Ethernet, Bluetooth, RTC, Cámara y SSD   que ademas conectado  mediante HDMI a una pantalla nos permitirá  disfrutar de una experiencia PC auténtica.

Nueva rom Android para Orange pi PC


Desde 2012 la Raspberry Pi ha ido  creciendo  de  gran popularidad, estando  hoy en día  posicionada como una de las placas de desarrollo de referencia. Uno de sus rivales clásicos en los últimos tiempos están siendo las Orange Pi, una placa con un diseño similar pero  basado  en  procesadores de Allwinne

Shenzhen Xunlong dispone de la  placa SBC  muy similar a la Raspberry Pi a falta de 1 conector  USB , pero con un coste   bastante inferior  en Aliexpres. Es ademas abierta y hackeable. La placa de desarrollo low cost compite abiertamente   con  otras tantas existentes  donde  la mas destacable es también la Banana Pi  ,  pretendiendo todas  ellas  competir  con la Raspberry Pi.

 

orangepi

 

Esta placa integra una CPU basada en ARM Cortex A7 Dualcore y Quadcore (en la versión más potente), una GPU Mali compatible con OpenGL y 1GB DDR3 RAM, posibilidad de direccionar hasta 64GB de almacenamiento mediante tarjetas o por un puerto SATA, conexiones para audio, conector CSI para cámara, HDMI, VGA, USB OTG, USB 2.0, alimentación, GPIOs, IR, AV, receptor de infrarrojos, Ethernet RJ45 10/100M, tres puertos USB 2.0, uno microUSB OTG, un micrófono, un interfaz CSI para cámara y un encabezado de 40 pines compatible con Raspberry Pi,etc

Sobre diferencias respecto  al original,ciertamente casi todas las placas SBC son bastante similares orientándose para ser clones  mas baratos  de  la Raspberry Pi. Es cuestión de gustos o necesidades, pues  como hemos visto no se pueden alegar diferencias sustanciales, excepto porque se basan en arquitecturas diferentes a la ARM (como las basadas en x86) de la cual se comenta tienden a calentarse mucho precisando normalmente de un radiador pasivo o si es posible mejor  activo (equipado con un miniventilador).

orange_pi

En cuanto a los sistemas operativos soportados, se encuentran Raspbian, Ubuntu, Debian, Android 4.4 y otras versiones del sistema de Google  descargable desde la pagina oficial .. Todos ellos pueden ser movidos por los chips de Allwinner y el hardware que entregan estas placas SBC (Single Board Computer).

 

Desde la pagina oficial hay una imagen para Android ,pero desgraciadamente no funciona, pero gracias a la comunidad que hay detrás de esta placa  se ha creado una nueva imagen que si es funcional  ,  la cual ademas intenta explotar al máximo el hw de esta placa.

Como el procedimiento de instalación de una imagen Android es ligeramente diferente a una imagen basada en Linux, vamos a ver como crearla.

Para crear la imagen necesitaremos los siguientes  elementos  software:

 

La  instalación de seta nueva ROM es sencilla :

  • Descargar  Android firmware http://sh.st/nJPLZ
  • Descomprimir el archivo con el winrar
  • Inserte una microsd en su PC
  • Abra Phoenix Suite, y seleccione el archivo de imagen que descargó y descomprimimos en los dos primeros pasos
  • Asegúrese que en disK aparece la unidad donde ha metido la sd ( si por error es otra unidad borraría su contenido)
  • Pulse  Format no Normal
  • Espere a que finalice el proceso
  • Chequee ahora el checkbox Startup!
  • Pulse  el boton  Burn!

 

 

phoenix.PNG

  • Tras unos minutos debería ver llegar hasta el final y concluir el proceso

phoenixfin

NOTA: si en este proceso del da  ERROR puede ser por la falta de capacidad  o por el tipo de memoria ( recomendable al menos una microsd HC de  16GB)

 

En la version del firmware  V1.2 incluye:

  • Librerías multimedia actualizadas
  • Actualizado mi librtmp personalizado en Kodi
  • Otras pequeñas …

Registro de cambios V1.1:

  • Todo lo anterior menos el kernel personalizado, no es necesario …
  • Basado en 202k4
  • Root actualizada
  • Busybox actualizado
  • Añadido Nano editor de texto. Abra Terminal y escriba nano
  • Añadido entorno Bash. Abrir terminal y tipo bash
  • Añadido soporte init.d.
  • Otras cosas pequeñas ….

Registro de cambios V1:

  • TWRP 2.8.7.0 (Thks Abdul_pt)
  • Kernel de tronsmart (julio) Configuración personalizada.
  • Xbox360 inalámbrico y soporte de cable.
  • Custom Kodi 14.2 CedarX Hw aceleración del código fuente zidoo (thks zidoo y kodi equipo) limpiar y eliminar todas sus protecciones!
  • ¡Actualizó todas las aplicaciones de Google!
  • Limpia todo lo que el dragón recurso eater spyware crap
  • Se agregaron algunas aplicaciones de preinstalación. Youtube, Terminal, Reboot, Explorador de archivos ES, AdAway …
  • Aumento de los búferes TCP
  • Se ha agregado un Nexus10 build.prop

Plataforma de sensores e-Health V1.0 para Arduino y Raspberry Pi [aplicaciones biométricas / medicina]


En agosto de 2013 Cooking Hacks lanzó la nueva versión del primer escudo biométrica para Arduino y Raspberry Pi: la plataforma  e-Health Sensor. Gracias a la retroalimentación de la comunidad y varios proyectos que han sido creados con esta, han mejorado la plataforma de e-Health con nuevas características tales como:

  • Nuevo sensor de músculo
  • Sensor de presión de la sangre nueva
  • Glucómetro actualizado
  • Nuevas posibilidades de conexión

En este post  vamos a explicar cómo trabajar cplataforma  e-Health Sensor.V2.0.

E-Health Sensor Shield V2.0 permite a los usuarios de Arduino y Raspberry Pi realizar aplicaciones biométricas y médicas donde la supervisión del cuerpo sea necesaria mediante el uso de 10 sensores diferentes: pulso, oxígeno en sangre (SPO2), flujo de aire (respiración), temperatura corporal, Electrocardiograma (ECG), glucómetro, respuesta galvánica de la piel (GSR – sudoración), presión arterial (esfigmomanómetro), posición del paciente (acelerómetro) y sensor de músculo/eletromyography (EMG).

Esta información puede utilizarse para monitorizar en tiempo real el estado de un paciente o para obtener datos sensibles para ser analizados posteriormente para el diagnóstico médico. La información biométrica obtenida puede enviarse sin cables usando cualquiera de las 6 opciones de conectividad: Wi-Fi, 3 G, GPRS, Bluetooth, 802.15.4 y ZigBee dependiendo de la aplicación.

Si para  el diagnóstico de la imagen en tiempo real es necesaria una cámara puede conectarse el módulo 3G para enviar fotos y videos del paciente a un centro de diagnóstico médico.

Los datos pueden enviarse a la nube para almacenamiento permanente o visualizarlos en tiempo real enviando los datos directamente a un ordenador portátil o Smartphone. También  hay desarrollado  varias aplicaciones iPhone y Android  para poder ver fácilmente la información del paciente.

La privacidad es uno de los puntos clave en este tipo de aplicaciones. Por esta razón, la plataforma incluye varios niveles de seguridad:

    • En la capa de enlace de comunicación: AES 128 para 802.14.5 / ZigBee y WPA2 para Wifi.
    • En la capa de aplicación: mediante el protocolo HTTPS (seguro) nos aseguramos de un túnel de seguridad de punto a punto entre cada nodo de sensor y el servidor web (este es el mismo método utilizado en las transferencias bancarias).

e-Health protector del Sensor sobre Arduino (izquierda) frambuesa Pi (derecha)

Importante: La plataforma de e-Health Sensor ha sido diseñada por Cooking Hacks (la división de hardware abierto de Libelium) para ayudar a los investigadores, desarrolladores y artistas para medir datos de sensor biométrico para fines de experimentación, diversión y prueba proporcionando una alternativa barata y abierta en comparación con las soluciones propietarias  debido al precio prohibitivo de llas profesionales usadas por el  mercado médico. Precisamente por esta razon, como la plataforma no tiene certificaciones médicas no puede  ser utilizada para monitorizar pacientes críticos que necesitan un control médico preciso o aquellos cuyas condiciones deben medirse con precisión para un diagnóstico profesional ulterior.
Gracias a la comunidad Arduino y Raspberry  Pi ,es  posible  una rápida prueba de concepto y servir de  base de una nueva era de productos médicos de código abierto.

El paquete que vamos a utilizar en este tutorial se basa en la plataforma de Sensor de eHealth de Cooking Hacks. La E-Health protector del Sensor es totalmente compatible con las nuevas y viejas versiones de Arduino USB, Duemilanove y Mega y Rsapberry.

  • 8 sensores médicos no invasiva + 1 invasoras
  • Almacenamiento y uso de las mediciones de glucosa.
  • Monitoreo de señales ECG.
  • Señales de monitorización EMG.
  • Control de flujo de aire del paciente.
  • Control de flujo de aire del paciente.
  • Datos de la temperatura del cuerpo.
  • Medidas de respuesta galvánica de la piel.
  • Detección de la posición del cuerpo.
  • Funciones de pulso y oxígeno.
  • Dispositivo de control de la presión arterial.
  • Múltiples sistemas de visualización de datos.
  • Compatible con todos dispositivos UART.

Características eléctricas:

La placa puede ser alimentada por el PC o por una fuente externa. Algunos de los puertos USB en los ordenadores no son capaces de dar toda la corriente para que el módulo pueda  trabajar, si el módulo tiene problemas cuando funcione, se puede utilizar una fuente externa (12V – 2A) en el Arduino/RasberryPi

El escudo

 

Escudo de e-Health sobre Raspberry Pi

Para conectar el protector del Sensor e-Health para Raspberry Pi es necesario un  adaptador que haga de puente de conexión .

La idea detrás del  puente de conexión Arduino shields es permitir utilizar cualquiera de los escudos, placas y módulos diseñados para Arduino en Raspberry Pi. También incluye la posibilidad de conectar sensores analógicos y digitales, utilizando el mismo pinout de Arduino pero con la potencia y capacidades de Raspberry Pi

La conexión puente es compatible con Raspberry Pi, Raspberry Pi (modelo B +), Raspberry Pi 2 y el Raspberry Pi 3.

Para hacer completa la compatibilidad han creado la biblioteca de arduPi que permite el uso de frambuesa con el mismo código utilizado en Arduino. Para ello, han implementado funciones de conversión de modo que usted puede controlar de la misma manera como en Arduino la entrada-salida interfaces: i2C, SPI, UART, analógica, digital, en Raspberry Pi.

Vamos a resumir lo que podemos hacer con este escudo junto con la biblioteca de arduPi:

ADVERTENCIAS:

  • Los módulos LCD, esfigmomanómetro y comunicación utilizan el puerto UART y no pueden trabajar al mismo tiempo.
  • El glucómetro es ahora compatible con otros dispositivos UART y tiene su propio conector. Pero no puede trabajar con el esfigmomanómetro conectado.
  • El sensor de EMG y el ECG no pueden trabajar al mismo tiempo. Utilizar los puentes integrados en el tablero para utilizar uno u otro
  • Para utilizar el sensor de EMG, usted tiene que tener los puentes en la posición de EMG. Para utilizar el sensor de ECG, usted tiene que tener los puentes en la configuración de ECG.

El escudo

Versión 2 del escudo:

  • Esta versión incluye un conmutador Digital para activar/desactivar la toma de corriente para módulos inalámbricos usando GPIO23 (Digital Pin 3).

Versión 1 del escudo:

  • 8 pines digitales.
  • Conector para módulos inalámbricos.
  • Pernos de RX/TX.
  • pasadores de i2C (SDA, SCL).
  • Pasadores de SPI (SCK MISO, MOSI, CS). Puede utilizarse también como GPIO.
  • 8 canales convertidor analógico a digital.
  • Interruptor para activar la fuente de alimentación externa.

 La biblioteca: arduPi

arduPi es una librería C++ que permite escribir programas para Raspberry Pi como si estuvieras escribiendo un programa de arduino. Todas las funciones para el control de comunicaciones del puerto serie, i2C, SPI y GPIO pins están disponibles mediante la sintaxis de arduino.

arduPi ha sido probado en una distribución Raspbian. Para grabar una imagen de Raspbian a la tarjeta SD se pueden descargar los NOOBS aquí y siga estas instrucciones.

Una vez instalado Raspbian, descargue e instale arduPi biblioteca en una carpeta nueva, por ejemplo: “página de inicio/pi/ardupi”

Para Rasberry Pi:

wget http://www.cooking-hacks.com/media/cooking/images/documentation/raspberry_arduino_shield/raspberrypi.zip && unzip raspberrypi.zip && cd cooking/arduPi && chmod +x install_arduPi && ./install_arduPi && rm install_arduPi && cd ../..
Para Raspberry Pi 2 y 3:
wget http://www.cooking-hacks.com/media/cooking/images/documentation/raspberry_arduino_shield/raspberrypi2.zip && unzip raspberrypi2.zip && cd cooking/arduPi && chmod +x install_arduPi && ./install_arduPi && rm install_arduPi && cd ../..

Descargar arduPi biblioteca para Raspberry Pi

Descargar biblioteca de arduPi de frambuesa Pi 2 y 3

Usted puede encontrar una biblioteca de cambios aquí.

Funciones generales de Arduino:

  • Delay()
  • delayMicroseconds()
  • Millis()
  • pinMode()
  • digitalWrite()
  • digitalRead()
  • analogRead() (en pines de A0 a A7. Ejemplo: analogRead(5) leerá A5)
  • shiftIn()
  • shiftOut()
  • attachInterrupt() *
  • detachInterrupt()

[*] Podemos detectar interrumpe el ascenso y descenso. Cualquier pin digital (de 2 a 13) puede ser utilizado en attachInterrupt(). Por ejemplo, si queremos estar al tanto de eventos de levantamiento en el pin 6 que podemos hacer attachInterrupt(6,function_to_call,RISING).

Biblioteca  serie:

  • available()
  • begin()
  • end()
  • Flush()
  • Peek()
  • Print()
  • println()
  • Read()
  • readBytes()
  • readBytesUntil()
  • Find()
  • findUntil()
  • parseInt()
  • parseFloat()
  • setTimeout()
  • Write()

Biblioteca wire:

  • begin()
  • requestFrom()
  • beginTransmission()
  • endTransmission()
  • Write()
  • Read()

Biblioteca SPI:

  • begin()
  • end()
  • setBitOrder()
  • setClockDivider()
  • setDataMode()
  • Transfer()

Uso de la biblioteca arduPi:

En la carpeta de biblioteca encontrarás 3 archivos: arduPi.cpp, arduPi.h y arduPi_template.cpp
el archivo arduPi_template.cpp está destinado a ser utilizado como punto de partida para crear programas con el mismo comportamiento como un programa de arduino.

Aquí puede ver el código de plantilla:

//Include arduPi library
    #include "arduPi.h"

    /*********************************************************
     *  IF YOUR ARDUINO CODE HAS OTHER FUNCTIONS APART FROM  *
     *  setup() AND loop() YOU MUST DECLARE THEM HERE        *
     * *******************************************************/

    /**************************
     * YOUR ARDUINO CODE HERE *
     * ************************/

    int main (){
        setup();
        while(1){
            loop();
        }
        return (0);
    }

Como se puede ver en la función main() la función setup() es llamada una vez y luego la función loop() se llama contínuamente hasta que el programa se ve obligado a terminar.

Ya sea si están empezando a escribir un nuevo programa, o si usted tiene un programa de arduino escrito que utiliza las funciones portadas puede utilizar la plantilla (ardupi_template.cpp) y poner el código de arduino donde dice: el código de ARDUINO aquí. Recuerde que el programa que está escribiendo un programa C++ para que todas las bibliotecas de C++ pueden utilizarse.

También recordar, como se puede leer en la plantilla que si el código de arduino utiliza otras funciones setup() y loop() debe declararlos en el área indicada.

 Habilitación de Interfaces:

Los siguientes pasos han sido probados con Raspbian Jessie: 4.4.9 (Linux versión 4.4.9-v7+ ([email protected]) (gcc versión 4.9.3 (crosstool-NG crosstool-ng-1.22.0-88-g8460611)) #884 SMP el viernes 6 de mayo 17:28:59 BST 2016)

Raspberry Pi 2:

  • Abrir un terminal en la Raspberry Pi, o conecte al Raspberry Pi a través de SSH.
  • Abra el archivo /boot/config.txt: sudo nano /boot/config.txt
  • Agregue las líneas siguientes al archivo:
#enable uart interface
enable_uart=1

#enable spi interface
dtparam=spi=on

#enable i2c interface
dtparam=i2c_arm=on
  • Presione CTRL + X para salir y guardar el archivo.
  • Actualizar el sistema operativo con los últimos parches.
sudo apt-get update
sudo apt-get upgrade
  • Reiniciar la Raspberry Pi.
sudo reboot

Raspberry Pi 3:

  • Abrir un terminal en la Raspberry Pi, o conecte al Raspberry Pi a través de SSH.
  • Abra el /boot/config.txt archivo <:sudo nano /boot/config.txt
  • Agregue las líneas siguientes al archivo:
#map mini-UART to internal bluetooth an free-up main UART to handle CookingHacks modules
dtoverlay=pi3-miniuart-bt

#enable uart interface
enable_uart=1

#enable spi interface
dtparam=spi=on

#enable i2c interface
dtparam=i2c_arm=on
  •  Presione CTRL + X para salir y guardar el archivo.
  • Abra el archivo /boot/cmdline.txt:sudo nano /boot/cmdline.txt
  • Este archivo contiene algo similar a esto (el contenido puede variar):
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait
  • Eliminar los parámetros que hacen referencia al puerto serie UART (ttyAMA0):
dwc_otg.lpm_enable=0  console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait ip=192.168.1.160:::255.255.255.0
  • Presione CTRL + X para salir y guardar el archivo.
  • Actualizar el sistema operativo con los últimos parches.
sudo apt-get update
sudo apt-get upgrade
  • Reiniciar la Raspberry Pi.
sudo reboot
    

Ejecución de su programa

Para ejecutar el programa debe tener los permisos adecuados para utilizar GPIO (/ dev/mem debe accederse en la frambuesa). Puede ejecutar el programa con sudo:

sudo ./MY_PROGRAM

 Circuitos básicos.

ADVERTENCIA: los niveles de voltaje GPIO 3.3 V y no 5 V tolerantes. No hay ninguna protección de sobretensión en el tablero. Entradas digitales utilizan un nivel de lógica de 3V3 y no son tolerantes de niveles 5V, como se podría encontrar en un Arduino 5V alimentado.Tenga extrema precaución cuando trabaje con GPIO, puede dañar su Raspberry Pi, su equipo y potencialmente a sí mismo y otros. Si lo hace es bajo su propio riesgo!

4.1 GPIO de entrada

Periféricos GPIO varían bastante. En algunos casos, son muy simples, por ejemplo un grupo de pines pueden activarse como un grupo a la entrada o salida. Los voltajes de entrada y de salida son por lo general limitado a la   tensión de alimentación del dispositivo con los GPIOs por lo que pueden resultar dañados por una mayor tensión.

Algunos GPIOs tienen 5 entradas tolerantes V: incluso en los voltajes de la fuente baja, el dispositivo puede aceptar 5V sin daño.

Para Raspberry Pi, presentamos un ejemplo de cómo adaptar el nivel de voltaje de una medida de sensor de 5V para evitar posibles daños.

Componentes para este ejemplos y circuito de adaptación de tensión pueden fundados en el Starter Kit para Raspberry Pi.

Cuando un pin GPIO se configura como una entrada con un ejemplo de botón básico, podemos tener estos problemas de incompatibilidad de voltajes.

Este circuito es malo porque cuando usted presiona el botón de la entrada GPIO está conectada a 5 voltios, por lo tanto nuestro dispositivo puede dañarse.

Sin embargo, esto puede evitarse utilizando simplemente una resistencia en el cable del pulsador. El valor de la resistencia se determina por la corriente de la salida de los pines GPIO (la corriente por el circuito solía para leer el pin) y la cantidad de caída de voltaje que crea como resultado de ello. Con el resistor de 5K se obtiene 3, 3V en lo GPIO de entrada.

Vgpio = 5V· (10K/(10K+5K)) = 3, 3V

 medición del Sensor GPIO

Tenemos el mismo problema si utilizamos un sensor funcionando a 5 voltios.

Aquí está un ejemplo usando un sensor PIR.

Como se muestra en la imagen, utilizamos el mismo divisor resistivo utilizado para adaptar el nivel de tensión.

 ADC.

El escudo incluye a un ADC de 12b de la resolución que permite para conectar cualquier sensor a frambuesa con mayor precisión que Arduino. La comunicación entre la Raspberry Pi  y el ADC del escudo se realiza vía i2C.

La información de cada canal se puede obtener dos bytes de lectura de i2C, pero previamente un byte (que corresponde a la dirección de canal) debe enviar a través de i2C dependiendo del canal que queremos seleccionar. Aquí está una lista con las direcciones de canal:

Canal Dirección
0 0xDC
1 0x9C
2 0xCC
3 0x8C
4 0xAC
5 0xEC
6 0xBC
7 0xFC

Veremos un ejemplo de un programa que lee cada canal continuamente esperando 5 segundos entre repeticiones.

Con un cable de conexión el pin de 5V con algunos de los pines del ADC un valor cerca de 5.000000 debe leerse.

Todos los ejemplos en esta guía utilizan la biblioteca arduPi

//Include arduPi library 
#include "arduPi.h" 

char selected_channel[1];
char read_values[4];

int channel_0 = 0; 
int channel_1 = 0; 
int channel_2 = 0; 
int channel_3 = 0; 
int channel_4 = 0; 
int channel_5 = 0; 
int channel_6 = 0; 
int channel_7 = 0; 

float analog_0 = 0.0; 
float analog_1 = 0.0; 
float analog_2 = 0.0; 
float analog_3 = 0.0; 
float analog_4 = 0.0; 
float analog_5 = 0.0; 
float analog_6 = 0.0; 
float analog_7 = 0.0; 

void setup() 
{ 
  Wire.begin(); // join i2C bus (address optional for master) 
} 

void loop() 
{ 
  // channel 0 
  Wire.beginTransmission(8); 
  selected_channel[0] = 0xDC;
  Wire.read_rs(selected_channel, read_values, 2);
  Wire.read_rs(selected_channel, read_values, 2);
  channel_0 = int(read_values[0])*16 + int(read_values[1]>>4); 
  analog_0 = channel_0 * 5.0 / 4095.0;
  printf("Channel 0:\n");
  printf("Digital value = %d / Analog value = %fV\n\n", channel_0, analog_0); 


  // channel 1 
  Wire.beginTransmission(8); 
  selected_channel[0] = 0x9C;
  Wire.read_rs(selected_channel, read_values, 2);
  Wire.read_rs(selected_channel, read_values, 2);
  channel_1 = int(read_values[0])*16 + int(read_values[1]>>4); 
  analog_1 = channel_1 * 5.0 / 4095.0;
  printf("Channel 1:\n");
  printf("Digital value = %d / Analog value = %fV\n\n", channel_1, analog_1); 
  
 
  // channel 2 
  Wire.beginTransmission(8); 
  selected_channel[0] = 0xCC;
  Wire.read_rs(selected_channel, read_values, 2);
  Wire.read_rs(selected_channel, read_values, 2);
  channel_2 = int(read_values[0])*16 + int(read_values[1]>>4); 
  analog_2 = channel_2 * 5.0 / 4095.0;
  printf("Channel 2:\n");
  printf("Digital value = %d / Analog value = %fV\n\n", channel_2, analog_2); 
  
  
  // channel 3 
  Wire.beginTransmission(8); 
  selected_channel[0] = 0x8C;
  Wire.read_rs(selected_channel, read_values, 2);
  Wire.read_rs(selected_channel, read_values, 2);
  channel_3 = int(read_values[0])*16 + int(read_values[1]>>4); 
  analog_3 = channel_3 * 5.0 / 4095.0; 
  printf("Channel 3:\n");
  printf("Digital value = %d / Analog value = %fV\n\n", channel_3, analog_3); 
  
  
  // channel 4 
  Wire.beginTransmission(8); 
  selected_channel[0] = 0xAC;
  Wire.read_rs(selected_channel, read_values, 2);
  Wire.read_rs(selected_channel, read_values, 2);
  channel_4 = int(read_values[0])*16 + int(read_values[1]>>4); 
  analog_4 = channel_4 * 5.0 / 4095.0; 
  printf("Channel 4 (vertical header):\n");
  printf("Digital value = %d / Analog value = %fV\n\n", channel_4, analog_4); 
  
  
  // channel 5 
  Wire.beginTransmission(8); 
  selected_channel[0] = 0xEC;
  Wire.read_rs(selected_channel, read_values, 2);
  Wire.read_rs(selected_channel, read_values, 2);
  channel_5 = int(read_values[0])*16 + int(read_values[1]>>4); 
  analog_5 = channel_5 * 5.0 / 4095.0; 
  printf("Channel 5 (vertical header):\n");
  printf("Digital value = %d / Analog value = %fV\n\n", channel_5, analog_5); 
  
  
  // channel 6 
  Wire.beginTransmission(8); 
  selected_channel[0] = 0xBC;
  Wire.read_rs(selected_channel, read_values, 2);
  Wire.read_rs(selected_channel, read_values, 2);
  channel_6 = int(read_values[0])*16 + int(read_values[1]>>4); 
  analog_6 = channel_6 * 5.0 / 4095.0; 
  printf("Channel 6 (vertical header):\n");
  printf("Digital value = %d / Analog value = %fV\n\n", channel_6, analog_6); 
  
  
  // channel 7 
  Wire.beginTransmission(8); 
  selected_channel[0] = 0xFC;
  Wire.read_rs(selected_channel, read_values, 2);
  Wire.read_rs(selected_channel, read_values, 2);
  channel_7 = int(read_values[0])*16 + int(read_values[1]>>4); 
  analog_7 = channel_7 * 5.0 / 4095.0;
  printf("Channel 7 (vertical header):\n");
  printf("Digital value = %d / Analog value = %fV\n\n", channel_7, analog_7); 
  
  
  printf("***********************************\n"); 



  delay(1000); 

} 


int main (){ 
    setup(); 
    while(1){ 
        loop(); 
    } 
    return (0); 
}
                

Aquí está la salida de este programa que se conecta al pin de 5V de la Raspberry  Pia la entrada analógica 0:

UART.

Acceso al UART con arduPi biblioteca es tan simple como hacerlo con Arduino.

Necesita incluir arduPi.h en el código y crear una instancia de clase SerialPi nombrarlo serie.

Nombre de la instancia como serie le permite utilizar la sintaxis de arduino. (Todo esto está ya hecho si utilizas la plantilla proporcionada para crear sus programas).

Las funciones disponibles son:

  • Serial.Available()
  • Serial.Begin()
  • Serial.end()
  • Serial.Flush()
  • Serial.Peek()
  • Serial.Print()
  • Serial.println()
  • Serial.Read()
  • Serial.readBytes()
  • Serial.readBytesUntil()
  • Serial.Find()
  • Serial.findUntil()
  • Serial.parseInt()
  • Serial.parseFloat()
  • Serial.setTimeout()
  • Serial.Write()

Todas estas funciones tienen la misma funcionalidad que el arduino unos. Puede encontrar más información en:http://Arduino.CC/en/Reference/serial

Un ejemplo de código que se pueden encontrar en el tutorial de frambuesa Pi XBee acess el UART

 i2C.

Un ejemplo de uso de i2C puede encontrarse en la sección de ADC .

Aquí mostramos otro ejemplo usando lo BlinkM RGB i2C controlado dirigido.

BlinkM utiliza una alta calidad, poder más elevado LED RGB y un pequeño Microcontrolador AVR para permitir que un usuario de una interfaz i2C simple digital control de un LED RGB.

En el ejemplo vamos a cambiar el color led usando fade transiciones y también cambiando directamente. Más información sobre lo LED y los comandos que podemos enviar a él puede encontrarse en la hoja de datos.

Conectar la clavija (-) del led con el pin GND del escudo.

Conecta (+) del pin del led con el pin de 5V de la pantalla.

Conectar la clavija d del led con el pin SDA del escudo.

Conectar la clavija c del led con el pin SCL del escudo.

Aquí está el código:

/*  
 *  Raspberry Pi to Arduino Shields Connection Bridge
 *  
 *  Copyright (C) Libelium Comunicaciones Distribuidas S.L. 
 *  http://www.libelium.com 
 *  
 *  This program is free software: you can redistribute it and/or modify 
 *  it under the terms of the GNU General Public License as published by 
 *  the Free Software Foundation, either version 3 of the License, or 
 *  (at your option) any later version. 
 *  a
 *  This program is distributed in the hope that it will be useful, 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 *  GNU General Public License for more details.
 *  
 *  You should have received a copy of the GNU General Public License 
 *  along with this program.  If not, see http://www.gnu.org/licenses/. 
 *  
 *  Version:           2.0
 *  Design:            David Gascón 
 *  Implementation:    Jorge Casanova & Luis Martín
 */


//Include arduPi library
#include "arduPi.h"


void setup(){
    Wire.begin();
    Wire.beginTransmission(9);
    Wire.write('o'); //End the current Light script
    Wire.endTransmission();
}

void loop(){
    for (int i=0;i < 5;i++){
        Wire.beginTransmission(9);
        Wire.write('n'); //Change to color
        Wire.write(byte(0xff)); //Red component
        Wire.write(byte(0x00)); //Green component
        Wire.write(byte(0x00)); //Blue component
        Wire.endTransmission();

        delay(500);
        
        Wire.beginTransmission(9);
        Wire.write('n'); //Change to color
        Wire.write(byte(0x00)); //Red component
        Wire.write(byte(0x00)); //Green component
        Wire.write(byte(0xff)); //Blue component
        Wire.endTransmission();
        
        delay(500);
    }
    
    for (int i=0;i < 10;i++){
        Wire.beginTransmission(9);
        Wire.write('c'); //Fade to color
        Wire.write(byte(0xff)); //Red component
        Wire.write(byte(0x00)); //Green component
        Wire.write(byte(0x5a)); //Blue component
        Wire.endTransmission();

        delay(150);
        
        Wire.beginTransmission(9);
        Wire.write('c'); //Fade to color
        Wire.write(byte(0x55)); //Red component
        Wire.write(byte(0x20)); //Green component
        Wire.write(byte(0x5a)); //Blue component
        Wire.endTransmission();

        delay(150);
    }
}

int main (){
    setup();
    while(1){
        loop();
    }
    return (0);
}

Este código alternativo de rojo a azul cinco veces y luego hacer unas transiciones suaves entre colores violáceos.

 SPI.

Es posible comunicar con dispositivos SPI usando las funciones arduPi.

En este ejemplo utilizamos las funciones SPI para imprimir mensajes en la ST7920 LCD12864 (LCD SPI)

En primer lugar, tenemos que poner el interruptor de la pantalla LCD en modo SPI.

Ahora procedemos con la conexión entre el LCD y el Raspberry Pi a arduino shield:

VCC de la LCD a 5v del escudo

GND de la LCD a GND del escudo

SCK de lo LCD a SCK del escudo

SID de la LCD a MOSI del escudo

CS de la pantalla LCD al pin 8 del escudo

Como puedes ver estamos utilizando el número pin 8 del escudo frambuesa Pi como chip select. Así que cuando tenemos que seleccionar la pantalla LCD como el dispositivo de destino para la comunicación SPI tenemos poner el pin 8 a alta.

Aquí está el código

/*  
 *  Raspberry Pi to Arduino Shields Connection Bridge
 *  
 *  Copyright (C) Libelium Comunicaciones Distribuidas S.L. 
 *  http://www.libelium.com 
 *  
 *  This program is free software: you can redistribute it and/or modify 
 *  it under the terms of the GNU General Public License as published by 
 *  the Free Software Foundation, either version 3 of the License, or 
 *  (at your option) any later version. 
 *  a
 *  This program is distributed in the hope that it will be useful, 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 *  GNU General Public License for more details.
 *  
 *  You should have received a copy of the GNU General Public License 
 *  along with this program.  If not, see http://www.gnu.org/licenses/. 
 *  
 *  Version:           2.0
 *  Design:            David Gascón 
 *  Implementation:    Jorge Casanova & Luis Martín
 */

//Include arduPi library
#include "arduPi.h"

int latchPin = 8;
unsigned char char1[]=" Cooking Hacks  ";
unsigned char char2[]="  SPI LCD for   ";
unsigned char char3[]="  Raspberry Pi  ";

void initialise();
void displayString(int X,int Y,unsigned char *ptr,int dat);
void writeCommand(int CMD);
void writeData(int CMD);
void writeByte(int dat);
void clear();

void setup(){
    SPI.begin();
    SPI.setBitOrder(MSBFIRST);
    SPI.setDataMode(SPI_MODE0);
    SPI.setClockDivider(SPI_CLOCK_DIV128);

    initialise();
}

void loop(){
    displayString(0,0,char1,16);
    delay(2000);
    clear();
    displayString(1,0,char2,16);
    displayString(2,0,char3,16);
    delay(2000);
    clear();
}

void initialise(){
    pinMode(latchPin, OUTPUT);     
    digitalWrite(latchPin, LOW);

    delayMicroseconds(80);

    writeCommand(0x30);
    writeCommand(0x0c);
    writeCommand(0x01);
    writeCommand(0x06);
}


void displayString(int X,int Y,unsigned char *ptr,int dat){
    int i;

    switch(X){
        case 0:  Y|=0x80;break;

        case 1:  Y|=0x90;break;

        case 2:  Y|=0x88;break;

        case 3:  Y|=0x98;break;

        default: break;
    }

    writeCommand(Y);

    for(i=0;i < dat;i++){ 
        writeData(ptr[i]);
    }

}

void writeCommand(int CMD){
    int H_data,L_data;
    H_data = CMD;
    H_data &= 0xf0;
    L_data = CMD;
    L_data &= 0x0f;
    L_data <<= 4;
    writeByte(0xf8);
    writeByte(H_data);
    writeByte(L_data);
}

void writeData(int CMD){
    int H_data,L_data;
    H_data = CMD;
    H_data &= 0xf0;
    L_data = CMD;
    L_data &= 0x0f;
    L_data <<= 4;
    writeByte(0xfa);
    writeByte(H_data);
    writeByte(L_data);
}

void writeByte(int dat){
    digitalWrite(latchPin, HIGH);
    delayMicroseconds(80);
    SPI.transfer(dat);
    digitalWrite(latchPin, LOW);
}

void clear(){
    writeCommand(0x30);
    writeCommand(0x01);
}


int main (){
    setup();
    while(1){
        loop();
    }
    return (0);
}

Este programa mostrará los mensajes “Cooking Hacks” y “SPI LCD para Raspberry Pi” con un retraso de 2 segundos en el medio.

 Mas ayuda

Se puede obtener ayuda en la sección específica creada en este  foro.

Fuente cooking-hacks

Ajustes efecto Ambilight con Raspberry Pi


En un post anterior   vimos como  emular un sistema “ambiligt”  usando únicamente una Raspberry Pi 2  o 3  equipada con una distribución compatible ( Openelec)   y el software de control de  leds Hyperion, con el que podemos conseguir todo hecho  gracias a la distribución Lightberry. 
Además de controlar los leds, la combinación de la Raspberry Pi junto con Kodi constituye un excelente Media Center capaz de reproducir todo tipo de contenidos de audio, vídeo e imagen, de reproducir nuestra colección multimedia almacenada en el PC o en un disco externo, e incluso de reproducir directamente contenidos on-line si se posee  las  subscripción en el hogar  y por supuesto cuenta con la conexión  de suficiente ancho de banda como por ejemplo con ftth.

 La propuesta se completa  con una económica  capturadora  de vídeo  que permitirá  que la emulación no solo funcione con el contenido multimedia que reproducimos desde la Raspberry Pi  , también  responderá a la señal de video externa que le introduciremos  procedente de una fuente externa de video como por ejemplo puede ser la señal de video procedente de un descodificador de Imagenio .

 

Por desgracia a veces la respuesta del Hypercon que  produce en la tira de leds ws2801 no se corresponde  con la imagen capturada , señal que el el fichero obtenido por el asistente (hypercon.config.son ) deberíamos mejorarlo ¿pero cómo?
Pues gracias al programa en java  HyperCon   podemos indicar  la posición exacta de nuestros leds en el caso de que la configuración realizada desde el menu de Hyperion Config Creator   no haya  ofrecido un resultado esperado .

Este software permite entre otras cosas establecer el número de leds que hay que controlar, la posición del primer led, la orientación, el chipset, etc…permitiendo un ajuste muy preciso del comportamiento de cada led de forma individual

Antes de seguir, quiero aclarar para que HyperCon.jar funcione, es necesario tener instalada la ultima version de  Java ,asi que si no la tiene  instalada puede descargarlo aquí

Recordamos que con el menu basico de  Hyperion Config Creator   podemos  definir la instalación de nuestra  Lightberry en nuestra TV   definiendo simplemente 5 parámetros:
  • Tipo de tira de leds: en nuestro casi   podemos elegir  Lightberry HD for Rasperry pi (ws2801)
  • Numero de leds horizontales ( deben ser idéntico numero de leds  en ambos lados)
  • Numero de leds  verticales   ( deben ser idéntico numero de leds  en ambos lados)
  • Donde comienza el primer led (Right/button corner and goes up)
  • Confirmación  de  que tenemos un capturadora de TV conectada

Puede ocurrir que aunque  veamos el arco iris con la configuración obtenida  no se correspondan los colores de los leds con los de la imagen , indicio de que debemos ajustar la configuración manualmente  de forma mas  precisa  por medio del archivo hyperion.config.json  generado por el asistente  de un modo mas exhaustivo usando  el programa en java  HyperCon  o bien de forma manual.

Obviammente para ejecutar dicha aplicacion, como se ha mencionado ,debemos tener instalado en nuestro equipo java

Una vez descomprimido el  pquete de Hypercon , simplemente ejecutaremos el archivo HyperCon_Sssj.jar  ( este fichero estará por ejemplo  en la ruta C:\Users\xx\Downloads\hypercon-master\hypercon-master\debug\)

hypercon

Una vez lanzado el hypercon veremos el interfaz  gráfica con una configuración por defecto que debemos personalizar   con respecto a nuestra instalación.

Debe recodar donde puso el primer led (el que está al lado del conector hembra con los jumpwires).

pantalla

En este ejemplo personal ,el primer led   ha quedado en la esquina inferior derecha cuando se mira la TV de frente ( o a la izquierda abajo si ve por atras), así que el recorrido de los leds va desde la esquina inferior  derecha hasta la izquierda (sentido horario).

Configuramos de este modo:

  •  Direction: clockwise
  •  Led top corner: false
  •  Led bottom corner: false
  •  Horizontal #: 28
  •  Vertical #: 14
  •  Bottom Gap: 0
  •  1st Led offset: -42

En nuestro caso tiene que salir un Led count = 84 (o el número de leds que haya instalado).

Si en su configuración  empezó  por la otra esquina, cambie el desplegable  direction.

En el caso del ejemplo  no se han situado leds en las esquinas, así que hay que especificar  top/bottom a false.

En bottom gap hay que poner el mismo numero de leds que en la parte superior, así lo puede dejar “vacío”.

Muy importante : en  el desplegable  1st Led offset hay que ir aumentando o disminuyendo hasta que el led número 0 quede en la esquina inicial (en este ejemplo en la esquina inferior derecha).

pantalla.png

Una vez configurado según los leds que tenga, vaya a la pestaña External y en el apartado Effects Engine Directory  escriba lo siguiente: /storage/hyperion/effects lo cual  hará que hyperion encuentre el directorio de los efectos.

Asimismo puede ajustar el tiempo en ms que permanezca el efecto al arrancar  en Length ( por defetco 9000ms)

rain

Una vez configurado haz clic en el botón Create Hyperion Configuration para crear el fichero de configuración hyperion.config.json que hay que copiar  en la Raspberry PI en el directorio /storage/.config     (   no confundir  con  la ruta /storage/hyperion/configuration/)

hyperion .

Una vez copiado el fichero  hyperion.config.json en storage/.config reinicie la RPI y si todo ha ido bien deberías ver un efecto de arcoiris.

Configuracion inicial

La configuración del dispositivo contiene los siguientes campos:

  •  ‘name’: El nombre de usuario del dispositivo (sólo se utiliza para fines de visualización)
  •  ‘type’: El tipo del dispositivo o leds (los tipos conocidos por ahora son ‘ws2801’, ‘ldp8806’, ‘ ‘lpd6803’, ‘sedu’, ‘adalight’, ‘lightpack’, ‘test’ y ‘none’)
  • output : La especificación de salida depende del dispositivo seleccionado. Esto puede ser, por ejemplo, el especificador de dispositivo, número de serie del dispositivo o el nombre del archivo de salida
  • rate’: El baudrate de la salida al dispositivo
  • colorOrder’: El orden de los bytes de color (‘rgb’, ‘rbg’, ‘bgr’, etc.).Es muy  importante destacar que si no ajustamos este valor  se pueden cambiar el borde de los colores .Por ejemplo muchas tiran son del t tipo BGR, lo cual significa que si dejamos marcado por defecto en RGB  cambiará en todas las visualizaciones el rojo por el azul y biceversa

Ejemplo de configuración  de la sección  device correspondiente al post anterior  :

“device”: {
“colorOrder”: “bgr”,
“rate”: 500000,
“type”: “ws2801”,
“name”: “MyPi”,
“output”: “/dev/spidev0.0”
},

Color

Podemos manipular la  configuración de manipulación de color utilizada para ajustar los colores de salida a un entorno específico.
La configuración contiene una lista de transformaciones de color. Cada transformación contiene  los  siguientes campos:

  •  ‘id’: El identificador único de la transformación de color (p. Ej. ‘Device_1’)
  • ‘leds’: Los índices (o índices) de los leds a los que se aplica esta transformación de color  (por ejemplo, ‘0-5, 9, 11, 12-17’). Los índices son basados ​​en cero.
  •  ‘hsv’: La manipulación en el dominio de colores Valor-Saturación-Valor con lo siguiente  parámetros de ajuste:
    •  ‘saturationGain’ El ajuste de ganancia de la saturación
    • ‘valueGain’ El ajuste de ganancia del valor
  • ‘rojo’ / ‘verde’ / ‘azul’: La manipulación en el dominio de color Rojo-Verde-Azul con los  siguientes parámetros de sintonización para cada canal:
    •  ‘umbral’ El valor de entrada mínimo requerido para que el canal esté encendido
      (más cero)
    •  ‘gamma’ El factor de corrección de la curva gamma
    •  ‘blacklevel’ El valor más bajo posible (cuando el canal es negro)
    •  ‘whitelevel’ El valor más alto posible (cuando el canal es blanco)

Al lado de la lista con transformaciones de color también hay una opción de suavizado.
‘Suavizado’: Suavizado de los colores en el dominio del tiempo con la siguiente sintonización  parámetros:

  • ‘type’ El tipo de algoritmo de suavizado (‘linear’ o ‘none’)
  •  ‘time_ms’ La constante de tiempo para el algoritmo de suavizado en milisegundos
  •  ‘updateFrequency’ La frecuencia de actualización de los leds en Hz

Ejemplo de configuración  de la seccion color  correspondiente al post anterior  

“color”: {
“transform”: [
{
“blue”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0.0,
“whitelevel”: 0.84999999999999998,
“gamma”: 2.0
},
“leds”: “0-81”,
“hsv”: {
“saturationGain”: 1.0,
“valueGain”: 1.0
},
“green”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0.0,
“whitelevel”: 0.84999999999999998,
“gamma”: 2.0
},
“id”: “leds”,
“red”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0.0,
“whitelevel”: 1.0,
“gamma”: 2.0
}
},
{
“blue”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0,
“whitelevel”: 0,
“gamma”: 2.0
},
“leds”: “82-149”,
“hsv”: {
“saturationGain”: 0,
“valueGain”: 0
},
“green”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0,
“whitelevel”: 0,
“gamma”: 2.0
},
“id”: “ledsOff”,
“red”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0,
“whitelevel”: 0,
“gamma”: 2.2000000000000002
}
}
],

Leds

La configuración para cada led individual. Contiene la especificación del área  promediado de una imagen de entrada para cada led para determinar su color. Cada elemento de la lista  contiene los siguientes campos:

  •  index: El índice del led. Esto determina su ubicación en la cadena de leds; cero
    Siendo el primer led.
  •  hscan: La parte fraccional de la imagen a lo largo de la horizontal utilizada para el promedio  (mínimo y máximo inclusive)
  •  vscan: La parte fraccional de la imagen a lo largo de la vertical utilizada para el promedio  (mínimo y máximo inclusive)
  •  ‘updateFrequency’ La frecuencia de actualización de los leds en Hz


“leds” :
[
{
“index” : 0,
“hscan” : { “minimum” : 0.0000, “maximum” : 0.0500 },
“vscan” : { “minimum” : 0.0000, “maximum” : 0.0800 }
},
{
“index” : 1,
“hscan” : { “minimum” : 0.0000, “maximum” : 0.0357 },
“vscan” : { “minimum” : 0.0000, “maximum” : 0.0800 }
},

…………………..

{
“index” : 87,
“hscan” : { “minimum” : 0.0000, “maximum” : 0.0500 },
“vscan” : { “minimum” : 0.0000, “maximum” : 0.0714 }
}
],

Configuracion Bordes

La configuración de borde negro, contiene los siguientes elementos:

  •  enable: true si el detector debe ser activado
  •  Umbral: valor por debajo del cual un píxel se considera negro (valor entre 0,0 y 1,0)
    “Blackborderdetector”:

Ejemplo de configuración  de la seccion blackborderdetector correspondiente al post anterior  

“blackborderdetector”: {
“threshold”: 0.10000000000000001,
“enable”: true
},

EFECTOS

La configuración del motor de efectos, contiene los siguientes elementos:

  • paths: Una matriz con ubicaciones absolutas de directorios con efectos
  • bootsequence: El efecto seleccionado como ‘secuencia de arranque’. Es importante cambiar a su valor en OpenElec  “/storage/hyperion/effects”

Ejemplo de configuración sección  effects correspondiente al post anterior  :

“effects”: {
“paths”: [
“/storage/hyperion/effects”
]
},

CAPTURADORA

La configuración del captador de tramas, contiene los siguientes elementos:

  •  width: El ancho de los marcos grabados [pixels]
  •  height: La altura de los marcos grabados [pixels]
  • frequency_Hz: La frecuencia de la toma de marco [Hz]

La configuración de la conexión XBMC utilizada para habilitar y deshabilitar el captador de tramas. Contiene los siguientes campos:

  •  xbmcAddress: La dirección IP del host XBMC
  •  xbmcTcpPort: El puerto TCP del servidor XBMC
  • grabVideo: Flag  que indica que el captador de fotogramas está activado (true) durante la reproducción de vídeo
  •  grabPictures: Flag que indica que el captador de fotogramas está activado (true) durante la presentación de imágenes
  •  grabAudio: Flag que indica que el captador de fotogramas está activado (true) durante la reproducción de audio
  •  grabMenu: Flag que indica que el captador de fotogramas está activado (true) en el menú XBMC
  •  grabScreensaver: Flag que indica que el captador de fotogramas está activado (true) cuando XBMC está en el salvapantallas
  •  enable3DDetection: Indicador que indica que el captador de fotogramas debe cambiar a un modulo compatible con 3D si se está reproduciendo un video en 3D

Ejemplo de configuración sección  effects correspondiente al post anterior  :

 “framegrabber”: {
“width”: 64,
“frequency_Hz”: 10.0,
“height”: 64
},
“xbmcVideoChecker”: {
“grabVideo”: true,
“grabPictures”: true,
“xbmcTcpPort”: 9090,
“grabAudio”: true,
“grabMenu”: false,
“enable3DDetection”: true,
“xbmcAddress”: “127.0.0.1”,
“grabScreensaver”: true

NOTAS

Si no quiere reiniciar lar RPI cada vez que modifique el fichero de configuración hyperion.config.json, puede reiniciar sólo el servicio con los siguientes comandos:

killall hyperiond
/storage/hyperion/bin/hyperiond.sh /storage/.config/hyperion.config.json /dev/null 2>&1 &

Hay que añadir la siguiente línea dtparam=spi=on al archivo config.txt  editando el fichero o bien a través con los siguientes comandos:

mount -o remount,rw /flash
nano /flash/config.txt (se abrirá el archivo, añadimos la línea y guardamos con Ctrl+X)

reboot

Pruebas

Para comprobar el correcto funcionamiento del sistema para Android existe una app que te permite controlar los leds estableciendo un color o aplicando efectos bastante vistosos. La puede descargar aquí

hype

Otra forma de probar es ejecutando el siguiente comando que hará que todos los leds se iluminen en rojo durante 5 segundos, puedes probar varios colores, green, blue entre otros.

/storage/hyperion/bin/hyperion-remote.sh –priority 50 –color red –duration 5000

O este otro que mostrará un efecto de arcoiris

/storage/hyperion/bin/hyperion-remote.sh  –effect “Rainbow swirl fast” –duration 3000

Por ultuio en youtube puede encontrar vídeos de test para probar que los colores se corresponden con la imagen.

CNC basado en Raspberry Pi


Si está buscando un proyecto que utilice Raspberry P , podría estar interesado en este impresionante grabador CNC Laser controlado por una Raspberry Pi y por algunos elementos reciclados de dos viejas grabadoras de DVD  y construido por Xiang Zhai.

El grabador láser Raspberry Pi ha sido construido en efecto utilizando dos unidades de DVD rescatadas de viejos ordenadores de sobremesa  y con menos de $ 10 en partes adicionales compradas en eBay, todo ello controlado por la Raspberry Pi. Si le interesa el concepto no lo dude pues la idea es bastante extensible a otros campos porque abre la via  para utilizar el sistema para otros usos.

 

En la mayoría de los proyectos de este tipo  los  grabadores láser se fabrican utilizando placas Arduino   programando  directamente la placa Arduino,pero es esta nueva versión construida por  Xiang Zhai ,   con una  Raspberry Pi es capaz de proporcionar más potencia. Su creador explica que la razón por la que elijio una  Raspberry Pi es porque es un dispositivo mucho más potente que Arduino , compatible con un sistema operativo completo y los pines GPIO pueden ser controlados por python (un lenguaje más intuitivo y más sencillo que C aunque la desventaja de python sea la velocidad lenta).Ademas  no hay  que comprar un controlador independiente para este proyecto   pues se puede controlar todo con un único Raspberry Pi pues este puede hacer muchas cosas diferentes sin recargar el firmware.

Además, hay personas de proyectos que ejecutan LinuxCNC en Raspberry Pi y utilizan una placa PIC 32 externa para controlar CNC. Es una gran idea, pero el autor aun queria o minimizar el costo. En su lugar, escribío  su propio intérprete python para ejecutar código G directamente. El grabador láser 2D CNC, es realmente muy fácil de controlar y no requiere demasiadas técnicas de programa.”

 

 

IMPORTANTE

Es muy importante tener en cuenta que el láser utilizado en este proyecto podría quemar la retina del ojo humano en menos de  un milisegundo antes de que el globo ocular sea capaz de reaccionar. Incluso un haz de reflexión aleatorio durante el grabado podría ser> 50 mW (para la comparación, un puntero láser regular es de 1 mW), y hacer daño permanente a los ojos, los ojos de los niños, o los ojos de los animales domésticos.  Debe s iempre usar gafas de seguridad Láser  cuando esté cerca del grabador de trabajo. Una adecuada para láser de 650 nm debe ser de color verde.

Instrucciones paso a paso

Componentes necesarios:

  1. Una Raspeberrry  pi (corriendo Raspbian o algun otro SO  que  soporte GPIO)
  2.  Dos unidades  regrabadoras de DVD recicladas.
  3. Para poder grabar, usted necesita el diodo del laser 200mW de un grabador  de DVD. Un diodo reciclado de un lector de DVD R o CD R no hará nada. Un diodo procedente de  un grabador de CD puede estar bien en términos de potencia (~ 100mW), pero el diodo láser de un grabador de CD es de infrarrojos, lo cual  puede ser muy peligroso pues no se puede ver.
  4.   Una caja de láser TO-18 5.6mm (Como este http://www.ebay.com/itm/251316903193?ssPageName=STRK:MEWNX:IT&_trksid=p3984.m1439.l2649)Asegúrese de obtener un 5.6mm uno. Hay otro tipo 9mm.
  5.   Dos puentes H de doble canal. El puente AH es un circuito que contiene cuatro interruptores (efectivos) que pueden aplicar una tensión a través de una carga (motor de corriente continua o una bobina de un motor paso a paso) en cualquier dirección.
  6. Dos motores paso a paso  reciclados de los DVD  pues son motores paso a paso bipolares bifásicos de 4 hilos. Requieren voltaje verdaderamente reversible en cada pares del alambre. Se necesitan dos puentes H para cada motor paso a paso. Así que el total de cuatro puentes H para dos motores strepper. Algunos controladores de motor paso a paso famosos como ULN2003 son para los motores paso a paso de 5 alambres, por lo que no se pueden utilizar para controlar los motores paso a paso de DVD. Puede crear sus propios puentes H usando 4 transistores NPN y 4 PNP y probablemente convertidores TTL (el pin GPIO de RPi es 3.3V para que se requieran chips TTL lógicos). O simplemente puede comprarlos. Hay una gran cantidad de circuitos H puente integrados disponibles en el mercado, como L298. Los utilizados  son L9110s Dual H Bridge comprado en Ebay. Son de bajo costo (~ $ 2 cada uno), compactos (.8 “x1”) y son suficientemente potentes (~ 800mA).  L9110s también se conoce a veces como HG7881.En cuanto al puente H, es necesario asegurarse de que el límite de corriente continua del circuito es superior a 500mA. Por lo general, el motor paso a paso en una unidad de DVD está clasificado en 5V y cada bobina tiene una resistencia de 10ohm. Así que la corriente a través de cada bobina sería 500mA! Una corriente muy grande!
  7. Un regulador LM317, un transistor bipolar de NPN de energía (como E3055, debería ser capaz de manejar continuo 200mA al menos), algunas resistencias, condensadores y un paquete de puentes. El LM317 es para el controlador láser. La energía NPN es para hacer un interruptor para el láser. Si no desea soldar un conductor por su cuenta, seguramente puede comprar un controlador de láser para <$ 5. El controlador láser debe ser capaz de salida de al menos 200mA a 2V y tienen la función de habilitar / deshabilitar. De hecho, será una mejor idea reemplazar el NPN bipolar con un transistor MOSFET. Hay muchos de ellos disponibles en el mercado y son muy baratos. Sólo asegúrese de que la corriente continua soportada por el MOSFET está por encima de 200mA.
  8.   Un soldador, destornillador y algunos accesorios de ferretería .

PASO 1 : Desensamble las unidades de DVD (escritores)

Hay un montón de video tutoriales  para este paso, así que lo veremos rápidamente en imágenes

Se parte de dos DVD reciclados


Es importante que al menos una unidad o sea regrabable

Todo lo que necesita del DVD son dos cosas:
  • El  motor paso a paso con la corredera (parte inferior derecha en la imagen de abajo)

Desmontando  un DVD
  • Los diodos láser (ver imagen abajo). Tenga mucho cuidado pues  los diodos láser en el DVD son muy frágiles. Asegúrese de no romperlos.

Dos diodos láser de 5.6mm (infrarrojos y 650nm rojo) comparado con un conector USB.

Motor paso a paso (derecha) y deslizante lineal. Soldar cuatro cables en el motor paso a paso.

Nota :Hay otras cosas buenas que puede salvar de la unidad de DVD y mantener para proyectos futuros, como un motor de 9 V cc cerca de la puerta, un motor sin escobillas que gira los DVD, algunos reductores de choque y algunas piezas de lente y óptica en miniatura. También puede encontrar cuatro imanes fuertes cerca del diodo láser. No los tire. Resultarán útiles más tarde.

PASO 2: Ensamblaje de los diodos láser

Ahora tiene dos diodos láser. Uno es el infrarrojo que no necesitamos. El otro es el diodo rojo 650nm (por lo general tiene una letra “R” en él) y es el que necesitamos. El diodo normalmente tiene tres pines que forman un triángulo (uno de los pines   es NC). Usted necesita un multímetro para averiguar qué dos clavijas son cátodo y ánodo. El voltaje delantero a través del ánodo y del cátodo debe ser alrededor 1.4V y la resistencia delantera debe ser 20-40k ohmios. Si la resistencia delantera es demasiado alta, entonces el diodo láser es usado excesivamente.

La carcasa del diodo láser

Diodo láser (centro izquierdo) y alojamiento láser
 
Empujar el diodo en la cabeza de la carcasa
Diodo láser en la cabeza de la carcasa
Soldar dos cables en el diodo
Utilice un poco de contracción de calor para aumentar la fuerza
Debe llegar hasta aqui:

¡Hecho!Ponga cuidadosamente el diodo láser en la cabeza de la carcasa del láser. Puede utilizar el cuerpo de la carcasa del láser para ayudar a golpear contra el diodo y empujar el diodo en la cabeza de la carcasa. El diodo debe encajar perfectamente en la cabeza. Asegúrese de que los pines estén bien. Entonces suelde dos cables a los terminales  y ensamble la cubierta al conjunto.

 

PASO 3 : Unidad láser LM317

Un diodo láser es como un fotodiodo pero equipado con una cavidad resonante. El diodo láser es un enorme sumidero de corriente. Una vez que el diodo conduce, genera mucho calor, y el calor disminuye más lejos la impedancia del diodo. Por lo tanto, es un sistema de retroalimentación positiva inestable. Si simplemente pone una batería de 1,5 V a través del diodo,  quemará el diodo o agotara la batería de inmediato. Necesitamos un controlador láser que pueda emitir una corriente constante al diodo.

Hay muchas formas de hacerlo,pero u na de las formas más populares y menos frustrantes es utilizar un regulador de corriente continua como por ejemplo usando   un  LM317   Mediante la adición de una resistencia través del pasador de ajuste y del pasador de salida, el LM317 puede generar una corriente constante de ~ 1,25 V / R.

[De hecho, LM317 se utiliza principalmente como un regulador de voltaje. Mantiene un 1.25V a través del perno de la salida (perno 2) y del perno del adj (perno 1). Mientras tanto, controla la salida de corriente desde el pin adj que es muy baja (usualmente <100 uA). Por lo tanto, añadiendo una resistencia R a través del pasador 2 y 3, podemos tener salida de corriente de 1,25V / R desde el pasador 2 al pasador 1. A continuación, agregamos el diodo láser a través del pasador 1 y GND. Dado que el pin 1 está prohibido hundir corriente, toda la corriente de 1,25V / R emitida por el pin 2 fluirá a través de R y diodo láser a GND. La hoja de datos oficial de LM317 se puede descargar aquí.

Aquí hay un buen circuito LM317 láser circuito que encontrado en  LM317 Laser Driver :
En esta  implementacion se sustituyen las dos resistencias paralelas de 10 ohmios por dos resistencias de  0.5 vatios de 12 ohmios pues l a corriente máxima que va  a pasar a través del diodo es 200mA.
Asegúrese de no estropear el pasador de ajuste y el pasador de salida.  Se necesita por razones obvias u n disipador de calor para el l LM317.

También necesita un conmutador que pueda ser controlado por RPi  por ejemplo  usando  un transistor de la energía NPN E3055. Usted puede elegir lo que cada uno quiere, sólo asegúrese de que el transistor puede soportar corriente continua CE> 300mA    ( también tendra qeu poner un disipador de calor en él).

Esquemas del controlador láser y el interruptor.El láser está encendido sólo cuando el puerto “Switch láser” es lógico alto (> 3V).Asegúrese de no estropear la orden de pin de LM317

LM317 driver láser

 

Controlador láser (superior) y la alimentación E3055 NPN (inferior)

NOTA: Los diodos láser son dispositivos muy delicados y s on extremadamente vulnerables a la condición aplicada en ellos. Una tensión o corriente inestable, una corriente / tensión excesiva (incluso durante un tiempo muy corto) podrían dañarlos permanentemente. Así que siempre descargue usted mismo antes de tener el diodo, y siempre use un controlador de corriente constante para alimentarlo .  T ambién podría dañar el diodo conectando primero el controlador a la fuente de alimentación y luego conectar el diodo al controlador. El diodo siempre debe estar conectado al controlador antes de aplicarle cualquier energía.  

 

 

PASO 4 : Ensamblar la máquina

¡Ahora usted tiene dos etapas lineales idénticas y es hora de juntarlas! Hay muchas maneras de hacer esto. Para máquinas CNC de 2 ejes, la mejor manera es la que da Groover @ instructable . En la configuración de Groover, la muestra de grabado se une al eje x, de modo que sólo se mueve en la dirección x. El láser está unido al eje y por lo que sólo se mueve en la dirección y. Esta configuración minimiza el peso en cada uno de los ejes.

Corte una placa de acero de 2 “x2” fuera de la caja de DVD y peguélo a la etapa de eje x como la base de soporte de muestra. Puesto que la caja del DVD se hace del hierro, usted puede utilizar los imanes fuertes rescatados del sistema óptico del laser para ayudarle a estabilizar la muestra del grabado en la base.
El diodo láser generará mucho calor. Y es importante disipar este calor. De lo contrario, el diodo se rom,pera  rápidamente. Corté un disipador de calor de 1 pulgada de cubo de un viejo disipador de calor de la CPU deun pc y  perforé un agujero a pesar de ello. El agujero es perfectamente grande para sostener el láser. Pegue el disipador de calor en las etapas del eje y.
La cuestión más importante es el eje x, el eje y y el cuerpo del láser tienen que ser perpendiculares entre sí.

PASO 5: Conecte el puente H a los motores paso a paso

Cuatro clavijas de conexión en un motor paso a paso de 4 hilos y 2 fases.Por lo general se organizan en el siguiente orden: a1, a2, b1, b2.(A1 y a2 son los dos conductores de la bobina a; b1 y b2 son los dos conductores de la bobina b).El uso de un multímetro ayudará a verificar esto.El motor paso a paso en DVD es un motor bipolar bifásico de 4 hilos. Hay dos bobinas independientes dentro. Cada bobina tiene una resistencia de 10 ohmios. Por lo general, los motores paso a paso DVD se clasifican en 5V. ¡Por lo tanto la corriente nominal a través de cada bobina es 500mA! Las clavijas RPi GPIO sólo pueden emitir menos de 20mA para que RPi no pueda controlar un paso directamente. H se requieren puentes.

 

En los escritos de la mayoría de las personas, definen la bobina 1 y la bobina 2 y el nombre 1a, 1b como los dos conductores de la bobina 1, y 2a, 2b como los dos conductores de la bobina 2. No importa, siempre y cuando sepamos qué nosotros estamos haciendo. Al menos en este post se  mantiene la terminología coherente.

La hilera central del motor paso a paso bipolar se puede considerar como un imán de barra (en realidad es circular). Obviamente, a partir de la figura anterior, si conducimos sucesivamente la corriente en la bobina a1, b2, a2 ​​y b1, la hiladora girará en la secuencia deseada. Para hacer esto, podemos aplicar una secuencia de voltaje a a1, b2, a2, b1 como: 1) alto, bajo, bajo, bajo. Por lo tanto, sólo a1 y a2 están activados. Dado que a1 a2 tienen la misma polaridad (o opuesto dependiendo de cómo lo defina), el hilador apunta a a1
2) bajo, alto, bajo, bajo. Por lo tanto, sólo se activan b2 y b1. Spinner está apuntando a b2
3) bajo, bajo, alto, bajo. Por lo tanto, sólo a2 y a2 están activados. Spinner señala a2
4) bajo, bajo, bajo, alto. Spinner apunta a b1.
Vaya a 1).

Denotan alto como 1 y bajo como 0. La secuencia puede escribirse como 1000.0100.0010.0001

La ventaja de esta configuración es que es muy fácil de entender y por lo general el motor paso a paso se mueve con mucha precisión. Sin embargo, puesto que en cada paso sólo se activa un par de bobinas, el par aplicado sobre la hiladora no es muy grande.

Para lograr un par alto, una forma más popular es aplicar la siguiente secuencia: 1100,0110,0011,1001. Y el hilador estará apuntando a medio de a1 y b2, medio de b2 y a2, medio de a2 y b1, medio de b1 y a1 consecuencialmente. Y el par se duplica. Esto se denomina modo de paso completo o modo de par alto o modo de dos fases .. y suele ser el modo utilizado.

Si el par de torsión no será un problema, entonces podemos usar una secuencia de 8 pasos: 1000, 1100, 100, 100, 0010, 0011, 001, 01001. La hilera girará 8 pasos en lugar de 4 pasos para girar el mismo ángulo. Esto duplica la resolución. Y el costo es el par no uniforme aplicado al motor paso a paso. Esto se denomina modo de medio paso.

Por lo general, para DVDs, los deslizadores lineales se mueven alrededor de 0,15 mm cada paso completo del motor paso a paso, lo que corresponde a una resolución de ~ 170dpi. Lo suficientemente bueno para los proyectos caseros. Si se implementa el modo de 8 pasos, entonces la resolución es 0.075mm / paso o 340dp, similar a la impresora normal.

Para el grabador láser, no hay ninguna carga grave en el motor de pasos, así que se elije el modo de medio paso o el modo de 8 pasos.

Como se mencionó, RPi no puede conducir el motor paso a paso directamente debido al límite de corriente. En realidad, además de alimentar los LED de baja potencia, los pines GPIO de un RPi suelen funcionar como conmutadores lógicos. En el modo de salida, son lógico Alto (3V) o bajo lógica (<0.7V). AH bridges es un “traductor” que traduce estas lógicas High o Low en fuentes de energía que tienen alta tensión o baja tensión.

Un esquema conceptual del puente H (de wiki)Arriba se muestra un  a esquema  conceptual del puente H (tiene una forma similar con la letra “H”). Un puente H tiene dos modos de funcionamiento: (S1 S4 cerrar, S2 S3 abierto) y (S2 S3 abierto, S1 S4 cerrar). En el primer modo, la corriente fluye hacia la derecha a través del motor y en el segundo modo, la corriente fluye hacia la izquierda a través del motor. En realidad, este puente H nunca se utiliza. Una manera común es usar el transistor como interruptores eléctricos. Vea la figura abajo.

Arriba vemos un esquema conceptual muy simplificado de NPN  .NUNCA construya un puente H basado en este gráfico .Probablemente quemará los transistores o incluso el Pi.Un puente H práctico requiere resistencias limitadoras de corriente, diodos inversos y chips TTL lógicos.Por favor, consulte más de otras fuentes si desea construir un puente H de trabajo desde cero.

Cuando A es lógico bajo (0V) y B es alto lógico (+ V), entonces el transistor 1 y 4 son conductores mientras que 2 y 3 están abiertos; Cuando A es lógico alto (+ V) y B es lógico bajo (0V), entonces el transistor 1 y 4 son oepn mientras que 2 y 3 son conductores. Cuando tanto A como B son lógicos altos, 2 y 4 son conductores, 1 y 3 están abiertos, el motor se detiene; Cuando tanto A como B son bajos, 1 y 3 son conductores, 2 y 4 están abiertos, el motor se detiene.

Por lo tanto, ajustando A y B alto o bajo, podemos controlar la dirección actual a través de una carga. Para cada motor paso a paso de dos hilos de 2 fases, hay dos bobinas independientes que necesitamos controlar. Así que un total de 4 puentes H se requieren para controlar los dos motores paso a paso.

Hay un montón de H integrado puente disponible en el mercado. Para mi caso, necesito 500mA a través de cada puente de H así que L9110S es suficiente (L9110S puede permitirse 800mA a través de cada puente de H). Cada L9110S contiene dos H puente para que dos de ellos es suficiente. Hay módulo L9110S para <$ 2 cada uno en el mercado. ¡Muy conveniente!  En el mercado puede vernir marcado como  L9110 o  L9110S ..

Además, L9110S tiene diodos internos de sujeción para conducir la corriente inversa generada por la parada repentina de los motores paso a paso. Esto protege el circuito. L9110S es compatible con el nivel de salida TTL / CMOS para que pueda conectarse directamente a RPi.

Dos puentes L9110 duales H (tambiénconocidoscomoHG7881).Son 0.8 “por 1” grande
Cada puente doble controla un motor paso a paso.A la derecha, hay a1, a2, b1, b2 conectores a los motores paso a paso (de arriba a abajo).En el lado izquierdo, hay pines de control lógicos para a1, a2, b1, b2 (en realidad se denominan A-IA, A-IB, B-IA, B-IB) y VCC y GND.

PASO 6: Controlar la máquina usando Raspberry Pi

Ahora esta es la parte clave. Debido a que no se esta utilizando controladores externos de motor paso a paso por lo que tenemoso que incorporar la función de los controladores externos paso a paso en el software ( se usa python para hacer el trabajo).

La gente dice que RPi no es un dispositivo de tiempo real porque tiene un sistema operativo completo en él y python es muy lento. Sin embargo, en mi caso, estos problemas no causaron ningún problema.

El código de python que escribío el autor  incluye las siguientes funciones:
1. Una clase de motor paso a paso bipolar encapsulado . Incluía información como fase y posición. Tiene una función de compilación .move (dirección, pasos) que convierte comandos de movimiento en una secuencia de comandos GPIO.output () que hace girar los motores paso a paso.
2. Intérprete de códigos AG: lea el código G y envíe los comandos correspondientes a los objetos bipolares de motor paso a paso. Para los comandos G02 y G03 (interpolación circular), el intérprete realiza la interpolación y convierte los comandos en una secuencia de movimientos rectos.

La parte más difícil es cómo controlar más de un motor paso a paso simultáneamente. La idea es realmente muy simple y se puede extender a cualquier número de motores. Ya sabemos cómo controlar un motor. Ahora supongamos que tenemos dos motores: MX y MY, y queremos convertir MX 12 pasos y MY 15 pasos simultáneamente en 6 segundos. Primero encuentre el multiplicador menos común (LCM) de 12 y 15, que es 60. Ahora divida 6 segundos por 60 obtenemos dt = 0.1sec. Establecer 60 bucles. Antes del final de cada ciclo, utilizamos los comandos time.sleep (0.1). Así que se tarda 6 segundos para terminar el bucle. Y nos movemos MX un paso cada 5 lazos y mover mi un paso cada 4 bucles. Después de 60 lazos, MX se mueve 60/5 = 12 pasos y MY se mueve 60/4 = 15 pasos. Y tanto MX como MY se movían a velocidades constantes.

00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 (60 dígitos, 12 unidades)
0001 0001 00 01 0001 0001 0001 0001 00 01 0001 0001 0001 0001 00 01 0001 0001 (60 cifras, 15 cifras)

Para más de dos motores paso a paso, solo busque el LCM de todos los pasos (ignore 0).

Usted puede descargar todo el código de python aquí Mi RPi CNC Laser Engraver Código :

Puedes encontrar tres códigos de python:

Proyecto: raspberrypi-cnc-laser-engraver

El proyecto en Python lo componen 6 modulos:

  • Bipolar_Stepper_Motor_Class.py define la clase Bipolar_Stepper_Motor. Por defecto, la línea 5 es comentada y la línea 7 es válida. Esto corresponde a una secuencia de medio ángulo de 8 pasos. Si el par máximo es deseado, puede comentar la línea 7 y descomentar la línea 5 para seleccionar la secuencia de 4 pasos en ángulo completo.
  • Motor_control.py define un conjunto de funciones como LCM (para calcular el lcm de dos enteros) y Motor_Step (para controlar dos motores simultáneamente). Por lo general, no es necesario modificar nada.
  • Gcode_executer.py.  Este es el programa principal. Es necesario modificar la línea 25 (nombre del archivo de código G), la línea 29 (números de pasador del motor paso a paso X), la línea 31 (números de pasador del motor paso a paso Y), la línea 32 (número de pasador del interruptor láser), la línea 35, Resolución de la máquina en unidad de mm / paso) y línea 38 (velocidad de grabado). El código lee e interpreta el código G, y envía comandos correspondientes a las funciones de control del motor.
  • Spiral.nc : Este es un simple código G que traza una pequeña espiral. Puede probar perfectamente si la máquina puede procesar el código G, especialmente la interpolación circular G02 y G03, correctamente.
  • Grid.nc: Un simple código G que traza varias líneas rectas para formar una cuadrícula. Código perfecto para probar la máquina y hacer un sistema de coordenadas!

Actualmente Gcdoe_executer.py sólo acepta un número limitado de comandos G: G90, G20, G21, M05, M03, M02, G01, G02, G03.
El código puede reconocer comandos G1F (velocidad de grabado), pero simplemente ignorarlo. La velocidad de grabado se ajusta por la línea 38 en la unidad de mm / seg.

Como se mencionó al principio de este post, D. Miller hizo algunas mejoras a mi código para que el código pueda trabajar junto con la extensión inkscape GCodeTools y permitir el grabado remoto a través de otro pequeño script de python que escribió.

 

La versión modificada se puede descargar desde https://github.com/iandouglas96/engravR

PASO 7: ¡Grabado!

Después de Groover ( por Groover en instructable ), se usa Inkscape para hacer código G. Inkscape es un editor de gráficos vectoriales de código abierto y soporta varios sistemas operativos (windows, linux, Mac), lo que significa que deberías poder instalarlo en Raspbian! No se intenté. Simplemente puede usarsu pc y envíar su  diseño al RPi.

Necesita una extensión de grabado láser para convertir el gráfico vectorial en códigos G. Hay varios diferentes código de extensión G. El que yo uso puede descargarse aquí Inkscape-Laser-Engraver-Extension

[Nota: Ell autor escribío su intérprete de código G de python basado en el código G generado por esta extensión de Inkscape. Así que el código sólo puede tratar con un número limitado de comandos G, suficiente para el grabado con láser, aunque, afortunadamente. Para los códigos G dados por otro generador, mis códigos podrían no ser capaces de manejar todos los comandos. Es posible que deba modificar el código python por su cuenta.]

Aquí está la instrucción paso a paso sobre cómo generar código G que el código python puede procesarlo.

Paso 7-1: Instalar Inkscape y Inkscape-Laser-Engraver-Extension

Inkscape se puede descargar gratis aquí http://inkscape.org/en/
Se ejecuta en Windows, mac y varios sistemas operativos Linux.  Luego descargue Inkscape-Laser-Engraver-Extension

Para instalar la extensión, simplemente descomprima el archivo y copie todo en la carpeta de instalación de Inkscape. Por ejemplo, en Windows 7, si Inkscape está instalado bajo
C: \ Archivos de programa \ Inkscape
, Luego simplemente copie todo desde Inkscape-Laser-Engraver-Extension a C: \ Archivos de programa \ Inkscape \ share \ extensions
Y luego reinicie Inkscape, la extensión ya debe estar instalada. Para verificar esto, ejecute Inkscape y busque el elemento “Grabador láser” en “Extensión” en la barra de manu.

La extensión Laserengraver se ha instalado correctamente

Nota: Algunas personas informan que la extensión Laserengraver no funciona en Inkscape de la última versión. Si eso te sucede, utiliza Inkscape 0.48. El instalador de Windows se puede encontrar en la parte inferior de esta página.

Paso 7-2: cambiar el tamaño de la página

Abra Inkscape, vaya a “Archivo” => “Propiedades del documento” => “Página”, bajo el cuadro “Tamaño personalizado”, cambie las “Unidades” a “mm” (milímetro) y luego ponga 36 y 36 en ambos “Ancho “Y” Altura “. A continuación, cierre el cuadro de diálogo.

Verá que la página en blanco se convierte en un pequeño cuadro cuadrado. Zoom en esa caja.

Paso 7-3: trama, texto, crear, un montón de diversión ~

Puede escribir textos, graficar gráficos o incluso pegar png / bmp en el cuadro.

Pulse “Ctrl” y “A” para seleccionar todo lo que se traza, bajo “Path”, haga clic en “Object to Path”. O simplemente presione “Mayús” + “Ctrl” + “C”. Estos pasos son necesarios si tiene texto u otros objetos externos.

Convertir objetos en ruta

Paso 7-4: Generar código G

Va a “Extensiones” => “Laserengraver” y haga clic en “Laser …”. Un cuadro de diálogo saltará. Puede seleccionar “Directorio”, “Unir” y modificar otra preferencia en “Preferencia”. En “Laser”, escriba el nombre del archivo (debe adjuntarse a la extensión .nc). A continuación, haga clic en “Aplicar”.

Convertir el objeto en código G

Un cuadro de diálogo dirá “láser de trabajo, por favor espere ..”.

Si se selecciona “Dibujar gráficos adicionales para depurar la ruta de grabado” en “Preferencias” antes de hacer clic en “Aplicar”, Inkscape dibujará muchas flechas en la parte superior del gráfico, mostrando los movimientos dados por el código G generado.

¡El código G se ha generado correctamente!Muchas flechas.

Paso 7-5: Pase el código G a RPi

Si utiliza un ordenador portátil / escritorio para generar el código G, entonces tiene que pasar el código G a RPi usando ssh u otras herramientas. El código G debe colocarse en la misma carpeta junto con las rutinas de python.

Paso 7-6: ¡Haga la modificación necesaria en el código python y grabe!

Por lo menos desea cambiar el nombre del archivo de código G en Gcode_executer.py (línea 25). Algunos otros cambios, digamos, números de pin (línea 29, 31, 32), resolución (línea 35, 36), velocidad de grabado (38), se pueden cambiar si usted los entiende.

Escriba “sudo python Gcode_executer.py” en el terminal para ejecutar las rutinas de python y diviértete!

 

NOTAS

  • Acerca de la capacidad del grabador: Debido al límite de tamaño de las unidades de DVD, la máquina sólo puede grabar en un área de 36 mm por 36 mm .. Por lo que puede hacer pequeñas piezas de madera, cartón de plástico o parte de los casos de iPhone, pero no más grande.
  • El láser utilizado aquí es de 200 mW 650 mm de diodo láser rojo. Corta papel de carta bien. Pero no es lo suficientemente poderoso como para cortar cualquier cosa más gruesa y dura. De hecho, se prefiere que la superficie de trabajo sea de color negro para que pueda absorber la mayor cantidad de potencia láser posible. Para grabar en tablero de plástico transparente, como se muestra arriba en el icono de la moneda icono de la universidad icono, tengo que utilizar un marcador negro para pintar la superficie y limpiar la tinta después del grabado. Sin embargo, creo que para una hoja de espuma negra delgada (<3 mm de espesor), y dado suficiente tiempo de grabado, el láser debe ser capaz de cortar a través, como Groover mostró en instructable.

 

 

 

 

Ha habido muchos ejemplos de personas que usan Arduino para controlar CNCs. Probablemente puede encontrar toneladas de programas en C disponibles que se ejecutan directamente en Arduino para procesar el código G (una famosa es grbl). También hay controladores CNC disponible como MATH3 en el mercado que pueden ser controlado por puertos paralelos o en serie….pero este proyecto llega a un paso mas de simplificación usando solo una placa para todo

Para obtener más información sobre el nuevo grabador láser Raspberry Pi puedes visitar la página web Funofidy para más detalles. .