Cómo agregar un botón de encendido/apagado a la Raspberry Pi


Siempre debemos apagar con  seguridad nuestra Raspberry Pi ,pues de lo contrario nos exponemos  a perder  el sistema de arranque y  tener que volver  a  crear una  imagen  con todo el trabajo que esto conlleva  respecto a las personalizaciones que tanto nos gustan
Raspberry Pi no cuenta con   un pulsador de encendido para intentar competir con su clones  y de este modo  mantener el precio “bajo”,  aunque  sin embargo, es muy fácil  añadir  el suyo propio  como vamos a ver en este post donde añadiremos un botón de encendido a su Raspberry para que puede encender o  apagar esta con total de seguridad .
No nos bastara añadir el pulsador pues tendremos  que usar unos scripts que vigilen  dos pines GPIO (general entrada/salida) en el Pi para que cuando se presione el botón activar o desactivar el  Pi.

 

raspberrypi

¿Por qué es importante un botón de encendido ?

Como comentábamos  nunca deberíamos “tirar” del cable de alimentación de su Raspberry Pi pues esto puede conducir a la corrupción de los datos graves (y en algunos casos, dañar físicamente tu tarjeta SD) pues para ello se puede cerrar con seguridad el Pi a través de un comando de consola (shutdown)  o por supuesto también  desde el propio interfaz gráfico de Raspian (shutdown)

Veamos  ahora como podemos añadir un pulsador  pero entes tenemos que entender cómo despertar la Raspberry Pi de un estado de suspensión antes de construir la funcionalidad de apagado.

Una manera fácil de comprobarlo es apagando  con sudo shutdown -h now y conectando los pines 5 y 6 con un cable hembra a hembra. Sólo necesitará cortarlo momentáneamente y entonces usted debe encontrar que la Raspberry Pi se “despertó”.

En este punto es interesante destacar que cuando “apaga” el Pi, lo enviará en un estado de suspensión, lo cual significa  que sigue consumiendo una cantidad muy pequeña de  energía ( muy  similar a cómo todos modernos equipos trabajo cunado quedan en stand-bye).

Lógicamente  si  agrega un botón de encendido podrá tanto detener como despertar el Pi de un estado detenido, pero si su Raspberry Pi se ha apagado, usted puede desconectar de forma segura la fuente de alimentación  sin la preocupación de corrupción de datos.

 

El equipamiento hardware como vemos es muy sencillo pues basta dos cablecillos que conectaremos en los pines 5 y 6  de la Raspberry PI del conector de expansión( justos los dos de la tercera columna empezando por la drecha)

IMG_20181018_224306[1].jpg

 

Sencillamente, si se cortocircuitan entre sí los pines 5 y 6 (GPIO3 y GND) se pondrá nivel bajo el pin correspondiente al GPIO y podremos actuaren consecuencia con la Raspberry Pi

Obviamente el cortocircuito lo sustituiremos por un pequeño pulsador normalmente abierto  que conduciremos con dos cablecillo  a los pines 5 y 6  de nuestra Raspbery Pi

 

IMG_20181018_224929[1]

Finalmente sujetaremos el pulsador con cinta de doble cara , pegándolo o practicando un agujero al contenedor de la Raspberry Pi

 

IMG_20181018_225410[1]

 

 

La solución de sleep es bastante sencilla, pero para cerrar con seguridad el Pi vamos a tener que utilizar una solución de software. Ya que sabemos que vamos a utilizar los pines 5 y 6 para el Pi, vamos a usar estos pines para apagarlo tambien . Tanto así que podemos conectar nuestro botón a los alfileres y se concluirá y despertar la Pi.

Vamos a tener que escribir un script que escuche una pulsación y  cierre el Pi. Antes nos fijamos en la secuencia de comandos, vamos a discutir algunos enfoques diferentes. En primer lugar, podríamos escribir un script que inicie un bucle infinito y espere un cambio en el estado de los pines GPIO.

Usando  seudo-código, podría ser algo como:

while True:
    if GPIO3 is pressed:
        shutdown the pi

Mientras que esto funcionaría y probablemente no tenga problema de rendimiento real, hay realmente una manera mejor:podemos escuchar  una interrupción (un cambio de estado de bajo a alto o alto a bajo) que interrumpa  el procesador para qeu realize uan determinada accion .

Afortunadamente la biblioteca de RPi.GPIO proporciona un método llamado wait_for_edge que bloqueará la ejecución de nuestro script hasta que se detecte una interrupción. Así configuramos GPIO3 y una vez que detectamos un borde de caída vamos a apagar el Pi.

Entonces, vamos a usar un script llamado listen-for-shutdown.py.

Para crear el script, podemos usar el editor nano asi  que después de conectar con el Pi, ejecute el siguiente comando para crear este

sudo nano listen-for-shutdown.py

Luego, pegue el código siguiente en el archivo y pulse CTRL-X y salida, Y para guardar cuando se le solicite.

#!/usr/bin/env python


import RPi.GPIO as GPIO
import subprocess


GPIO.setmode(GPIO.BCM)
GPIO.setup(3, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.wait_for_edge(3, GPIO.FALLING)

subprocess.call(['shutdown', '-h', 'now'], shell=False)

A continuación necesitamos poner este script en el arranque por lo que  deberemos copiar el script en lar uta de  usr y hacerlo ejecutable , acciones que haremos con los dos siguintes comandos:

sudo mv listen-for-shutdown.py /usr/local/bin/
sudo chmod +x /usr/local/bin/listen-for-shutdown.py

Pero este script solo apagaria la placa  y nosotros queremso tambien qeu se pueda arrancar pulsando el boton por lo que  añadiremos otro script llamado listen-for-shutdown.py: que e enciende/apaga nuestro servicio.

Para crear el script  escriba  la secuencia de comandos:

sudo nano listen-for-shutdown.sh

Introduzca el código siguiente en el archivo y guárdelo:

#! /bin/sh

### BEGIN INIT INFO
# Provides:          listen-for-shutdown.py
# Required-Start:    $remote_fs $syslog
# Required-Stop:     $remote_fs $syslog
# Default-Start:     2 3 4 5
# Default-Stop:      0 1 6
### END INIT INFO

# If you want a command to always run, put it here

# Carry out specific functions when asked to by the system
case "$1" in
  start)
    echo "Starting listen-for-shutdown.py"
    /usr/local/bin/listen-for-shutdown.py &
    ;;
  stop)
    echo "Stopping listen-for-shutdown.py"
    pkill -f /usr/local/bin/listen-for-shutdown.py
    ;;
  *)
    echo "Usage: /etc/init.d/listen-for-shutdown.sh {start|stop}"
    exit 1
    ;;
esac

exit 0

 

Ahora necesitamos coloque este archivo en /etc/init.d y hacerlo ejecutable, acciones que haremos con los dos siguientes comandos.

sudo mv listen-for-shutdown.sh /etc/init.d/
sudo chmod +x /etc/init.d/listen-for-shutdown.sh

Ahora registramos la secuencia de comandos para ejecutar en el arranque y le pasaremos el parámetros de arranque con los dos siguientes comandos.

sudo update-rc.d listen-for-shutdown.sh defaults
sudo /etc/init.d/listen-for-shutdown.sh start

 

Seguro querido lector que por lo menos la próxima vez que desconecte su Raspberry de forma violenta recuerda que podría haber puesto un botón para hacer el apagado seguro…  Y por cierto si tiene una Orange Pi u otro clon , este sencillo truco le puede servir tambien..

 

 

Fuente  howchoo.com

Anuncios

Como usar una webcam standard con una Raspberry Pi


Una de las opciones que, a priori, puede parecernos más   atractiva  y tal vez útil por las posibilidades  que  no ofrece como cámara de seguridad, reconocimiento de imágenes, cámara trasera para vehículos , etc   para nuestra Raspberry Pi  es  conectarle una cámara e  intentar  visualizar y/o  capturar en el monitor la imagen captada por la misma..

Lamentablemente  en el universo Linux es algo más complicado añadir drivers para todo el hw disponible ,  y es ahí  donde por desgracia no le son ajenas las cámaras web usadas para pc pues en lugar de utilizar el módulo de la cámara  nativa del Raspberry Pi  que suele tener un coste ciertamente elevado es mas interesante  utilizar una versátil webcam USB estándar para tomar fotos y vídeo en la Raspberry Pi.Tenga en cuenta que la calidad y capacidad de configuración del módulo de cámara nativo con interfaz CSI  es muy superior a una webcam USB estándar,  pero por el contrario este también tiene una gran limitación : la longitud del cable de cinta que excepto compremos que dos  adaptadores de CSi a HDMI (lado cámara) , de HDM a CSI (lado Raspberry Py)   y luego un largo cable hdmi   solo se podría situar tan solo unos pocos centímetros respecto a la Raspberry Pi .

raspberrypi

Requisito previos

Una vez que tengamos una cámara para operar con nuestra RasPi hemos de asegurarnos de que la misma es “soportada” por el S.O. Linux que estamos utilizando.

La consulta de la lista de compatibilidad puede ayudar  pero podemos comprobarlo en desde  linea de  comandos para verificar si el sistema la identifica correctamente.

Antes de conectar la cámara al sistema iremos al terminal y teclearemos el comando dmesg | tail, lo que hará que se nos muestren los últimos mensajes generados por la RasPi.  Ahora conectamos la cámara a la Raspberry Pi y repetimos el comando anterior (dmesg | tail), y en este caso se nos deberán mostrar algunos mensajes que hagan referencia al nuevo hardware detectado.

Otra comprobación interesante es verificar si la cámara ha sido detectada como dispositivo Linux, para ello teclearemos ls /dev , lo que hará que aparezca  , si es que el sistema la detecta , como dispositivo  /dev/videoX ( normalmente /dev/video0 pero asegurese con un ls /dev)

De forma previa podemos instalar  el  software para poder visualizar de una forma cómoda los ficheros obtenidos  para poder verlos desde el propio terminal dentro del entorno gráfico pues la visualización de imágenes desde el entorno gráfico se puede efectuar con solo “pinchar” en la imagen a mostrar desde el navegador gráfico de archivos para los cual podemos instalar el sw de imagen magick

Para instalar el paquete citado  basta teclear:

 sudo apt-get install imagemagick

Existen varias utilidades para capturar imágenes  desde un web cam  veamoslas:

Fswebcam

En efecto la  herramienta fswebcam, que funciona bajo línea de comandos,  nos permite capturar imágenes a través de la Webcam USB, para ello en primer lugar, instale el paquete:fswebcam  con el comando sudo , es decir:

sudo apt-get install fswebcam 

Ahora escriba el comando seguido de un nombre de archivo y una imagen se tomaron con la cámara web y se guardarán al nombre de archivo especificado como por ejemplo fswebcam /dev/video0 image.jpg

Este comando mostrará la siguiente información:

[email protected]:~ $ fswebcam -d /dev/video0 pepe.jpg
--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
Adjusting resolution from 384x288 to 352x288.
--- Capturing frame...
Captured frame in 0.00 seconds.
--- Processing captured image...
Writing JPEG image to 'pepe.jpg'

Como vemos la resolución por defecto es pequeña y ademas se complementa en la parte inferior con un pequeño banner  que muestra la fecha y hora.

prueba.PNG

En caso de utilizar una web cam hd,  para especificar la resolución podemos forzar que la imagen para sea tomada  a mayor resolución , para ello se puede  utilizar la bandera:1280 x 720-r

fswebcam -r 1280x720 -d /dev/video0 pepe2.jpg

Este comando mostrará la siguiente información:

--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
Adjusting resolution from 1280x720 to 640x480.
--- Capturing frame...
Captured frame in 0.00 seconds.
--- Processing captured image...
Writing JPEG image to 'pepe2.jpg'

Puede   quitar el banner inferior puede añadir el siguiente parámetro:--no-banner :

fswebcam -r 1280x720 --no-banner image3.jpg

El cual  muestra la siguiente información:

--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
--- Capturing frame...
Corrupt JPEG data: 2 extraneous bytes before marker 0xd6
Captured frame in 0.00 seconds.
--- Processing captured image...
Disabling banner.
Writing JPEG image to 'image3.jpg'.

Ahora con  ese parámetro ya   se toma la imagen a resolución completa  sin banner

Script de captura

Puede escribir un script de Bash para que tome una foto con la webcam por lo que la secuencia de comandos  que vamos a vera continuación guarda las imágenes en el directorio,

En primer lugar  crear el subdirectorio primero en:/home/pi/webcamwebcam  conmkdir webcam

Para crear una secuencia de comandos, abra su editor de la opción y escriba el siguiente código de ejemplo:

#!/bin/bash

DATE=$(date +"%Y-%m-%d_%H%M")

fswebcam -r 1280x720 --no-banner /home/pi/webcam/$DATE.jpg

Este script tome una fotografía y usa como nombre del archivo con una marca de tiempo.

Para poder ejecutar el script webcam.sh en primer lugar nos gustaría hacer el archivo ejecutable:

chmod +x webcam.sh

Luego ejecutar con:

./webcam.sh

Al ejecutarlo dar la  siguiente salida:

--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
--- Capturing frame...
Corrupt JPEG data: 2 extraneous bytes before marker 0xd6
Captured frame in 0.00 seconds.
--- Processing captured image...
Disabling banner.
Writing JPEG image to '/home/pi/webcam/2013-06-07_2338.jpg'.

Time-lapse con cron

Usted puede utilizar para tomar una fotografía en un intervalo dado, como cada minuto para capturar un time-lapse.cron ,para ello primero abra la tabla cron para editar:

crontab -e

Esto tampoco pedirá que editor que desea utilizar, o abrirá en su editor predeterminado. Una vez que tenga el archivo abierto en un editor, agregue la línea siguiente para tomar una fotografía cada minuto (refiriéndose a la secuencia de comandos de Bash desde arriba):

* * * * * /home/pi/webcam.sh 2>&1

Guardar y salir y usted debería ver el mensaje:

crontab: installing new crontab

Asegúrese de que su gscript no permite guardar cada fotografía tomada con el mismo nombre de archivo. Esta acción sobrescribirá la imagen cada vez.

 

Uvcpature

Para poder utilizar las prestaciones de nuestra cámara web también podemos instalar los paquetes uvccapture y libv4linux-0

Antes de hacerlo puede ser preciso (recomendable) actualizar las fuentes de instalación con: sudo apt-get update  y para descargar los paquetes ejecutaremos:

 sudo apt-get

install uvccapture libv4l-0

Conectada la cámara y teniendo los programas adecuados ya instalados, vamos a realizar una prueba simple de que todo está funcionando correctamente. Desde el terminal tomamos una instantánea con los parámetros estándar (opción -m) :

 uvccapture -m

Ahora listamos la carpeta para comprobar que se capturó el fichero snap.jpg (nombre por defecto de la captura) y luego lo visualizamos mediante el comando display snap.jpg

En caso de que  el fichero capturado (snap.jpg) salga  bastante obscuro podemos ver como están los ajustes por defecto de la cámara mediante el parámetro -v , uvccapture -m -v

También si el brillo está muy bajo, podemos capturar una nueva imagen pero subiéndolo bastante mediante el comando (parámetro -Buvccapture -m -B50

Además de los parámetros comentados, el comando uvccapture nos permite otra serie de interesantes opciones, como por ejemplo podemos parametrizar una nueva captura – modificando brillo y contraste – pero guardando la misma en un fichero llamado “captura.jpg

uvccapture -m -B50 -C10 -o”captura.jpg”

Por si fuera poco el comando uvccapture permite que efectuemos de forma secuencial, – y en un lapso de tiempo elegido por nosotros – la captura consecutiva de tomas desde la cámara USB. No debemos confundir esta posibilidad – aunque se le parezca – con la toma de un “stream” o flujo de vídeo continuo. Lo que obtendremos al efectuar esta captura consecutiva es imágenes cada cierto intervalo. Así que vamos a verlo con un ejemplo…

Ejecutamos el comando uvccapture con el parámetro -t , el cual hace que se capture una imágen cada cierto número de segundos (3 segundos en nuestro ejemplo), el cual, si no se especifíca algo diferente se guardará en el fichero snap.jpg.

uvccapture -m -B70 -C40 -S5 -t3   (pulsar VTRL+c para finalizar el bucle de captura)

El resultado de la captura será una toma cada 3 segundos que se guardará en el fichero por defecto (snap.jpg). La única desventaja de este método radica en que el fichero de captura se “machaca” con cada una de ellas, por lo que solo estará a nuestra disposición el último de los generados.

Para subsanar esto podemos hacer uso de una de las prestaciones del programa uvccapture que nos permite ejecutar un comando Linux inmediatamente después de efectuar una captura. ¿Y que podemos ejecutar?… pues parece claro que lo más idóneo sería algún tipo de comando o sucesión de estos que nos permita salvaguardar la última captura, de forma y manera que al realizarse la siguiente toma esta no sea “machacada” impunemente de forma muy similar a como vimos en el script anterior.

 

 

 

Otras herramientas útiles

Otras herramientas están disponibles que puede ser útil cuando se utiliza la cámara o una webcam:

  • SSH  Utilizado para acceder remotamente el Raspberry Pi en su red local
  • SCP  Sirve para copiar ficheros sobre SSH  ypara obtener copias de las fotografías tomadas en la Pi en el ordenador principal
  • rsync : Uso para sincronizar la carpeta de imágenes tomadas en una carpeta entre el Pi al ordenadorrsync
  • cron Utilizar para programar tomar una fotografía en un intervalo dado, como cada minuto para capturar un time-lapsecron

 

 

 

Mas  información en  raspberrypi.org

Raspberry Pi como centro de entretenimiento al volante


El proyecto, desarrollado por Michal Szwaj, plantea un sistema para un vehículo  en el que es posible controlar la reproducción multimedia   o acceder a los mapas de Google, aunque de momento no  ofrece funciones como la navegación GPS, pero la versatilidad de la Raspberry Pi   con el soporte Bluetooth ,hace que esa opción no parezca difícil de implementar.

OpenAuto,  es un proyecto que con una Raspberry Pi 3 y una pantalla táctil nos da acceso a unas funciones muy similares a las que ofrece Android Auto, basándose en la  biblioteca  aasdk y librerías Qt siendo el objetivo principal  ejecutar esta aplicación en una placa  de RaspberryPI 3 sin problemas. El proyecto se basa en la instalación de una distribución Linux, Raspbian Stretch, a la que luego se le añaden librerías como las célebres Qt para poder ejecutar las aplicaciones orientadas a ser utilizadas en el coche.

A la Raspberry Pi 3 se le conecta una pantalla táctil (480p, 720p o 1080p)  pues  este es recomendable para la interacción con el sistema. Completar el proceso es relativamente sencillo, y tanto el código fuente como las instrucciones de instalación están disponibles públicamente en GitHub .

Las funcionalidades soportadas  son las siguientes:

  • 480p, 720p y 1080p con 30 o 60 FPS.
  • Aceleración de hardware de RaspberryPI 3 soporte para decodificar la secuencia de vídeo (hasta [email protected]).
  • Reproducción de audio de todos los canales de audio (los medios de comunicación, sistema y discurso).
  • Entrada de audio para comandos de voz.
  • Pantalla táctil y soporte de  botones de entrada.
  • Bluetooth.
  • Lanzamiento automático después de dispositivo hotplug.
  • Detección automática de dispositivos Android conectados.
  • Modo inalámbrico (WiFi) mediante servidor de unidad principal (debe estar habilitado en configuración desarrollador ocultos).
  • Configuración fácil de usar.

 

Electrónica necesaria

Sin duda , aparte de la propia Rasberry Pi  3 , el display  táctil es un componte  fundamental en este proyecto. Con una resolución de 800×480 el modulo oficial de display +sensor se conecta a la Raspberry Pi  3 a través de una placa  adaptadora que se encarga de controlar la alimentación y la señal de vídeo.

Solo se necesitan dos conexiones de la Raspberry Pi 3 : la  alimentación desde el conector GPIO y el cable plano al conector DSI, presentes en todas las Raspberry.

El kit incluye:

  • Pantalla 7″ multitáctil 10 puntos
  • Placa conversara
  • Cable plano DSI
  • 4x tornillos para ajustar la Raspberry a la pantalla
  • 4x cables para conectar la pantalla a la Raspberry

En el siguiente video se puede ver el proceso de  montaje de este kit.

El controlador táctil ofrece 10 puntos de presión, por lo que el usar teclados en pantalla como el integrado en Raspbian lo hacen realmente sencillo.

Este kit convierte pues  una Raspberry en una tableta multitáctil, sistema de información o dispositivo independiente.Es realmente interactivo  pues la ultima version de Raspbian soporta teclado virtual en pantalla, así que no se necesita conectar un teclado y un ratón físicos ni por supuesto una pantalla externa.

Como podemos ver Android Auto se ejecuta en una Raspberry Pi 3 con la pantalla táctil oficial de 7 pulgadas anteriormente citada.  Estos son los componentes esenciales para implementar  este proyecto:

 

 

 

Raspvid

raspivid es la herramienta de línea de comandos para capturar vídeo con el módulo de cámara nativo de Raspberry. Con el modulo de cámara conectado y activado, se puede grabar un vídeo utilizando el siguiente comando:

raspivid -o vid.h264

Recuerde que debe utilizar y para voltear la imagen si es necesario, como con raspistill-hf-vf (esto guardara un archivo de vídeo 5 segundo en el camino dado aquí como (longitud por defecto de tiempo).vid.h264)

Para especificar la longitud del vídeo tomado, pase en la bandera con un número de milisegundos. Por ejemplo:-t raspivid -o video.h264 -t 10000  (Esto graba 10 segundos de video.)

Para una lista completa de las opciones posibles, ejecutar sin argumentos, o este comando a través de y desplácese a través de la pipa:raspividless

raspivid 2>&1 | less

Utilice las teclas de flecha para desplazarse y el tipo de salida.q

Para ver la cámara trasera ejecutar raspvid seguido de los  parámetros  , como por ejemplo:

raspvid  -t 5000

raspvid -t 0

raspvid -t  -vh

raspvid -t 0 -vf ( invierte la imagen)

raspvid -t 0 -hf -vf

 

 Instalar aasdk en Raspberri PI 3

  1. Instalar el software necesario

 sudo apt-get install -y libboost-all-dev libusb-1.0.0-dev libssl-dev cmake libprotobuf-dev protobuf-c-compiler protobuf-compiler

  1. Repositorio de aasdk clon

$ cd

$ git clone -b master https://github.com/f1xpl/aasdk.git

  1. Crear el directorio aasdk_build en el mismo nivel que aasdk dir

$ mkdir aasdk_build

$ cd aasdk_build

  1. Generar archivos de cmake

$ cmake-DCMAKE_BUILD_TYPE = lanzamiento… /AASDK

  1. Construir aasdk

$ make

Instalar el resto de sw en Raspberry PI 3

  1. Instalar el software necesario

$ sudo apt-get install -y libqt5multimedia5 libqt5multimedia5-plugins libqt5multimediawidgets5 qtmultimedia5-dev libqt5bluetooth5 libqt5bluetooth5-bin qtconnectivity5-dev pulseaudio librtaudio-dev librtaudio5a

  1. Construir ilclient de frambuesa PI 3 firmware

$ cd /opt/vc/src/hello_pi/libs/ilclient

$ make

  1. Repositorio de Open clon

$ cd

$ git clone -b master https://github.com/f1xpl/openauto.git

  1. Crear el directorio openauto_build en el mismo nivel que Open dir

$ mkdir openauto_build

$ cd openauto_build

  1. Generar archivos de cmake

Nota: Si es necesario, ajustar los path  a su localización de directorios aasdk y aasdk_build.

$ cmake -DCMAKE_BUILD_TYPE=Release -DRPI3_BUILD=TRUE -DAASDK_INCLUDE_DIRS=”/home/pi/aasdk/include” -DAASDK_LIBRARIES=”/home/pi/aasdk/lib/libaasdk.so” -DAASDK_PROTO_INCLUDE_DIRS=”/home/pi/aasdk_build” -DAASDK_PROTO_LIBRARIES=”/home/pi/aasdk/lib/libaasdk_proto.so” ../openauto

  1. Construir OpenAuto

$ make

  1. Ejecutar Open

$ /home/pi/openauto/bin/autoapp

Añadir Open a autorun

  1. Archivo abrir autostart

$ sudo nano /home/pi/.config/lxsession/LXDE-pi/autostart

  1. Agregar debajo de línea al final del archivo autorun

@/ hogar/pi/Open/bin/autoapp

 

Apagar  Raspbery PI 3 cuando el teléfono se está desconectando

  1. Archivo abierto openauto.rules

$ sudo nano /etc/udev/rules.d/openauto.rules

  1. Añadir a continuación las líneas al final del archivo openauto.rules

SUBSISTEMA == “usb”, acción == “add”, ENV {ID_VENDOR_ID} == “18d 1”, ENV {ID_MODEL_ID} == “2d 00” RUN += “/ bin/sh – c ‘ / sbin/shutdown – c & & echo 0 > /sys/class/backlight/rpi_backlight/bl_power'”

SUBSISTEMA == “usb”, acción == “add”, ENV {ID_VENDOR_ID} == “18d 1”, ENV {ID_MODEL_ID} == “2d 01”, RUN += “/ bin/sh – c ‘ / sbin/shutdown – c & & echo 0 > /sys/class/backlight/rpi_backlight/bl_power'”

SUBSISTEMA == “usb”, acción == “remove”, ENV {ID_VENDOR_ID} == “18d 1”, ENV {ID_MODEL_ID} == “2d 00” RUN += “/ bin/sh – c ‘ / sbin/shutdown: apagado 1 & & echo 1 > /sys/class/backlight/rpi_backlight/bl_power'”

SUBSISTEMA == “usb”, acción == “remove”, ENV {ID_VENDOR_ID} == “18d 1”, ENV {ID_MODEL_ID} == “2d 01”, RUN += “/ bin/sh – c ‘ / sbin/shutdown: apagado 1 & & echo 1 > /sys/class/backlight/rpi_backlight/bl_power'”

Este  script va a hacer las siguientes acciones:

  1. Desactivar el apagado de pantalla y programar de forma  retrasada  por 1 minuto cuando el teléfono se está desconectando
  2. Encender la pantalla y cancelar el apagado cuando el teléfono se está conectando

Puede ajustarse el  retraso de 1 minuto para sus necesidades.

 

Reglas de udev (permisos de USB)

Para utilizar Open con sistema operativo basado en Linux (por ejemplo, Raspbian) con udev, debe crear una regla para permitir la comunicación con los dispositivos USB en modo de lectura/escritura.

La regla más simple parece debajo de uno:

SUBSISTEMA == “usb”, atributos {idVendor} == “*”, atributos {idProduct} == “*”, MODE = “0660”, grupo = “plugdev”

Para agregar esta regla de udev, hacer:

$ cd /etc/udev/rules.d

$ sudo touch openauto.rules

$ sudo nano openauto.rules

Aplique estas reglas, guarde el archivo y reinicie el dispositivo.

Tenga en cuenta que la regla anterior permite  abrir cualquier dispositivo USB en modo de lectura/escritura por cualquier aplicación instalada en el sistema. Considerar como insegura.

Configuración de PulseAudio

Paquetes audio de AndroidAuto se entregan en trozos muy pequeños. Debido a esto podrían necesitarse ajustes de configuración de PulseAudio para evitar problemas con el audio.

Añadir/anulación por debajo de las líneas en /etc/pulse/daemon.conf

resample-method = ffmpeg

En /etc/pulse/default.pa añadir tsched = 0 en la línea de ‘carga-módulo módulo-udev-detect’

load-module module-udev-detect tsched=0

Después de cambios de configuración debe reiniciar la instancia de pulseaudio. Puede hacerlo con  la ejecución del comando  pulseaudio -k .

 

Fuente https://github.com/f1xpl/openauto/wiki/Build-instructions

 

ELECTRÓNICA ADICIONAL

Para facilitar el manejo  de openAuto  y extender su funcionamiento  Everlanders ha conectado 4 pulsadores directos para activar la cámara, variar el brillo o despertar la placa

No deja de ser importante el  apartado de alimentación  pues en la Raspberry Pi 3 es de 5v DC 2amp y en un automóvil es de 12V  requiriéndose  un convertidor   dc-dc  .Obviamente en los tiempos que correen ,es mucho mas eficiente  un convertidor conmutado 12v-5v  que un regulador  7805

También ,por ultimo para detectar la marcha atrás ,es muy  interesante usar un opto-acoplador para aislar a la Raspberry Pi 3 de posibles problemas ele ctricos   en el automovil dado el aislamiento galvánico que nos ofrecen los optoaisladores.

El esquema final de este montaje completamente opcional es el siguiente:

esquema.PNG

Para manejar los pulsadores se requieren   los siguientes tres siguientes scripts escritos por el  Everlands:

LightMonitor.py

Este script en Python sirve  para atenuar la pantalla y cambiar a la cámara de retroceso. Recuerde, que es interesante usar un optoacoplador para detectar la marcha atrás con los la lógica se invierte … 0 = encendido 1 = apagado. Ademas, solo se debe ejecutar uno de estos scripts de “Monitor”, es decir  no puede estar ejecutando RearviewMonitor.py Y LightMonitor.py

CODIGO DE LIGTMONITOR.PY

#!/usr/bin/python

import RPi.GPIO as GPIO
import time
import subprocess, os
import signal
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
RearView_Switch = 14 # pin 18
Brightness_Switch = 15 # pin 16
#Extra_Switch = 1 # pin 3
GPIO.setup(RearView_Switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(Brightness_Switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)

print ” Press Ctrl & C to Quit”

try:

run = 0
bright = 0
while True :
time.sleep(0.25)

# esto restringe la secuencia de comandos para verificar las luces cada 1/4 de segundo. #No tiene sentido revisar 10.000 veces por segundo.

# Si se encienden las luces de marcha atrás, hacer esto:
if GPIO.input(RearView_Switch)==0 and run == 0:
print “Switching Rearview Camera On”
rpistr = “raspivid -t 0 -vf -h 480 -w 800”
p=subprocess.Popen(rpistr,shell=True, preexec_fn=os.setsid)
run = 1

Cuando las luces de marcha atrás se apagan, hacer esto:

if GPIO.input(RearView_Switch)==1 and run == 1:
os.killpg(p.pid, signal.SIGTERM)
print “Killing the reverse camera feed”
run = 0

# Estos dos bloques siguientes monitorean los faros o la luz del marcador y ajustan la #configuración de brillo de la pantalla.

if GPIO.input(Brightness_Switch)==0 and bright == 0:
print “Setting Brightness to 20” # 20 is about 10%
subprocess.call (“/usr/local/bin/backlight.sh 20”, shell=True)
bright = 1

if GPIO.input(Brightness_Switch)==1 and bright == 1:
print “Setting Brightness back to 255” #255 is 100%
subprocess.call (“/usr/local/bin/backlight.sh 255″, shell=True)
bright = 0

except KeyboardInterrupt:
print ” Quit”
GPIO.cleanup()

 

backlight.sh

Este script en cshell sirve par ajustar el nivel de luminosidad de la pantalla oficial qeu hemos conectado a la raspberry. Como es de esperar acepta  un parámetro que es precisamente un entero entre 0 y 255

CODIGO SCRIPT BACKLIGHT

#!/bin/bash

level=$1
#echo “level given is $level”

if [ $# != 1 ]; then
echo “USAGE: $0 brightness_level (0 to 255)”
exit 1
fi

if [[ $level -ge 0 && $level -le 255 ]]; then
#echo “level given is $level”
echo $level > /sys/class/backlight/rpi_backlight/brightness
echo “Screen brightness set to $level.”
exit 0
else
echo “Brightness level $level is out of range! (0 to 255 only)”
exit 1
fi

Para  probar el  script de retro-iluminación   ejecutar el script con el parámetro usando un valor entero menor que 255 ,por ejemplo  ./backlight.sh 128

 

ButtonMonitor.py

#!/usr/bin/python

import RPi.GPIO as GPIO
import time
import subprocess, os
import signal
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
RearView_Switch = 14 # pin 18
Brightness_Switch = 15 # pin 16
#Extra_Switch = 1 # pin 3
GPIO.setup(RearView_Switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(Brightness_Switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)

print ” Press Ctrl & C to Quit”

try:

run = 0
bright = 0
while True :
time.sleep(0.1)

#los siguientes cuatro bloques se utilizan para alternar entre las vistas de la cámara.

if GPIO.input(RearView_Switch)==0 and run == 0:
print ” Started Full Screen”
rpistr = “raspivid -t 0 -vf -h 480 -w 800”
p=subprocess.Popen(rpistr,shell=True, preexec_fn=os.setsid)
run = 1
while GPIO.input(RearView_Switch)==0:
time.sleep(0.1)

if GPIO.input(RearView_Switch)==0 and run == 1:
os.killpg(p.pid, signal.SIGTERM)
print ” Started Full Screen Transparent”
rpistr = “raspivid -t 0 -vf -op 128 -h 480 -w 800”
p=subprocess.Popen(rpistr,shell=True, preexec_fn=os.setsid)
run = 2
while GPIO.input(RearView_Switch)==0:
time.sleep(0.1)

if GPIO.input(RearView_Switch)==0 and run == 2:
os.killpg(p.pid, signal.SIGTERM)
print ” Started PIP Right side”
rpistr = “raspivid -t 0 -vf -p 350,1,480,320”
p=subprocess.Popen(rpistr,shell=True, preexec_fn=os.setsid)
run = 3
while GPIO.input(RearView_Switch)==0:
time.sleep(0.1)

if GPIO.input(RearView_Switch)==0 and run == 3:
print ” Stopped ”
run = 0
os.killpg(p.pid, signal.SIGTERM)
while GPIO.input(RearView_Switch)==0:
time.sleep(0.1)

# Estos tres bloques siguientes alternan entre las tres configuraciones de brillo.

if GPIO.input(Brightness_Switch)==0 and bright == 0:
print “Setting Brightness to 255”
subprocess.call (“/usr/local/bin/backlight.sh 255”, shell=True)
bright = 1
while GPIO.input(Brightness_Switch)==0:
time.sleep(0.1)

if GPIO.input(Brightness_Switch)==0 and bright == 1:
print “Setting Brightness to 128”
subprocess.call (“/usr/local/bin/backlight.sh 128”, shell=True)
bright = 2
while GPIO.input(Brightness_Switch)==0:
time.sleep(0.1)

if GPIO.input(Brightness_Switch)==0 and bright == 2:
print “Setting Brightness to 20”
subprocess.call (“/usr/local/bin/backlight.sh 20”, shell=True)
bright = 0
while GPIO.input(Brightness_Switch)==0:
time.sleep(0.1)

except KeyboardInterrupt:
print ” Quit”
GPIO.cleanup()

 

Respecto a la activación ,para probar la camara  ejecutar  ButtonMonitor.py.  Ahora una vez probado , tenemos que hacer  que se ejecute automáticamente . Para ello tenemos que editar el archivo /home/pi/.config/lxsession/LXDE-pi/autostart

En la ultima linea del script  añadir  /usr/local/bin/ButtonMonitor.py

autostart.PNG

 

IMPORTANTE : Deberemos copiar los tres  scripts  a la ruta /usr/local/bin  y conceder los permisos de ejecución  mediante el comando sudo chmod +x . La fuente original de los  scripts  es :https://gist.github.com/Everlanders

 

En el siguiente vídeo podemos ver todo el proceso de creación de un dispositivo basado en Raspberry PI  para uso exclusivo en un vehículo  usando  todos los componentes mencionados anteriormente.

 

Sencilla cámara trasera basada en Android


Las cámaras de atrás para  vehículos son sin duda una pieza fundamental en materia de seguridad , pues además  de ser muy  útiles para aparcar  se han demostrado  que son muy necesarias para reducir accidentes mientras transmiten una  imagen mas real de la parte atrás del vehículo  sin ángulos muertos  hacia el conductor .

Tal es su utilidad  que desde 2014 se requieren en todos los coches nuevos en los Estados Unidos, aunque  en Europa y Sudamérica aun todavía no es obligatorio, aunque muchos fabricantes incluso en gamas económicas lo incluyen  de serie .

Su su coche no dispone de cámara trasera , se puede hacer un sistema de relativamente bajo costo del mercado con muy poca inversión.

Aunque existen muchísimas  soluciones vamos  a ver tres bastante económicas:

Usar un  smartphone como cámara

En efecto, dado la potencia  y versatilidad de los smartphones actuales , realmente pueden usarse perfectamente estos  como cámaras IP portátiles , eso si ,  siempre que el smartphone que hace cámara y el smartphone que hace de visor  estén en la misma red, para lo cual puede ser muy interesante automatizar el proceso  como vimos en este post

Vamos a ver algunas aplicaciones para  tal cometido:

FreeRear ViewCam

Es una app que contiene publicidad donde el teléfono inteligente actual se utiliza como un monitor cerca del conductor y su “viejo terminal “, sin uso encuentra su lugar “atrás” y utiliza la funcionalidad de la cámara. A través de la aplicación, los dos teléfonos inteligentes están acoplados, la cámara de la “vieja” y el monitor de los “nuevos” teléfonos – que es la cámara trasera.
Como aspecto negativo la cámara de marcha y la función de grabación contiene publicidad  (hay que pagar  una pequeña cuota para anularlo en la versión avanzada).
Una versión Pro con características especiales está previsto para el futuro.

Es importante destacar que  la transmisión del flujo de vídeo consume  batería  fuertemente, en particular la de los teléfonos con cámara. Si desea transmitir un tiempo más largo conecte el teléfono a una fuente de alimentación y / o Apágala después de su uso.

Advertir a los usuarios de termimales SAMSUNG que el desarrollador  desaconseja el uso de dispositivos de Samsung con FreeRearviewCam. Debido a que una aplicación individual de directrices Android cualquier reconexión entre el transmisor y el receptor móvil requiere una nueva validación en el teléfono transmisor., lo cual o significa que el usuario durante cada nuevo uso de la aplicación en el coche debe  dar permiso para enviar :

Esta app utiliza FFmpeg para el procesamiento de vídeo. Se llama a un FFmpeg binario precompilado como proceso externo. Puede encontrar el código fuente utilizado para compilar el FFmpeg través https://www.freerearviewcam.com/ffmpeg

Los pasos para usar esta app son bien sencillos:

  • Descargar e instalar la app  en los dos terminales  desde  Google Play

Captura de pantalla

  • Ambos  terminales deben estar conectados por wifi a la misma red.
  • Pulsar Back Camara  en el terminal que va a hacer de cámara.
  • Pulsar Front Monitor en el terminal que va a hacer de visor :en unos segundos deberíamos ver en el terminal la imagen captada por la cámara.

IP Webcam

Esta app es muy similar la anterior  debiéndose usar  la misma app para ambas funciones : camera o visor.

Tan solo hay una diferencia con la pp anterior  y es el hecho de generar un token desde la cámara , que deberá ser introducida en el visor.

Captura de pantallaCaptura de pantallaCaptura de pantallaCaptura de pantallaCaptura de pantalla

Esta app en realidad no es para coche  pues utiliza el teléfono Android como cámara web, convirtiendo  un teléfono inteligente en  una cámaras de seguridad para el hogar, es decir una cámara de red  que  permite  ver la cámara en cualquier lugar , pero en realidad  puede servir para monitorizar también la vista trasera del coche
Lo que esta claro es que esta app transforma un  antiguos teléfono inteligente en una cámara ip , que puede usarse como  sistema de seguridad para el hogar, vigilando y protegiendo tu casa, cámara para mascotas, monitor de bebé,o cámara de coche

Este es el link en Google Play https://play.google.com/store/apps/details?id=nfo.webcam

Por cierto una app “profesional” similar a las dos anteriores,  y que puede  usarse no solo como cámara de vigilancia sino cámara trasera para coche, es la famosa aplicación de cámara de vigilancia wifi de Alfred Labs (https://play.google.com/store/apps/details?id=com.ivuu)

Otra solución : una cámara IP

Hemos hablado de cámaras wifi con terminales android , pero también existen camaras IP especificas para coche  y que nos van a permitir    visionar en nuestro terminal android la imagen captada por estas de un modo mas funcional y útil que una pantalla especifica.

La cámara opera  a  2.3-2.4ghz, Velocidad de fotogramas de 30 fps; rango de transmisión de 20 pies a 60 pies (hasta 100 pies bajo ninguna otra condición de obstáculo).

Esta camara  IP  es impermeable, a prueba de polvo y a prueba de choques; iluminación mínima del soporte menos de 0.5 señal digital del lux,de modo que usted podría conseguir una imagen clara incluso en la noche.

Es muy fácil de instalar y operar:

  1. Conecte el transmisor wifi y la cámara trasera a la luz de reserva o alimentación de 9V-30V,
  2. Descargue la aplicación “WIFIAV” en su teléfono (dispositivo inteligente) desde Google Play Store
  3. Instale la aplicación gratuita WiFiAV .
  4. Puede utilizar  el nombre predeterminado del dispositivo (WiFiAV) y la contraseña predeterminada (12345678), pero se puede personalizar con un nuevo nombre y contraseña de la manera que se desee.Hay un botón en el transmisor que reiniciará el transmisor a este valor predeterminado en caso de que cambie las cosas y olvide su nueva contraseña
  5. Obtenga una señal de imagen

Esta cámara   tampoco sirve para Samsung J7 S7 S8 pero soporta iPhone, iPad  auqnue no es compatible con la versión del teléfono que está por debajo de 4.0.

La pantalla de la aplicación llena toda la pantalla, pero puedes pellizcarla y arrastrarla para ajustarla a tu gusto. aproximadamente 3/4 de la pantalla para que sea realmente clara y nítida y  como novedad implementa lineas  de referencia.

.Captura de pantalla

El precio es lo único que nos puede disuadir  ; unos 62,99€ en Amazon pues por lo demás no nos  parece una mala opción.

Tercera solución; Rasberry pi con camara

Ya  que hemos hablado de usar un terminal Android o una cámara especifica ¿por que no usar nuestro propio hw?  Pues en efecto se puede gracias a la aplicación RearPi de la que hablaremos en un próximo post.

Disponible nueva version de Raspbian para Raspberry Pi


En efecto ya esta disponible  una nueva versión para Raspbian, el sistema operativo enfocado en  Raspberry Pi, con muchas mejoras pero sobre todo arreglos de errores.

Llegando poco más de dos semanas después de su última actualización lanzada el 18 de abril, Raspbian 2018-06-27 ya está disponible y trae consigo novedades interesantes.

Como siempre  esta nueva versión  se  descarga a partir de una nueva imagen descargada a partir del sitio  oficial Raspbian ,

En la url de descarga podrá  apreciar en la imagen de abajo ,   se mantienen tanto la imagen de la versión previa mínima (Lite) o la nueva version Stretch para escritorio:

raspbian.PNG

Lógicamente si la SD es suficiente grande , lo interesante es descargar la primera  en lugar de la versión mínima

Una vez decidida,  descargue la imagen correspondiente  en su ordenador y siga los siguientes pasos:

  • Inserte la tarjeta SD en el lector de tarjetas SD  de su ordenador comprobando cual es la letra de unidad asignada. Se puede ver fácilmente la letra de la unidad, tal como G :, mirando en la columna izquierda del Explorador de Windows.
  • Puede utilizar la ranura para tarjetas SD, si usted tiene uno, o un adaptador SD barato en un puerto USB.
  • Descargar la utilidad Win32DiskImager desde la página del proyecto en SourceForge como un archivo zip; puede ejecutar esto desde una unidad USB.
  • Extraer el ejecutable desde el archivo zip y ejecutar la utilidad Win32DiskImager; puede que tenga que ejecutar esto como administrador. Haga clic derecho en el archivo y seleccione Ejecutar como administrador.
  • Seleccione el archivo de imagen que ha extraído anteriormente de Raspbian.
  • Seleccione la letra de la unidad de la tarjeta SD en la caja del dispositivo. Tenga cuidado de seleccionar la unidad correcta; si usted consigue el incorrecto puede destruir los datos en el disco duro de su ordenador! Si está utilizando una ranura para tarjetas SD en su ordenador y no puede ver la unidad en la ventana Win32DiskImager, intente utilizar un adaptador SD externa.
  • Haga clic en Escribir y esperar a que la escritura se complete.
  • Salir del administrador de archivos  y expulsar la tarjeta SD.
  • Ya puede insertar la SD en su Raspberry Pi en el adaptador de micro-sd , conectar un monitor por el hdmi , conectar un teclado y ratón en los  conectores USB, conectar la  con un cable ethernet  al router  conectividad a Internet y finalmente conectar la alimentación  para comprobar que la Raspeberry arranca con la nueva imagen

La version previa basada  en  Raspbian Jessie ( Debian8 )  ya incluía  características y aplicaciones bastante interesantes así como algunos cambios más sutiles en el diseño del sistema, como por ejemplo,al iniciar ahora su Raspberry Pi que la pantalla inicial  cambiara  mostrando una imagen mas moderna .También  incluia  algunas aplicaciones como un navegador integrado , el  software  de RealVNC, para acceder a la Pi desde un escritorio remoto  , wallpapers nuevos para  decorar el fondo de escritorio de su Raspberry Pi,etc .

Ahora lo mas importante de  esta  nueva actualización es sin duda  la subida de version hacia Debian 9 ( recordemos que la versión anterior  era Debian 8)  trayendo  ademas un gran número de cambios y mejoras internas respecto a Debian 8 destacando quizás ademas de la subida de version el  incluir un  nuevo asistente de configuración que será mostrado en el primer inicio, lo cual  ayudará a los recién llegados a configurar el sistema Raspbian a su gusto sin tener que buscar los distintos paneles de ajustes.Por supuesto este asistente de configuración se ejecutará de forma automática en el primer inicio del sistema, permitiendo que los usuarios escojan su país, lenguaje, huso horario, configuren un perfil con contraseña, agreguen una red Wi-Fi e incluso instalen actualizaciones disponibles.

Esta nueva version llega con las últimas versiones de las aplicaciones y los paquetes incluidos en esta distribución, como, por ejemplo:

  • La última versión de Chromium 65 con enlaces actualizados de la Fundación Rasperry Pi y una nueva página de inicio.
  • Una versión offline de Scratch 2
  • Actualización del sintetizador de música Sonic Pi.
  • Los controladores de Bluetooth han sido actualizados, especialmente los de audio, que en vez de utilizar PulseAudio, con los problemas que eso supone, ahora utiliza Bluez-Alsa, mejorando notablemente tanto la calidad como el funcionamiento general del audio por bluetooth.
  • Un nuevo visor de PDF llamado qpdfView que funciona como software nativo remplazando el anterior Xpdf
  • La nueva aplicación de Software Recomendado, que funciona muy similar a la App Store, permitiendo que los usuarios revisen, seleccionen e instalen varias aplicaciones. La idea es mantener a Raspbian liviano para abastecer el almacenamiento limitado de la tarjeta SD, mientras que también permite a los usuarios instalar selectivamente cualquiera de los software gratuitos que recomienda usar.
  • etc

Otro cambio importante se encuentra a nivel de los usuarios del sistema, tanto pi, el usuario por defecto, que quedará vinculado al usuario principal, como sudo, que ahora pedirá siempre contraseña.

Por último, pero no menos importante, se ha solucionado la vulnerabilidad BROADPWN detectada hace dos meses en el chipset BCM43xx utilizado en los Raspberry Pi 3 y Zero W que podía permitir a un atacante ejecutar código remoto en el sistema.

Construya su propia mini SNES


En efecto una  mini SNES  se puede construir partiendo de una   Raspberry pi 2 o 3, el software de Recalbox y  si es posible con  un buen diseño de la caja que lo albergue. 

Gracias al trabajo desinteresado de AndreBougie, padre de familiar  con dos hijos con edad suficiente para interesarse en los videojuegos  este proyecto has sido posible.

Andre  tenía una  vieja  SNES  de los años 90  así que diseño una caja imitando la  Mini SNES para ejecutar Recalbox con un controlador de bluetooth para que sus hijos pudieran  disfrutar de los juegos con la tecnologia actual no teniendo  que lidiar con el inconveniente de los cables para los mandos  o mejores conexiones de vídeo y audio modernas  que funcionan  con los sistemas más actuales de la AV.

snes

 

Hardware Necesario

Si desea jugar con un SNES (o NES, Genesis, Game Boy, etcetera) juegos, necesitará RecalBox o un emulador similar OS para la Raspberry Pi. Asimismo por supuesto necesitara hardware  nada complejo de conseguir

Para construirse  su propia SNES  necesitara  los siguientes componentes para crear su propio recalbox:

  • Raspberry Pi 3  (o una Raspberry Pi 1 B o B+ o Raspberry Pi 2)
  • Una tarjeta microSD >= 16GB
  • Una fuente de alimentación micro USB de alta calidad | 2.5 AMP
  • Un cable HDMI
  • Un mando Sixaxis PS3, Dualshock 3, una copia de Shanwan o USB
  • Un adaptador Bluetooth de alta calidad
  • Una caja para Raspberry Pi  que imprimiremos con nuestra impresora 3D
  • Un teclado USB si no tienes un mando OOTB.

 

Software

Es hora de descargar e instalar recalboxOS.

Ir a https://archive.recalbox.com  para descargar la  ultima imagen de  recalbox.

Seleccionar la imagen de acuerdo  con su placa exacta (Raspberry Pi 3 , Raspberry Pi 1 B o B+ o Raspberry Pi 2)

 

Entonces use https://etcher.io/ para crear el fichero descargado del tipo img.xz en su  SD card:

  • Ir a etcher.io donde podemos descargar el software para cada sistema operativo
    pudiéndose e elegir aquí el sistema operativo que desea para Mac, linux o Windows
  • Una vez descargado el sw  instale en su equipo y  ejecutelo
  • Ahora seleccione la imagen de Recalbox que descargo anteriormente.
  • Seleccione la unidad de tarjeta sd donde desee crear la imagen
  • Luego haga clic en flash, y la imagen será transferido a su tarjeta SD

etcher.PNG

  • Una vez creada la imagen de Raspbian en la SD ,ya puede insertar la SD en su Raspberry Pi 3 en el adaptador de micro-sd , conectar un monitor por el hdmi , conectar un teclado y ratón en los  conectores USB, conectar la  con un cable ethernet  al router  conectividad a Internet y finalmente conectar la alimentación  para comprobar que la Raspberry arranca con la nueva imagen
  • Cuando la Raspberry  Pi 3 comienza a recibir energía el LED rojo marcado PWR se encenderá y el LED verde marcado OK o ACK en las versiones posteriores parpadeará en un patrón irregular para mostrar siempre que el Pi, seguidamente leera desde la tarjeta SD( tenga en cuenta que el BIOS para el RP3 esta almacenados en la tarjeta SD.
  • Al finalizar  ya tendrá  el recalbox en su Raspberry Pi
  • Si el arranque no tiene éxito,  no mostrará nada en la pantalla, por lo que si tiene problemas repita los pasos anteriores o pruebe con otra micro sd

 

Nota : Las ROMs(es decir volcados de memoria de los juegos )    a pesar  de tener bastantes años y no tener un valor comercial concreto , al estar sujetas a derechos de autor , no deberíamos publicar las  urls’s para su descarga , pero si se ha comprado con alguno  de estos juegos se supone podríamos hacer  uso de estas debido a los años transcurridos. Dada su gran popularidad estos volcados son  muy fácil  obtenerlos  con una sencilla búsqueda en Google  (por ejemplo emuparadise es una referencia) .

 

Configuración de mandos

Si tiene un mando PS3 con un dongle bluetooth, coja un cable micro usb, conecte el mando a recalbox y espere 10 segundos. Ahora puede desconectar el mando y presionar el botón HOME. !su mando está configurado!

Si tienes un mando USB de XBOX360, sólo enchúfelo  y ya estara listo

Si tiene un mando USB, conecta un  teclado USB, pulse ENTER en el frontal, selecciona “Configure Input” entry with S key, then select “Configure a controller” y pulsa la tecla S de nuevo. Sigue las instrucciones y mapee todas las opciones de la pantalla a cada botón de su mando. Los botones llevan el nombre de los mandos de Super Nintendo.

 

Instrucciones para construir la caja

 

Una vez que tenga Recalbox funcionando en  una Raspebrry Pi , es hora de dar forma a la electrónica con una caja que este a la altura  como la de  AndrewBougie,

Dada la dificultad obtener una carcasa a media , lo mas sencillo es imprimir  en 3D la caja que contendrá la Raspberry Pi (otra vía  si no se dispone de impresora 3D es usar una caja de platico  y practicar los agujeros correspondientes para el modelo de Raspberruy Pi  que vayamos a usar)

Un diseño  que imita muy bien a  una  NES es el de AndreBougie,  que podemos obtener de thinginverse  de   https://www.thingiverse.com/thing:1496674el cual esta adaptado perfectamente a la RPi

Si imprime este diseño , solo el autor nos pide    que compartamos  en Thingiverse y etiqueta @andrewbougie en Twitter y Instagram.

 

Para descargar el diseño   vaya pues a   https://www.thingiverse.com/thing:1496674

Las instrucciones de impresión son cortas, pero la impresión no puede ser más fácil si no tiene la configuración de apoyo hecha en.

  • La impresión superior [1] e inferior [1] con soportes habilitados.
  • Conexiones de controlador de impresión [2]
  • Botones de power/reset Print [2]
  • Botón de expulsión de impresión [1]

Los botones están separados para que pueda pintar o imprimir en un color diferente y luego pegarlos a la caja principal.

Puede usar  pegamento gorila súper adhesivo en gel para ABS y PLA.

caja_raspberry.PNG
La placa de la RPi  es  sostenida en lugar por 4 de los tornillos de arriba. Las dos mitades se sujetan con dos tornillos hacia la parte delantera de la caja. Basado en la utilización de este caso, esto debe ser suficiente para la mayoría de las personas.

Usted puede ver hay algún espacio vacío en el frente de la caja para la electrónica adicional en caso de que desee obtener más elegante con el diseño y agregar un led  en la parte delantera o añadir otros  (muy) pequeños para más funcionalidad.

 

 

 

Actualización de licencia
El autor ha recibido muchas consultas sobre el uso de este diseño comercialmente. Si quiere imprimir esta y venderla a otras  personas, siga adelante! La licencia es CC – atribución, por lo que solo pide que cite como la fuente de la original diseño de la caja  (AndreBougie,)  y el enlace a su página web andrewbougie.com.

 

 

Como enviar y recibir mensajes entre su dispositivo y el concentrador de IoT de Azure


Una  vez que tenemos   un   dispositivo compatible con Azure Iot  (  como por ejemplo una Raspberry pi  3 como vimos   , o  desde un ESP8266   como vimos también recientemente  ) , los hemos  configurado  y   hemos  implementado una aplicación de ejemplo para ejecutar en el dispositivo que envié envíe datos que   los sensores recogen a su hub de IoT , puede  que  queramos intentar gestionar la mensajería en la nube del  dispositivo IoT  

Precisamente  en este contexto  surge  iothub-explorer que pone a  nuestra disposición  varios  comandos para  facilitar la gestión de centro de IoT  permitiéndonos   supervisar mensajes de dispositivo a nube y enviar mensajes de dispositivo de nube.

Los mensajes de dispositivo a nube podrían ser datos de sensores de  un dispositivo  que recolecta y envía a su hub de IoT (   como por ejemplo una Raspberry pi  3 como vimos  en este post , o  desde un ESP8266   como vimos recientemente  en este post )   o   bien los mensajes hacia ese  dispositivo de nube  que  podría ser comandos que IoT hub envía al dispositivo como por ejemplo hacer  parpadear un LED conectado a ese dispositivo.

Resumidamente  hay pues dos usos  muy diferentes del explorador de iothub :

  • Para supervisar mensajes de dispositivo a nube.
  • Para enviar mensajes de dispositivo de nube.

Para ello necesitamos haber completado dos fases:

  1. Haber  configurado el dispositivo , configuración completa que cubre los siguientes requisitos:
    • Haber registrado una cuenta de suscripción a Azure ( la gratuita nos sirve) .
    • Haber registrado un centro de Azure IoT ( una vez mas  también existe una modalidad gratuita para probar el  servicio).
    • Una aplicación de cliente que envíe mensajes a su hub de IoT de Azure.
  2. Haber instalado el  explorador de iothub. (Instalar explorer iothub)

Instalación de iothub-explorer

Iothub Explorer es pues una herramienta CLI para administrar las identidades de los dispositivos en su registro de IoT hub, enviar y recibir mensajes y archivos desde sus dispositivos, y monitorear sus operaciones de centros de IoT. Ademas iothub-explorer también permite simular un dispositivo conectado a su hub de IoT.

En post  anteriores  vimos  como con  una Raspberry pi  3 , o  desde un ESP8266    los   configurábamos   e  implementamos sendas aplicaciones para ejecutar en esos dispositivos procesos para enviar datos de telemetria  procedente de sus  sensores a un  hub de IoT en la nube de Azure Iot Edge

Bien, tenemos nuestra aplicación corriendo en el dispositivo de Iot , por lo que necesitamos ahora instalar el  explorador de iothub. Desgraciadamente no esta disponible para ambiente windows , es decir solo lo podemos ejecutar por el momento en equipos con Linux instalado. Ademas esta herramienta requiere la versión 4.x o superior de Node.js para que funcionen todas las características.

Para instalar la última versión de la herramienta iothub-explorer, ejecute el siguiente comando en su entorno de línea de comandos:

npm install -g iothub-explorer

En caso de querer instalar esta utilidad en una Raspberry pi  desde Raspbian, al no estar disponible el comando npm  instalarlo siguiendo estos pasos:

cd ~
git clone https://github.com/azure/iothub-explorer

gitclone

Manejo de iothub-explorer

Una vez isntalada esta utilidad ,puede usar el siguiente comando para obtener ayuda adicional sobre todos los comandos de ihotub-explorer:

$ iothub-explorer help
Usage: iothub-explorer [options] <command> [command-options] [command-args]


  Commands:

    login                           start a session on your IoT hub
    logout                          terminate the current session on your IoT hub
    list                            list the device identities currently in your IoT hub device registry
    create <device-id|device-json>  create a device identity in your IoT hub device registry
    delete <device-id>              delete a device identity from your IoT hub device registry
    get <device-id>                 get a device identity from your IoT hub device registry
    import-devices                  import device identities in bulk: local file -> Azure blob storage -> IoT hub
    export-devices                  export device identities in bulk: IoT hub -> Azure blob storage -> local file
    send <device-id> <message>      send a message to the device (cloud-to-device/C2D)
    monitor-feedback                monitor feedback sent by devices to acknowledge cloud-to-device (C2D) messages
    monitor-events [device-id]      listen to events coming from devices (or one in particular)
    monitor-uploads                 monitor the file upload notifications endpoint
    monitor-ops                     listen to the operations monitoring endpoint of your IoT hub instance
    sas-token <device-id>           generate a SAS Token for the given device
    simulate-device <device-id>     simulate a device with the specified id
    help [cmd]                      display help for [cmd]

  Options:

    -h, --help     output usage information
    -V, --version  output the version number

Cada comando iothub-explorer tiene su propia ayuda ,la cual  se puede ver pasanDdo el argumento -help (ayuda)  al nombre del comando:

$ iothub-explorer help create

  Usage: iothub-explorer create [options] [device-id|device-json]
  
  Create a device identity in your IoT hub device registry, either using the specified device id or JSON description.

  Options:

    -h, --help                       output usage information
    -a, --auto                       create a device with an auto-generated device id
    -cs, --connection-string         show the connection string for the newly created device
    -d, --display <property-filter>  comma-separated list of device properties that should be displayed
    -l, --login <connection-string>  connection string to use to authenticate with your IoT Hub instance
    -k1, --key1 <key>                specify the primary key for newly created device
    -k2, --key2 <key>                specify the secondary key for newly created device
    -r, --raw                        use this flag to return raw JSON instead of pretty-printed output
    -x, --x509                       generate an x509 certificate to authenticate the device
    -dv, --daysValid                 number of days the x509 certificate should be valid for
    -t1, --thumbprint1 <thumbprint>  specify the primary thumbprint of the x509 certificate
    -t2, --thumbprint2 <thumbprint>  specify the secondary thumbprint of the x509 certificate

 

Puede obtener mas  información en  https://github.com/azure/iothub-explorer

Monitor dispositivo a nube mensajes

Para supervisar los mensajes que se envían desde el dispositivo a su hub de IoT, siga estos pasos:

  1. Abra una ventana de consola.
  2. Ejecute el siguiente comando:iothub-explorer monitor-events <device-id> --login "<IoTHubConnectionString>"
  3. Obtener y de su hub de IoT. Asegúrese de que haya terminado el tutorial anterior. O puedes probar a utilizar si tienes, y.<device-id><IoTHubConnectionString>iothub-explorer monitor-events <device-id> --login "HostName=<my-hub>.azure-devices.net;SharedAccessKeyName=<my-policy>;SharedAccessKey=<my-policy-key>"HostNameSharedAccessKeyNameSharedAccessKey

Enviar mensajes de dispositivo de nube

Para enviar un mensaje desde su hub de IoT en el dispositivo, siga estos pasos:

  1. Abra una ventana de consola.
  2. Iniciar una sesión en su hub de IoT ejecutando el siguiente comando:
    Bash Copia
    iothub-explorer login `<IoTHubConnectionString>`
    
  3. Enviar un mensaje a su dispositivo ejecutando el siguiente comando:
    Bash Copia
    iothub-explorer send <device-id> <message>
    

El comando hace parpadear el LED que está conectado a su dispositivo y envía el mensaje al dispositivo.

Nota:No es necesario para el dispositivo envie un comando ack separado a su hub de IoT al recibir el mensaje.