Proyecto de navidad: construya un piano con teclas de frutas

Veremos un bonito proyecto para que lso mas pequeños se diviertan estas vacaciones realizando un mini-organo donde las teclas han sido reemplazadas por fritas o verduras


No espere poder realizar una sonata para piano de Beethoven en este proyecto , pero  hoy vamos a cambiar de registro  en cuanto los contenidos que compartimos en este blog ,   enfocándonos en  un proyecto  muy sencillo  pensado sobre  para que los mas pequeños aprendan electrónica  y programación de un modo divertido   usando la excusa   del  las frutas para activar 8 notas  ¡y, no se preocupe si no tiene plátanos en este momento también  debería funcionar con cualquier fruta o verdura !.


El fundamento del circuito es a realmente  sencillo  pues basta  conectar a  cada fruta con una resistencia de 2,2 Mohmios ( o similar ) a una entrada analógica diferente y usar una referencia de GND como polo común    y con esto ya tenemos  junto con cualquier Arduino los fundamentos para hacer el piano frutal pues la electricidad  fluyera cuando toquemos la fruta para cerrar el circuito y, cuando lo haga, lo leeremos desde  una  Placa Arduino  pudiendo desencadenar un evento  que en este caso, sera  reproducir una nota  que sacáramos por un pin digital

Es decir cuando , usando un  pin digital de  Arduino configurado como entrada, si lo conectamos  a  un objeto con cierta resistencia , esto hará que la resistencia entre esta  y masa se desplace hacia GND (es decir a 0 V) porque el circuito está completo , el programa  leerá ese valor binario ( es decir un cero lógico)  y este evento provocara   que  Arduino reproduzca  una nota.

Para hacer el piano  de frutas  necesitará:

  • Una placa Arduino, puede usar Arduino  UNO pero también puede usar cualquier placa compatible  procedente del mercado oriental .
  • Ocho  resistencias de alto valor  de  2,2 Mega ohmios, aunque  debería funcionar con cualquier valor  entre 1 Mega-ohmios  y 10 Mega-ohmios . Si no tiene  estos valores también puede asociar varias en serie o en paralelo  hasta obtener  valores parecidos (al usar 8 entradas al menos necesitaremos pues 8 resistencias)
  • Una resistencia de 220 ohmios para no proteger  el altavoz ,( si es un altavoz de 1W  o mas puede  prescindir de esta).
  • Un altavoz de 8 ohmios.
  •  Idealmente una placa de prueba para  conectar fácilmente los cables y las resistencias al Arduino.
  • Cables rígidos  para las conexiones.
  • !Su fruta o verdura favorita!( cuanto mas agua tenga mejores resultados obtendremos)

En cuanto al circuito , vamos a usar un Arduino Uno  configurando los pines digitales 2,3,4,5,6,7 y 8, como entradas digitales  y el pin digital 12 como salida digital.  También se puede usar cualquier placa compatible  con Arduino  procedente del mercado oriental y por supuesto también   una placa  Netduino en  todas sus variantes ( tendra que adaptar el sw)

El circuito es  muy sencillo  pues  consintiendo básicamente   en   8  entradas      y una   salida.   A las entradas digitales conectaremos 8  resistencias de pull-up de 2,2 Meg Ohm entres estas y VCC(+5V), conexión esta ultima que obtendremos directamente de la propia placa de Arduino. Como se puede deducir,  estas  entradas digitales se conectan   a  una fruta  clavando el hilo en esta . Cuando tocamos esta  fruta ,al estar conectada  a  una entrada de Arduino , llevaremos  a nivel lógico BAJO etas   al conectar  a tierra cada fruta  que a su vez esta  conectada a cada entrada digital.

El circuito se complementa con una resistencia de  220 ohmios, conectada desde el pin 12 a un altavoz de 8 ohmios. Esta resistencia perfectamente se puede suprimir si conecta directamente un altavoz  y no un amplificador   

En cuanto al sketh o programa para nuestro Arduino vamos a usar el ejemplo de E.Ballew escrito en Junio de 2018 que toma prestados  las librerías de tono de Tom Igoe (puede ver mas  ejemplos  en http://arduino.cc/en/Tutorial/Tone ) utilizando  sus archivos pitches.h  con una  clausula  include     para las frecuencias de las notas.

Este código implementa una sola octava de un piano simple, es decir solo reproduce  8 sonidos diferentes .

En primer lugar en el bloque Setup  se definen los pines de entradas digitales  asi como sus correspondientes notas para lo cual se define una matriz  unidimensional llamada  digInput   

int digInput[] = { 2, 3, 4, 5, 6, 7, 8, 9 };

También se define  cual va a ser el pin digital que va a usarse como salida  para conectar el altavoz ( el pin 12)

int toneOut = 12;

Definida el array  de los pines digitales  que usaremos como entrada digital  y la variable para el pin digital de salida    simplemente  toca asignar esta como entradas   mediante la clausula  pinMode(xx INPUT )  recorriendo el array  con un  bucle for  . También para  terminar definiremos  la salida  con la clausula pinMode(yy, OUTPUT);  resultando el siguiente código:

void setup() { ;

 for (int i = 0; i < numKeys; i++)

{ pinMode(digInput[i], INPUT);

}

pinMode(toneOut, OUTPUT); }


En cuanto al   bucle principal  leemos  mediante bucle el estado de las 8 teclas de frutas mediante la instrucción sensorVal = digitalRead(digInput[j])    ,  de modo   que si detectamos un nivel bajo   reproducimos la nota asociadas a  esa tecla  mediante la instrucción  tone(toneOut, myNote[j]); 

Asimismo  debemos  evitar  falso sonidos  para lo cual  incrementaremos la variable kepressed ,que inicializamos a cero en cada pasada del bucle para  silenciar el altavoz en cuanto sepamos que no se ha pulsado ninguna fruta  

int keypressed = 0;

……

if (sensorVal == LOW)

{ ++keypressed;

// increment keypressed

digitalWrite(13, HIGH);

tone(toneOut, myNote[j]);

}

if (keypressed == 0) { noTone(toneOut); }


También  a  efectos de depuración   realizamos un retardo entre cada interacción de 250ms  mediante la clausula  delay(250);

Al  bucle principal  ademas   efectos de depuración se añade una salida a de monitor en serie (que deberemos configurar  a 9600  baudios   )  , para probar los 8 niveles lógicos correspondientes   a las 8 entradas binarias .


El código final resultante  de  todas las consideraciones anteriores es el siguiente:

#include "pitches.h"

int numKeys = 8;
int digInput[] = { 2, 3, 4, 5, 6, 7, 8, 9 };
int myNote[] = { NOTE_C4, NOTE_D4, NOTE_E4, NOTE_F4, NOTE_G4, NOTE_A4, NOTE_B4, NOTE_C5 };
int toneOut = 12;

void setup() {
  // arrnacar conexion serie
  Serial.begin(9600);
  // Configurar  pines  digitales como entrada 
  for (int i = 0; i < numKeys; i++) {
    pinMode(digInput[i], INPUT);
  }
  pinMode(toneOut, OUTPUT);
}

void loop() {
  
  int keypressed = 0;
  for (int j = 0; j < numKeys; j++) {
    int sensorVal = digitalRead(digInput[j]);
    String outStr = String("K");
      outStr = String(outStr + j);
      outStr = String(outStr + ": ");
      outStr = String(outStr + sensorVal);
    if (sensorVal == LOW) {
      ++keypressed;  // incrementar keypressed
      digitalWrite(13, HIGH);
      tone(toneOut, myNote[j]);
    }
    //outStr = String(outStr + ":");
    //outStr = String(outStr + keypressed);
    Serial.print(outStr);
    Serial.print("\t");
  }
  Serial.println("");
  if (keypressed == 0) {
    noTone(toneOut);
  }
  delay(250);
}






Fichero pitches.h

/*************************************************
* Public Constants
*************************************************/


#define NOTE_C4 262

#define NOTE_D4 294

#define NOTE_E4 330
#define NOTE_F4 349

#define NOTE_G4 392

#define NOTE_A4 440

#define NOTE_B4 494
#define NOTE_C5 523

Obviamente una vez hayamos depurado el circuito no necesitamos la salida por consola del estado de las entrada binarias , por lo que el programa puede quedar reducido las
siguientes lineas:


#include “pitches.h”

int numKeys = 8;
int digInput[] = { 2, 3, 4, 5, 6, 7, 8, 9 };
int myNote[] = { NOTE_C4, NOTE_D4, NOTE_E4, NOTE_F4, NOTE_G4, NOTE_A4, NOTE_B4, NOTE_C5 };
int toneOut = 12;

void setup() {
for (int i = 0; i < numKeys; i++) {
pinMode(digInput[i], INPUT);
}
pinMode(toneOut, OUTPUT);
}

void loop() {
int keypressed = 0;
for (int j = 0; j < numKeys; j++) {
int sensorVal = digitalRead(digInput[j]);
if (sensorVal == LOW) {
++keypressed; 
digitalWrite(13, HIGH);
tone(toneOut, myNote[j]);
}
}
if (keypressed == 0) {
noTone(toneOut);
}
delay(250);
}









Por cierto el concepto , aunque sirve para emular un mini órgano también puede servir para emular un miniteclado , un pulsador especial , o cualquir cosa que ncesiste ser activado mediante algo diferente

Como construir display gigantes

Veremos que es bastante fácil construir un display del tamaño que necesitemos con un poco de bricolaje y Arduino


En efecto podemos construir nosotros mismos nuestros propios displays leds  de la medidas que necesitemos  simplemente con Arduino ;Netduino o  Raspberry Pi y por supuesto  un poco de bricolaje

Un dígito led  en realidad esta formado por  7 segmentos  o mas   y es un componente que se utiliza para la representación de caracteres o números en muchos dispositivos   , debido en gran medida a su simplicidad y bajo coste

Aunque externamente difiere considerablemente de un led típico, internamente están constituidos por una serie de leds con unas determinadas conexiones internas, estratégicamente ubicados de tal forma que forme un número ‘8’.

Cada uno de los segmentos que forman la pantalla están marcados con siete primeras letras del alfabeto (‘a’-‘g’), y se montan de forma que permiten activar cada segmento por separado, consiguiendo formar cualquier dígito numérico

Por ejemplo para representar el numero 15 lo conseguiremos , activando los segmentos B y C del primer dígito  y  los segmentos AF,G C y D  para el segundo dígito

 

15

 

Montaje

Ahora que entendemos como funciona un display de 7 segmentos, la idea  es realmente sencilla  pues básicamente  consiste en auto-construirnos  dicho dígito  pensando en los  7 segmentos    de los que lo compone   usando para ellos  7 leds  acoplados a un caja  con    difusores para todos los leds  ¿sencillo verdad ?

Para el montaje  necesitaremos los siguientes elementos:

  • Trozos de cartón
  • Trozos de cartulina
  • 7 LEDs difusa
  • 7 resistencias de 50 ohm
  • Cinta carrocera (usada por los pintores )
  • Pegamento
  • Soporte con Esquema del display
  • Cables
  • Arduino uno
  • Un trozo de papel contacto

Una vez que tengamos el dígito compuesto por 7 los leds lo conectaremos a 7 salidas binarias de Arduino  siguiendo el siguiente esquema de conexiones;

  • PD2  segmento a;
  • PD3 segmento b
  • PD4 segmento c
  • PD5 segmento d
  • PD6 segmento e
  • PD7 segmento f
  • PD8 segmento g

Y para facilitar la gestión del display  también dos pulsadores

  •  PP1
  • PB2

Y finalmente   en la siguiente imagen podemos ver el esquema donde se aprecian claramente las resistencias de 50ohm para los leds   y las de 10 K para los pulsadores

 

arduino

 

Según la configuración ya decidida  para gestionar el display solo necesitamos mapear  cada combinación  de segmentos asociado a cada numero que queramos representar  ,  y por medio delos pulsadores incrementamos o decrementamos una unidas representando el siguiente o el anterior digito respectivamente

Como en muchos otros casos ,es de señalar que debemos controlar los rebotes en las pulsaciones para lo cual leeremos varias veces el valor de la entrada hasta asegurarnos que el valor esta estables.

 

El código arduino es bien sencillo

 

//definiciones de segmentos con las primeras pines digitales puerto A

const int a = 2;
const int b = 3;
const int c = 4;
const int d = 5;
const int e = 6;
const int f = 7;
const int g = 8;

//Definición de pines de entrada para los pulsadores
const int botonIncremento = 9;
const int botonDecremento = 10;

//valor para controlar los antirrebotes

const int tiempoAntirebote = 10;

//Al encender parece este numero

int cuenta = 0;  
int estadoBotonIncremento;
int estadoBotonAnteriorIncremento;
int estadoBotonDecremento;
int estadoBotonAnteriorDecremento;

boolean antirebote(int pin) {
int contador = 0;
boolean estado;
boolean estadoAnterior;

do {
estado = digitalRead(pin);
if(estado != estadoAnterior) {
contador = 0;
estadoAnterior = estado;

}
else {
contador = contador + 1;
}
delay(1);
} while(contador < tiempoAntirebote);

return estado;

}

void actualizarNumero() {
switch(cuenta) {
case 0:     // digito 1
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, HIGH);
digitalWrite(f, HIGH);
digitalWrite(g, LOW);
break;

case 1:// valor 2

digitalWrite(a, LOW);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, LOW);
digitalWrite(e, LOW);
digitalWrite(f, LOW);
digitalWrite(g, LOW);
break;
case 2:
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, LOW);
digitalWrite(d, HIGH);
digitalWrite(e, HIGH);
digitalWrite(f, LOW);
digitalWrite(g, HIGH);
break;
case 3: //digito 3
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, LOW);
digitalWrite(f, LOW);
digitalWrite(g, HIGH);
break;
case 4://digito 4
digitalWrite(a, LOW);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, LOW);
digitalWrite(e, LOW);
digitalWrite(f, HIGH);
digitalWrite(g, HIGH);
break;
case 5: //digito 5
digitalWrite(a, HIGH);
digitalWrite(b, LOW);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, LOW);
digitalWrite(f, HIGH);
digitalWrite(g, HIGH);
break;
case 6: //digito 6
digitalWrite(a, HIGH);
digitalWrite(b, LOW);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, HIGH);
digitalWrite(f, HIGH);
digitalWrite(g, HIGH);
break;
case 7: //digito 7
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, LOW);
digitalWrite(e, LOW);
digitalWrite(f, LOW);
digitalWrite(g, LOW);
break;
case 8: //digito 8
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, HIGH);
digitalWrite(f, HIGH);
digitalWrite(g, HIGH);
break;
case 9: //digito 9
digitalWrite(a, HIGH);
digitalWrite(b, HIGH);
digitalWrite(c, HIGH);
digitalWrite(d, HIGH);
digitalWrite(e, LOW);
digitalWrite(f, HIGH);
digitalWrite(g, HIGH);
break;
}

}

 

//programamos lo 7 primeros pines del puerto A como salida 

//y los dos primeros del puerto B como entrada 
void setup() {
pinMode(a, OUTPUT);
pinMode(b, OUTPUT);
pinMode(c, OUTPUT);
pinMode(d, OUTPUT);
pinMode(e, OUTPUT);
pinMode(f, OUTPUT);
pinMode(g, OUTPUT);
pinMode(botonIncremento, INPUT);
pinMode(botonDecremento, INPUT);
}
void loop() {
estadoBotonIncremento = digitalRead(botonIncremento);
if(estadoBotonIncremento != estadoBotonAnteriorIncremento) {
if(antirebote(botonIncremento)) {
cuenta++;
if(cuenta > 9) {
cuenta = 9;

}
}
}
estadoBotonAnteriorIncremento = estadoBotonIncremento;

estadoBotonDecremento = digitalRead(botonDecremento);

if(estadoBotonDecremento != estadoBotonAnteriorDecremento) {
if(antirebote (botonDecremento)) {
cuenta–;
if(cuenta < 0)

{
cuenta = 0;
}
}
}
estadoBotonAnteriorDecremento = estadoBotonDecremento;

actualizarNumero();
}

 

 

Y finalmente en este vídeo del canal  MFH de youtube  podemos ver el montaje en funcionamiento

 

Simple modificación de un mando dual para automatización del hogar

Veremos como modificar un sencillo mando de RF para posibilitar el telemando o la operación manual


En el post de hoy vamos a ver como con una  simple  modificación del circuito comercial (concrétamente el kit jm80) de un receptor de un mando dual podemos convertir el circuito de radio control de un sistema eléctrico del hogar ( persiana eléctrica,puerta eléctrica, etc)  en un elemento  que nos abra la puerta a la automatización del hogar gracias  a que nos va a ser posible el control por tres vías posibles:

  • A distancia por el mando
  • Por control manual   por si perdemos el  mando o deseamos inhibir este
  • Por control mediante  un circuito auxiliar (Arduino).

 

conjunto.PNG

El circuito que vamos a usar es un económico kit  de 12€ que se puede comprar en Amazon aqui  .Sus características mas importantes son las siguientes:

  • 433 MHz, 2 Relay, alrededor de 150 metros
  • Incluye palanca/momentáneo/Latching chip
  • Min Voltaje/Corriente de conmutación: 5VDC 100 mA.
  • Max conmutación Voltaje: 110 VDC 240 VAC. Max Corriente de conmutación: 15 A.
  • Potencia de conmutación nominal: 1,875 va 360 W para cada relé
  • Canal: 2 canales
  • Voltaje de funcionamiento: DC 12 V
  • Corriente estática: < = 7ma electrónico contacto
  • Capacidad: 7 A 240 V AC, 10 A 24 V DC
  • distancia de transmisión: 150 – 200 metros (sin obstáculos)
  • codificación tipo: soldado modificar DIP chip de cambio de modo de control
  • Frecuencia de operación: 433 MHz
  • Modos de control: Elija con cierre o non-latching por el cambio un chip DIP carga nominal: 2000 W
  • Dimensión (LWH) (mm): 55 x 40 mm

 

Un  característica interesante para el caso de que montemos varias unidades es que es posible configurar receptor  y transmisores para otras combinaciones modificando los puentes de la combinación de acceso (por fiabilidad han sustituido el conmutador por puentes)

 

placas.PNG

Este kit incluye ingeniosamente tres chips que insertando alguno de estos  en el zócalo DIL del CI  del receptor permiten operar el receptor en tres  modos muy diferentes:

  • Tipo  Latch : al pulsar un botón,el relé interesado se conecta  hasta que pulse el otro. Muy parecido a los botones de velocidad de los ventiladores  que conectan otro bobinado ( y desconectan el anterior ) al activarlo
  • Tipo de non-latch (momentáneo): al pulsar un botón el relé interesado se conecta hasta que  usted lo libera. Al igual que el botón de claxon, si usted pulsa el claxon suena hasta que lo libera ;
  • Tipo de auto-latch (botón): al pulsar un botón el relé interesado se conecta  hasta que usted pulsar una vez más para desconectarlo.Este modo esta claramente ideado por ejemplo para abrir o cerrar la persiana eléctrica completamente sin necesidad de tener que estar pulsando el botón .También es útil para activar  o desactivar a distancia cualquier dispositivo como por ejemplo una TV, un equipo hifi,etc   funcionando en resumen como  la clave de potencia de mando a distancia de TV: al pulsar  TV, se enciende pero si se pulsa  de nuevo, TV se  apaga. Es esta configuración la que viene predefinida en el kit ,por lo que si necesita modificar el tipo de operación en non-latch o latch tendrá que cambiar el chip  que acompaña el kit

placareles1.png

Centrándonos en el receptor que  como vemos opera a 12 V DC, este cuenta con dos reles de  7A (220V).Cada relé cuenta con  un contacto común  y dos contactos móviles : uno abierto (correspondiente a la operación ) y  otro  cerrado (correspondiente al reposo).

En el siguiente esquema podemos ver claramente su significado:

esquema reles.PNG

Aunque el contacto en reposo(CB)   puede servir para muchas aplicaciones, para el  uso “normal ” se  utilizaran los contactos de trabajo( AB) para activar o desactivar las cargas a las que los conectemos estos , como por ejemplo el motor de una persiana eléctrica que tiene dos bobinados ( uno para subida y otro para bajada)

Este equipo , aun como vemos es muy versátil ,sin embargo  no incluye operación manual en el propio receptor ,ni tampoco  ningún tipo de tele-operación para poder activar los reles por medio  de algún automatismo  (Arduino ;Netduino ,Raspberry Pi,etc),lo cual puede ser un inconveniente  con vistas a automatizar nuestro hogar

La  modificación que se propone a este estupendo Kit es la posibilidad de operarlo via diferente a la de radio ,pero al no tener terminales específicos con objeto de no dañar la electrónica de RF ,el latch o los transistores de salida, lo  mejor es operar directamente  con los bobinados de los reles.

La modificación probada para este kit , no puede ser mas sencilla pues simplemente consiste en localizar los bobinados de los reles (diferentes del positivo)   y  soldar  a estos  sendos cablecillos  permitiéndonos  usarlos si lo conectamos a la masa general  tanto para operar manualmente los reles como para tele-operacion por otro circuito

En la siguiente imagen podemos ver dos cablecillos grises soldados a la placa para el control manual de los reles:

 

IMG_20160904_185521[1].jpg

 

En cuanto a las conexiones de los hilos de control  obtenidos, el conexionado no puede ser mas sencillo ,pues  sólo conectaremos los hilos a dos pulsadores (normalmente abiertos)  y después uno  común  que ira a ambos pulsadores  y a la masa común de la alimentación(ov)

 

IMG_20160904_185441[1].jpg

Obviamente los hilos obtenidos  de la conexión de los bobinados de los relés no solo sirven para la operación por pulsadores , también puedes ser utilizados para la tele-operación del circuito vía un circuito auxiliar( por ejemplo constituido un Arduino con un  transistor de pequeña potencia )

Finalmente  para terminar el montaje se recomienda usar dos regletas de terminales  diferenciadas:

  • Una de muy baja tensión para los tres terminales ( los dos relés y la masa) para el tele-control   o para  el accionamiento manual de los pulsadores
  • Una de Baja Tensión  de  al menos 5 terminales para la alimentación del montaje y para apoyar las conexiones de  utilización del receptor ( en la imagen se ve como se alimenta desde ahí a  la fuente del receptor)

 

IMG_20160904_191156[1].jpg

 

Si le interesa hace esta mejora  , el kit que hemos usado en este post lo puede conseguir en Amazon por menos de 12€  , aunque como se ha comentado tendrá que soldar dos cablecillos a la placa ( puede perder la garantía del producto así que se recomienda probarlo antes de emprender esta sencilla modificación) ,pero la mejora sera bastante ostensible pues abre un abanico inmenso de posibilidades