Controlando placas de IoT desde javascript

Vamos a ver como es posible controlar un ARDUINO ( y por supuesto todas su extensiones de E/S) desde javascript usando node.js,


Node.js framework  fue  creado por Bocoup para controlar placas de desarrollo en una configuración de host-cliente   aunque   realmente su uso mayoritario sea como plataforma web   siendo    Johnny-Five la plataforma open  source de Robótica e IoT de JavaScript 

En realidad existen diferentes  plataformas donde se puede ejecutar el programa Johnny-Five :

  • En un entorno Linux a bordo: beagleBone Black,Chip,Intel Galileo gen 1,Intel Galileo Gen 2,Intel Edison Arduino,Intel Edison Mini, SparkFun Edison GPIO Block,SparkFun Arduino Block, Intel Joule 570x (Carrier Board),Linino One,pcDuino3 Dev Board,Raspberry Pi 3 Model B, Raspberry Pi 2 Model B. Raspberry Pi Zero,Raspberry Pi Model A Plus,Raspberry Pi Model B Plus, Raspberry Pi Model B Rev 1, Raspberry Pi Model B Rev 2, Tessel 2
  • En una máquina host conectada (a través de Serial USB o Ethernet) a un cliente.: Arduino Uno,SparkFun RedBoard, On a host machine communicating over Bluetooth to the client. Arduino Uno,Arduino Leonardo, Arduino Mega, Arduino Fio,Arduino Micro,Arduino Mini,arduino Nano,Arduino pro Mini,Boatduino,chipKit uno32,Spider robot Controller,DfRobot Romeo,Teensy 3,
  • En una máquina host que se comunica por wifi al cliente: Electric Imp April, pinoccio Scout, Particle Core ( Spark Core) ,Particle Photon, Sparkfun Photon RedBoard
  • En una máquina host que se comunica a través de Bluetooth al cliente :Blend Micro v1.0,LightBlue bean,

Johnny-Five como vemos hacer un énfasis especial en la robótica, pero tambien puede hacer muchas cosas diferentes con el software.De hecho ha existido durante hacer  más tiempo que la mayoría de los marcos de JavaScript para hardware . Ademas iene una API clara  y “fresca” ,ambas cosas ideales para los principiantes de hardware.

Lanzado porBocoup en 2012, Johnny-Five esta mantenido por una comunidad de desarrolladores de software apasionados e ingenieros de hardware. De hecho más de 75 desarrolladores han hecho contribuciones para construir un ecosistema robusto, extensible y muy versatil.

 

Hola Mundo! 

A los microcontroladores y las plataformas SoC nos gusta decir “Hola mundo” con un simple LED parpadeante, así  que veamos en primer lugar un ejemplo como lo hariamos  usando el Ide clásico  de Arduino

Como vemos en la imagen ,conectaremos un led entre el pin 13  y masa , respetando la polaridad (el ánodo al pin13 y el cátodo o pin corto a masa )

Para  hacer destellear el citado led,  estos son los pasos básicos  que tenemos que seguir en nuestro sketch  programandolo desde el IDE de Arduino:

  1. Configurar el pin 13 (con LED incorporado) como una SALIDA
  2. Establecer el pin 13 ALTO para encender el LED
  3. Esperamos 500 ms (medio segundo)
  4. Establecer el pin 13 BAJO para apagar el LED

Y este es el código completo para ejecutar desde el Ide de Arduino:

void setup() {
pinMode(13, OUTPUT);    
}
void loop() {
digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);  
delay(500);
}

Y ahora vamos a ver el mismo ejemplo , pero ejecutandolo en Javascript por medio de node-js,

Desgraciadamente  si usamos un Arduino o alguno de sus variantes (Arduino Uno,SparkFun RedBoard, On a host machine communicating over Bluetooth to the client. Arduino Uno,Arduino Leonardo, Arduino Mega, Arduino Fio,Arduino Micro,Arduino Mini,arduino Nano,Arduino pro Mini,Boatduino,chipKit uno32,Spider robot Controller,DfRobot Romeo,Teensy 3,)   necesitaremos que el programa JavaScript se ejecute en una máquina host que ejecute Node.js. de modo que el programa transmitirá instrucciones básicas de E / S a la placa a través de una interfaz  serie USB , que actuara como un cliente ligero .

El método host-cliente implica la comunicación a través de una API común entre el host y el cliente. El marco Node.js usado con Arduino y placas similares , Johnny-Five, se comunica (de forma predeterminada) con las placas  utilizando un protocolo llamado Firmata, protocolo que permite que los hosts (computadoras) y los clientes (microcontroladores) intercambien mensajes de ida y vuelta en un formato basado en mensajes MIDI. El protocolo Firmata especifica cómo deben ser esos mensajes de comando y datos. La implementación de Firmata de Arduino proporciona el firmware real que puede poner en su tablero para hacer que “hable” Firmata. Toma la forma de un boceto de Arduino que sube al tablero.

Firmata es lo suficientemente popular como para que los bocetos de Firmata que necesita vengan empaquetados con el IDE de Arduino asi que bastara con subir este a Arduino una única vez  ya que  el código javascript  correra en el host usando node.js.

Puede seguir estos pasos para cargar el interfaz correcto de Firmata en su Arduino  para que se pueda utilizar como cliente en una configuración de host-cliente:

Resumidamente estos son los pasos previos para ejecutar el   mismo  ejemplo del led parpadeante  que hemos visto pero   en  javascript en una placa Arduino;

  • En primer lugar  conectar  su Arduino  mediante USB a  su ordenador
  • Lanzar el IDE de Arduino.
  • Asegurarse que esta configurada la version de su placa,  así como el puerto COM  virtual al que esta conectado
  • Acceda al menú Archivo> Ejemplos> Firmata
  • Seleccione StandardFirmataPlus de la lista y despliegue este sw sobre su Arduino

  • Ahora Instale Node.js   en su pc . Funciona  con ultima version 11.3.0  de  64 bit que incluye  npm 6.4 (no olvidar de chequear que se instalen  otros componentes )Este es el link de descarga https://nodejs.org/en/download/ 
  • En la instalación de Node.js, repetimo  no debemos olvidar de chequear que se instalen  otros componentes  pues  con ellos se   instalara automáticamente
    • Python 2.7.3 (http://www.python.org/getit/releases/2.7.3/)
    • Visual Studio Express 2010 de 32 bits (con  las dependencias de C ++)
    • El comando npm
    • Alternativamente si dispusiésemos de npm podríamos instalar ambos entornos  con  npm --add-python-to-path install --global --production windows-build-tools
  • Este pasos anterior ( instalacion de componentes ) es  innecesario  si chequeamos en la instalación  de node.js  pues se instalaran  esos componentes  automáticamente
  • Ahora instalar node-gyp  medianete  el comando  npm install -g node-gyp (esto instalará node-gyp globalmente)                          
  • Ya puede  crear su primer proyecto Johnny-Five, por lo que en primer lugar cree un directorio para él e instale el paquete framework npm, como se muestra en la siguiente lista:
    • < mkdir hello-world
    • < cd hello-world
    • < npm install johnny-five
  • Ejecute  el comando “npm install johnny-five” desde la carpeta del proyecto
  • Ya por fin podemos crear el fichero javascript  con su editor de texto  que contendrá el código en javascript  . 

Realmente estos son los pasos  que tenemos que seguir:

  1. Requerir el paquete johnny-five
  2. Inicializar un nuevo objeto Board que represente a su placa .
  3. Esperar a que el tablero dispare el evento listo
  4. Crear una instancia de un objeto LED en el pin 13 (el pin LED incorporado de Uno)
  5.  Hacer que el LED parpadee cada 500 ms

Este es el código en js :


const five = require(‘johnny-five’);
const board = new five.Board();
board.on(‘ready’, () => {
 const led = new five.Led(13);
   led.blink(500);
});


Guarde el archivo como hello-world.js  y  conecte su Arduino  a un puerto USB en su ordenador  si aún no está conectado.

En una terminal  de windows  vaya al directorio del proyecto y ejecute este comando:

<node hello-world.js


Verá una salida como la siguiente en su terminal ejecutando hello-world.js en una terminal

 

 

Si el LED incorporado parpadea ,!enhorabuena !  !acaba de controlar una placa Arduino con JavaScript!  ¿a que es realmente sencillo?.

Aunque en el caso de la familia Arduino tiene la innegable penalización de necesitar un host para operar , la ventajas de este  modelo son evidentes pues no tenemos que estar constantemente compilando  y  subiendo el sketch con el ide de Arduino ya que el programa corre en host . Ademas  podemos usar un simple editor de texto para cambiar el código en javascript fácilmente

Asimismo el lenguaje javascript ha ido evolucionando hasta un ritmo que no podemos imaginar   incluyendo muchas características que no son soportadas de forma directa desde Arduino

Por ultimo mencionar la autentica potabilidad del código , pues el código que hemos visto en el ejemplo podremos usarlos  en múltiples plataformas  tan diferentes como Raspberry pi, Intel Edison , etc usando siempre el mismo código fuente aun siendo soportado por placas muy diferentes ¿ a que es interesante?

 

 

Placas soportadas

Johnny-Five ha sido probado con una variedad de tableros compatibles con Arduino . 

Para los proyectos que no están basados ​​en Arduino, los complementos de IO específicos de la plataforma están disponibles. Los complementos IO permiten que el código Johnny-Five se comunique con cualquier hardware en cualquier idioma que la plataforma hable.

Como comentábamos   existen diferentes  formas de   ejecutar  el programa Johnny-Five  segun la placa:

  • En un entorno Linux a bordo: beagleBone Black,Chip,Intel Galileo gen 1,Intel Galileo Gen 2,Intel Edison Arduino,Intel Edison Mini, SparkFun Edison GPIO Block,SparkFun Arduino Block, Intel Joule 570x (Carrier Board),Linino One,pcDuino3 Dev Board,Raspberry Pi 3 Model B, Raspberry Pi 2 Model B. Raspberry Pi Zero,Raspberry Pi Model A Plus,Raspberry Pi Model B Plus, Raspberry Pi Model B Rev 1, Raspberry Pi Model B Rev 2, Tessel 2) ,   Es  facil adivinar qeu este es el mabiente ideal   pues dentro de la placa se oprtan tanto el host como el cliente  por lo qeu no ncesitamos conectarnos con otro dispositivo
  • En una máquina host conectada (a través de Serial USB o Ethernet) a un cliente.: Arduino Uno,SparkFun RedBoard, On a host machine communicating over Bluetooth to the client. Arduino Uno,Arduino Leonardo, Arduino Mega, Arduino Fio,Arduino Micro,Arduino Mini,arduino Nano,Arduino pro Mini,Boatduino,chipKit uno32,Spider robot Controller,DfRobot Romeo,Teensy 3,
  • En una máquina host que se comunica por wifi al cliente.: Electric Imp April, pinoccio Scout, Particle Core ( Spark Core) ,Particle Photon, Sparkfun Photon RedBoard
  • En una máquina host que se comunica a través de Bluetooth al cliente :Blend Micro v1.0,LightBlue bean,

Veamos  ahora cada  caso en concreto;

Arduino Uno 

Ambiente 

  • Firmware / Runtime: : StandardFirmataPlus (additional instructions)
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART
Dac no
Ping

SparkFun RedBoard 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus (additional instructions)
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

ping

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART
Dac no
Ping

 

Arduino leonardo 

Ambiente 

  • Firmware / Runtime:  StandardFirmataPlus (additional instructions)
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART
Dac no
Ping

Arduino Mega 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus (additional instructions)
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART
Dac no
ping

Arduino Fio 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus (additional instructions)
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART
Dac no
Ping

Arduino Micro 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus (additional instructions)
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

  • Admite la extensión PING_READ , cuando se usa con PingFirmata .
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
One wire no
Paso a paso no
Serial / UART
Dac no
Ping

Arduino Mini 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus (additional instructions)
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

  • Admite la extensión PING_READ , cuando se usa con PingFirmata .
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
One wire no
Paso a paso no
Serial / UART
Dac no
Ping

Arduino Nano 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus (additional instructions)
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

  • Admite la extensión PING_READ , cuando se usa con PingFirmata .
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac no
Ping

Arduino Pro Mini 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus ( instrucciones adicionales )
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

  • Admite la extensión PING_READ , cuando se usa con PingFirmata .
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
One wire no
Paso a paso no
Serial / UART
Dac no
ping

BotBoarduino 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus ( instrucciones adicionales )
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere amarre.

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART
Dac no
ping

chipkit uno32 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus ( instrucciones adicionales )
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere tethering.

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
One wire
Paso a paso
Serial / UART
Dac no
ping

Spider Robot Controller 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus ( instrucciones adicionales )
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere  tetehering.

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART
Dac no
ping

DFRobot Romeo 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus ( instrucciones adicionales )
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere amarre.

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART
Dac no
Ping

Teensy 3 

Ambiente 

  • Firmware / Runtime: StandardFirmataPlus ( instrucciones adicionales )
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a la placa a través de una serie USB , que actúa como un cliente ligero .Requiere amarre.
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART no
Dac no
ping

BeagleBone Black 

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

CHIP 

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo no
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
Ping no

Blend Micro v1.0 

Ambiente 

  • Complemento IO: BlendMicro-IO ( instrucciones adicionales )
  • Firmware / Runtime: BLEFirmata
  • El programa JavaScript se ejecuta en una máquina host que ejecuta Node.js. El programa transmite instrucciones básicas de E / S a través de Bluetooth a la placa, que actúa como un cliente ligero .
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
Ping no

 Electric Imp  April 

Ambiente 

Plataforma específica 

  • Requiere una conexión WiFi conectada a Internet y está sujeto a la limitación de la tasa de solicitud por parte del servidor de Electric Imp API.
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C no
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

Intel Galileo Gen 1 

Ambiente 

Plataforma específica 

  • Las compilaciones que no son IoTKit ya no son compatibles.
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

Intel Galileo Gen 2 

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
Silbido no

Intel Edison Arduino 

Ambiente 

Plataforma específica 

  • El hardware es capaz de soportar solo 4 salidas PWM. Como resultado, los enlaces nativos no admiten PWM en los pines 10 y 11.
  • Aunque Galileo-io / Edison-io / Joule-io todavía no admite comunicaciones en serie, puede enlazar a / dev / ttyFMD1 en la placa Edison Arduino usando el módulo serialport .
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
Silbido no

Intel Edison Mini 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
Silbido no

SparkFun Edison GPIO Block 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

SparkFun Arduino Block

Ambiente 

Plataforma específica 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable
Paso a paso
Serial / UART no
Dac no
ping no

Intel Joule 570x (Carrier Board) 

Ambiente 

Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

LightBlue Bean

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

Linino uno 

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

pcDuino3 Dev Board 

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo no
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

Pinoccio Scout 

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C no
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping no

Raspberry Pi 3 Modelo B 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac no
ping no

Raspberry Pi 2 Modelo B 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac no
Silbido no

Raspberry Pi Zero 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac no
ping no

Raspberry Pi Model A Plus 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac no
ping no

Frambuesa Pi Modelo B Plus 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac no
Silbido no

Raspberry Pi Modelo B Rev 1 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac no
Ping no

Raspberry Pi Modelo B Rev 2 

Ambiente 

Plataforma específica 

  • analogRead componentes analogRead pueden analogRead a través de instancias de Expander . Ver Expander API para ejemplos.
Lectura analógica no
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac no
ping no


Particle Core (Spark Core)

Ambiente 

Plataforma específica 

  • Los temporizadores se comparten en grupos: Temporizador 2: A0 , A1 , Temporizador 3: A4 , A5 , A6 , A7 , Temporizador 4: D0 , D1
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping


Particle Photon

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
ping no
Silbido

Sparkfun Photon RedBoard 

Ambiente 

Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART no
Dac no
ping

Tessel 2 

Ambiente 

Plataforma específica 

  • El soporte de servo se proporciona a través de componentes I2C (por ejemplo, PCA9685 )
  • DAC está limitado a Puerto B, Pin 7
Lectura analógica
Lectura digital
Escritura digital
PWM
Servo
I2C
Un cable no
Paso a paso no
Serial / UART
Dac
ping no

Mas información en  http://johnny-five.io/platform-support/

Como emular un mando con Arduino

Se puede usar un Arduino para que envié señales infrarrojas a conveniencia con el fin de automatizar tareas. En este post veremos que es una tarea bastante sencilla ..


A veces   puede ser  interesante emular del comportamiento  de un mando infrarrojo  con el fin de automatizar procesos  que de otra manera  seria mucho mas complejo . Como ejemplo típico de dispositivos que podemos controlar vía infrarojos, hablamos de  reproductores de cámaras, televisores, DVD, VCR, lectores de blueray, equipos de sonidos, descodificadores  y  un largo etcétera 

Aunque pueda parecer descabellado repetir las mismas señales desde una placa Arduino , lo cierto  es que no es descabellado querer emular este comportamiento , porque  podemos  hacer cosas  que seria muy dificultoso  sin la ayuda del procesamiento de señales de infrarojos como por ejemplo  encender automáticamente  el Aire Acondicionado  cuando la temperatura  suba un determinado valor , o se desconecte a una determinadas horas ,  se apague  cuando no haya movimiento  y un largo  etcétera 

Como paso previo  debemos analizar las señales infrarrojas emitidas por el mando usado para el control de ese dispositivo  por lo que deberemos averiguar  cómo recibir los códigos y luego una vez conocidas intentar ver como transmitirlas.

Para nuestra tarea necesitamos :

  • 1 x Arduino (cualquier versión sirve  siempre que pueda procesar señales  “PWM” )
  • 1 x LED IR   (usted puede conseguir éstos de cualquier TV remoto)
  • 1 x receptor IR (usted puede conseguir éstos de cualquier TV remoto)

 

Preparación para recibir señales

Para el análisis  de las señales infrarrojas  producidas por el mando del  dispositivo a controlar en primer lugar necesitaremos  un receptor de infrarrojos ,   que bien  puede proceder de   uno reciclado de cualquier viejo proyecto que ya no utilice  o bien adquirido específicamente  en el comercio

Una interesante opción son los famosos kits para Arduino que integran por unos 4€  todo los necesario para habilitar la comunicación en los dos sentidos  gracias a un led IRDa, un receptor IRDA  y un mando para pruebas.

Kit Modulo Receptor Infrarojo IR Protocolo Nec con Mando a Distancia Arduino

Como sugerencia  para captar el código correcto , deberíamos poner el receptor IR y el mando en una caja opaca  o algo que sea oscuro  lo cual  asegurará que habrá el mínimo de interferencias y  podremos tener el código más claro para que no tengamos que programar  nuestro  Arduino  muchas veces para una simple tarea. También, asegúrese de que estar alejados de personas viendo la televisión.

Realmente el circuito es bastante sencillo pues únicamente tendremos que alimentar con 5v DC  ( que podemos tomar directamente desde nuestro Arduino )   y luego conectar la salida del receptor digital al pin digital A2 de Arduino

 

Picture of Preparing to Receive Signals

Una vez montado el simple circuito del receptor de infrarrojo es hora de  subir el programa a su Arduino  para  poder descodificar la señal infrarroja .

El siguiente programa utiliza el Arduino y un PNA4602 para descifrar IR recibido lo cual se  puede utilizar para hacer un receptor de infrarrojos. (buscando un código en particular) o transmisor (pulsando un LED IR a ~ 38KHz para el duraciones detectadas,

Este código es de dominio público (visite http://www.ladyada.net y adafruit.com), pero en esta ocasión se ha traducido para que sea mas legible y fácil de entender:


// Necesitamos usar los métodos de lectura de pin ‘raw’  porque el tiempo es muy importante aquí y el digitalRead () es un  procedimiento s más lento!

#define IRpin_PIN PIND
#define IRpin 2

// el pulso máximo que escucharemos: 65 milisegundos es mucho tiempo
#define MAXPULSE 65000

// lo que debería ser nuestra resolución de tiempo, más grande es mejor ya que es más ‘preciso’ – pero demasiado grande y no se conseguirá  tiempo exacto
#define RESOLUTION 20

// almacenaremos hasta 100 pares de pulsos (esto son muchos )
uint16_t pulses[100][2]; // par es pulso alto  y bajo 
uint8_t currentpulse = 0; // indice para pulsos que estamos almacenando

void setup(void)

{
Serial.begin(9600);
Serial.println(“Ready to decode IR!”);
}

void loop(void)

{

// tiempo de almacenamiento temporal
uint16_t highpulse, lowpulse;

//empezar sin pulso 
highpulse = lowpulse = 0;

//esto es demasiado lento!
while (IRpin_PIN & (1 << IRpin)) {
// pin esta a nivel alto

// continúa otros microsegundos
highpulse++;
delayMicroseconds(RESOLUTION);

// Si el pulso es demasiado largo, ‘se agotó el tiempo’ – o bien nada / se recibió o el código está terminado, así que imprima lo que  hemos obtenido hasta ahora, y luego reiniciamos
if ((highpulse >= MAXPULSE) && (currentpulse != 0)) {
printpulses();
currentpulse=0;
return;
}
}
// no nos detuvimos, así que escondamos la lectura
pulses[currentpulse][0] = highpulse;

// lo mismo que arriba
while (! (IRpin_PIN & _BV(IRpin))) {
// pin esta aun bajo
lowpulse++;
delayMicroseconds(RESOLUTION);
if ((lowpulse >= MAXPULSE) && (currentpulse != 0)) {
printpulses();
currentpulse=0;
return;
}
}
pulses[currentpulse][1] = lowpulse;

// leemos un pulso alto-bajo con éxito, ¡continuamos!
currentpulse++;
}

void printpulses(void) {
Serial.println(“\n\r\n\rReceived: \n\rOFF \tON”);
for (uint8_t i = 0; i < currentpulse; i++) {
Serial.print(pulses[i][0] * RESOLUTION, DEC);
Serial.print(” usec, “);
Serial.print(pulses[i][1] * RESOLUTION, DEC);
Serial.println(” usec”);
}
}


Una vez que hemos subido el código anterior  y  todo está configurado correctamente, abrir el serial monitor haciendo clic en el botón en el programa de Arduino que es el botón de un círculo en la imagen y  ya estára en marcha así que ahora usted necesitará encontrar un control remoto que desee usar para controlar algo con Arduino

El proceso  esquemáticamente  a seguir es el siguiente :

  1. Encontrar el mando a distancia del dispositivo  que quiere controla
  2. Ejecutar el código del  receptor anteriormente citado
  3. Presione el botón del mando cuyo  código desea obtener 
  4. Ver el Monitor Serial
  5. Pegar el todo el código del monitor serie  en un editor de texto 
  6. Repetir los paso 3, 4 6  con todos los botones del mando que desee descodificar 

 Interpretando las señales

Una vez siga la secuencia de paso anteriores recibirá un montón de números seguidos por “usecs” o “usec”.
Asegúrese de que ha copiado la señal que se desea formateando la salida para más fácil referencia.

Se verá algo como esto:
500 usec, 300 usec
600 usec, usec 1200

Pero habrá números mucho más que eso.

Ahora en el programa emisor  verá esto bastantes veces:

delayMicroseconds();
pulseIR();

Es decir tenemos que  tomar el primer número y poner paréntesis en delayMicroseconds(“here”); el  valor obtenido en el monitor
y a su vez   tomar el segundo número de la misma línea como el de la delayMicroseconds()  valorar y poner en el paréntesis de pulseIR(); valor.

Veamos otro ejemplo .Si conseguimos esto en el monitor serial:

OFF ON
1660 usec, usec 580
1640 usec, usec 560

Ahroa para poner los  correspondiente valores en sus áreas correspondientes lo haremos asi :

delayMicroseconds(1660);
pulseIR(580);
delayMicroseconds(1640);
pulseIR(560);

Como puede apreciar ,la  tarea de transcripción  es muy fácil.

Una vez que tenga los códigos que desee, abra un nuevo  archivo IR_SEND.pde en el programa de Arduino y luego tendremos que  poner  los valores que tiene del monitor de serie entre paréntesis haciéndolo  del mismo modo  que hemos visto anteriormente .

Ahora, una vez que tenemos los códigos que desea y haya cargado el programa con la señal que desea enviar, todo lo que tiene que hacer es conectar el LED IR al pin 13 y luego a tierra  No necesita la resistencia si tiene un Duemilanove Arduino porque tiene una resistencia integrada para PIN 13, por lo que no tiene que preocuparse.


Como ejemplo veamos este código cuando se presiona el botón para subir el canal en un  control remoto de Comcast. . Aquí está el código de Serial Monitor: Recibido:

OFF  ON
36328 usec, 280 usec
820 usec, 300 usec
1580 usec, 320 usec
640 usec, 240 usec
2740 usec, 240 usec
1280 usec, 240 usec
1240 usec, 240 usec
1120 usec, 240 usec
2600 usec, 240 usec
12740 usec, 240 usec
840 usec, 240 usec
980 usec, 240 usec
700 usec, 240 usec
700 usec, 240 usec
720 usec, 240 usec
2460 usec, 260 usec
700 usec, 240 usec
700 usec, 240 usec
14904 usec, 260 usec
820 usec, 240 usec
1660 usec, 240 usec
700 usec, 260 usec
2740 usec, 240 usec
1240 usec, 240 usec
1260 usec, 240 usec
1100 usec, 240 usec
2620 usec, 240 usec
12720 usec, 260 usec
840 usec, 220 usec
2080 usec, 240 usec
1780 usec, 260 usec
700 usec, 240 usec
700 usec, 240 usec
2480 usec, 240 usec
700 usec, 240 usec
700 usec, 240 usec

Aquí está el código realizado a partir de los datos en bruto anteriores  pero no se  asociado al código  

En el siguiente  programa   se ha introducido  un detalla original ; Arduino cambiará el canal cada diez segundos para que se puedan hacer otras cosas , Por ejemplo mientras se ve televisión y esta haciendo otras cosa  así  no tendrá que cambiar el canal de modo que el sw  recorrerá los canales para que tenga las manos libres. (todos sabemos que presionar un botón es tan difícil, ¿por qué no hacerlo de forma automática?)

 

He aquí el programa realizado por Wally_Z:


int IRledPin =  13;    // LED conectado al pin digital 13

// El método setup () se ejecuta una vez, cuando comienza el boceto

void setup()   {               
  // initializa  el pin como salida :
  pinMode(IRledPin, OUTPUT);     

  Serial.begin(9600);
}

void loop()                    
{
  SendChannelUpCode();

  delay(20*1000);  // espera veinte segundos (20 segundos * 1000 milisegundos) Cambia este valor para diferentes intervalos.

}

// Este procedimiento envía un pulso de 38KHz al IRledPin  para un cierto  numero de microsegundos. Usaremos esto siempre que tengamos que enviar códigos.

void pulseIR(long microsecs)

{
  // contaremos desde la cantidad de microsegundos que se nos dice que esperemos

  cli();  // esto apaga cualquier interrupción de fond

  while (microsecs > 0) {
   // 38 kHz tiene aproximadamente 13 microsegundos de alto y 13 microsegundos de bajo
   digitalWrite(IRledPin, HIGH);  //Esto lleva alrededor de 3 microsegundos
   delayMicroseconds(10);         // esperar 10 microseconds
   digitalWrite(IRledPin, LOW);   // esto toma sobre 3 microseconds
   delayMicroseconds(10);         // esperar   10 microseconds

   // asi que  26 microseconds  todo junto
   microsecs -= 26;
  }

  sei();  // esto devuelve el control
}

void SendChannelUpCode()

{
  // Este es el código para CHANNEL + para TV COMCAST.
 
  delayMicroseconds(36328);      //Tiempo libre (columna IZQUIERDA)      
  pulseIR(280);                               //Tiempo en (columna DERECHA) <——- NO MEZCLAR ESTOS ARRIBA
  delayMicroseconds(820);
  pulseIR(300);
  delayMicroseconds(1580);
  pulseIR(320);
  delayMicroseconds(640);
  pulseIR(240);
  delayMicroseconds(1280);
  pulseIR(240);
  delayMicroseconds(1240);
  pulseIR(240);
  delayMicroseconds(1120);
  pulseIR(240);
  delayMicroseconds(2600);
  pulseIR(240);
  delayMicroseconds(12740);
  pulseIR(240);
  delayMicroseconds(840);
  pulseIR(240);
  delayMicroseconds(980);
  pulseIR(240);
  delayMicroseconds(700);
  pulseIR(240);
  delayMicroseconds(700);
  pulseIR(240);
  delayMicroseconds(720);
  pulseIR(240);
  delayMicroseconds(2460);
  pulseIR(240);
  delayMicroseconds(700);
  pulseIR(240);
  delayMicroseconds(700);
  pulseIR(240);
  delayMicroseconds(14904);
  pulseIR(240);
  delayMicroseconds(820);
  pulseIR(240);
  delayMicroseconds(1600);
  pulseIR(240);
  delayMicroseconds(700);
  pulseIR(260);
  delayMicroseconds(2740);
  pulseIR(240);
  delayMicroseconds(1240);
  pulseIR(240);
  delayMicroseconds(1260);
  pulseIR(240);
  delayMicroseconds(1100);
  pulseIR(240);
  delayMicroseconds(2620);
  pulseIR(240);
  delayMicroseconds(12720);
  pulseIR(260);
  delayMicroseconds(840);
  pulseIR(220);
  delayMicroseconds(2080);
  pulseIR(240);
  delayMicroseconds(1780);
  pulseIR(260);
  delayMicroseconds(700);
  pulseIR(240);
  delayMicroseconds(700);
  pulseIR(240);
  delayMicroseconds(2480);
  pulseIR(240);
  delayMicroseconds(700);
  pulseIR(240);
  delayMicroseconds(700);
  pulseIR(240);
}

 

Via Instrucables.com

 

 

 

Como controlar cualquier electrodoméstico con mando vía wifi

En este post hablamos de in ingenioso dispositivo para controlar con el movil cualquier aparato que funcione con mando a distancia, gracias a una app en la cual desde dentro de la misma permite dicho control, control por cierto que sera mas completo porque se puede acoplar a su dispositivo inteligente google home o alexa y controlar todo con la voz o incluso con la app desde fuera de casa , muy facil de instalar y configurar y bastante util


Modernamente están apareciendo muchos electrodomésticos convencionales como equipos de Aire  Acondicionado , Robots de limpieza , Persianas eléctricas , TV , etc con la opción de poderlos controlar  a distancia gracias  a la  conectividad  WIFI ,lo cual puede ser muy interesante  para configurarlos , programarlos o activarlos no solo desde casa, sino incluso fuera de esta  , y con ello mejorar nuestra calidad  de vida  . El punto  negativo es que en la mayoría de los casos   incrementa  sustancialmente el precio  desgraciadamente frente a los  equipos convencionales que no cuentan  con  dicho control y ademas  si contamos con equipos instalados operativos  pero sin esa funcionalidad de control por wifi   , no es una razón de peso para desechar estos¿no?. 

Asimismo ,como sin duda el lector conocerá, cada día  son mas frecuentes los asistentes de voz  como Alexa de Amazon , Google Home o el propio novedoso Aura de Movistar , todos ellos que poco podrán hacer sobre dichos  equipos  a controlar, si no disponen de los  módulos de control  correspondientes. Por ejemplo   con un Amazon Echo Dot o un Google Home Mini  si quiere enseñarle a encender el aparato de Aire Acondicionado  antes de llegar a casa o encender la TV   cuando olvida el mando a distancia lejos del sofá  no podrá hacerlo fácilmente   directamente  pues estos equipos no están preparados par ser controlados por dichos asistentes ,  pero no se alarme, porque   en efecto  no hace falta invertir una gran suma de dinero en cambiar dicho aparato , pues nos bastara ,  si este equipo es controlable   por infrarrojos o RF , de  instalar  un control remoto de luz infrarroja compatible con Alexa o Google Home  que haga las veces de “puente” entre ambos mundos.

Como opción interesante para controlar nuestros dispositivos en el salón destaca el Broadlink RM mini3, un pequeño dispositivo  que  puede controlar sin limitaciones  a  todos los dispositivos y dispositivos controlados con mandos a distancia por infrarrojos  o  que  emiten radiofrecuencia  en las frecuencias de 433 Mhz y 315 Mhz en toda la casa. ( excepto si el código es variable, Broadlink Rm Pro no puede admitirlo) 

 El BroadLink en cuestión tiene el tamaño de un vaso de chupito   contando con  varios leds de infrarojos  repartidos en la cabeza en forma 360° , que hacen que su área de actuación sea muy buena, por ejemplo  para encender el aire acondicionado antes de llegar a casa o para simular presencia encendiendo la tele  gracias a  una app específica para Europa (Intelligent Home Center For EU  , la cual se rige por el Reglamento General de Protección de Datos de la Unión Europea, famoso por ser estricto con el manejo de datos personales).

 

 Con este tipo de dispositivo podremos reemplazar  todos los controles remotos  por  su teléfono inteligente, pues cuenta con soporte para más de 80,000 dispositivos controlados por infrarrojos como aire acondicionado, TV, DVD, PVR, CD, SAT, aire acondicionado, persianas eléctricas, lámparas, purificadores, WiFi, reproductores BluRay, proyectores , Unidades de CA, salidas de RF, ventiladores y mucho más.

Aunque se ha comentado alguna  vez en este blog ,para saber si un mando es IR o RF, enfoque con la cámara del móvil a la punta del mando que controle ese dispositivo y pulse un botón: si en la pantalla del móvil  se ve un destello de  luz azul/blanca, es IR ( si no se ve nada, es de RF).

 

 

Los pasos a seguir para la instalación del el Broadlink RM mini3,  son realmente  muy sencillos:

  1. Instalar la app en el móvil ( esta disponible tanto para Android  como para  iOS)
  2. Enchufarle  una conexión de 5v  por el conector micro-USB ( no esta incluido el adaptador )                                                                                     ,
  3. Abriremos la   app   (esta disponible tanto para Android  como para  iOS)  y vincularemos el  Broadlink RM mini3,por  bluetooth a nuestro terminal                                                                       .
  4. Tendremos que conectar  el  Broadlink RM mini3 a nuestra red wifi añadiendo las credenciales  de nuestra red. Este modelo solo es compatible con redes de 2,4 GHz, pero no 5G  y la  contraseña de Wifi debe ser de  menos de 32 bytes, sin espacios y símbolos especiales, solo con alfabeto y número,
  5. Seguidamente añadiremos el  dispositivo a controlar  para lo cual elegiremos el  tipo de dispositivo, buscando  este modelo en la base de datos   que ofrece la propia aplicación  
  6. Probaremos  si funciona el control remoto desde la propia app , pero  si no funciona , cambiaremos  de modelo  hasta que reaccione)
  7. Si el control remoto no reconoce el dispositivo, puede copiar la señal del mando a distancia manualmente (pero los dispositivos que no están en la base de datos de BroadLink no son compatibles con los asistentes de voz)
  8. Repetiremos el proceso  para  todos los dispositivos controlados por infrarrojo que el BroadLink RM mini 3 tenga a su alcance  como puede ser los equipos de  aire acondicionado, televisores, equipos de música,lectores de dvd o blueray , descodificadores  de televisión de pago ,  barra de sonido, robot aspirador, reproductor multimedia, persianas eléctricas, etc..
  9. .El siguiente paso es configurar escenas que luego usaremos como comandos de Alexa o Google Home. Por  ejemplo para el televisor podemos tener varias  escenas para “encender la television”  o apagar la televisión  o incluso subir o bajar el volumen   o para el equipo de aire acondicionado  por ejemplo podemos tener una escena “calienta la casa” que sube la temperatura a 26 ºC y otra  escena “enfría la casa” que baja la temperatura a 18 ºC.
  10. El último paso es conectar la app de BroadLink con el altavoz inteligente. Hay un manual de instrucciones en el menú Más > Añadir servicio de voz, pero en resumen tenemos que abrir la aplicación Alexa o Google Home en el móvil e instalar la skill o servicio correspondiente. El asistente reconocerá automáticamente los nuevos dispositivos y sus comandos o escenas. Llegados a este punto  ya podrá decir “enciende el aire acondicionado”, “pon el aire acondicionado en modo calefacción” o “enfría la casa” para que el altavoz inteligente se comunique con el control remoto y este, a su vez, envíe la orden al aire acondicionado. También puedes decir “enciende la tele”, “silencia la tele” o “pon La Sexta” para que el control remoto envíe esas órdenes al televisor, aunque no sea una Smart TV ni nada parecido.
  11. Si puede  añadir un nivel de complejidad, creando rutinas desde las apps de Alexa y Google Home para encender las luces del salón de un color determinado cuando ponga el fútbol, conectar  la calefacción todos los días a una hora determinada o apagar el equipo de música cuando enciende la tele. 

 

Conclusiones 

Puede ser interesante para poder manejar la tele, aire acondicionado, bomba de calor y decodificador con el móvil pero sobre todo mediante un asistente de voz como  Google Home o Alexa 

Si nos remitimos al móvil , gracias a este dispositivo se pueden manejar multitud de aparatos sin problemas, configurarse  estos  fácilmente desde la aplicación y enseguida se pueden usar todos, desde casa o fuera de ella ( eso si sólo aquellos que usen infrarrojos  no Radiofrecuencia)

La app ademas permite poner temporizadores para que automáticamente la aplicación ejecute la función del aparato que se desee, en una hora o día concreto, o cada cierto tiempo. También existen los ambientes, que permiten ejecutar varios pasos automáticamente que nosotros indiquemos, de uno o varios aparatos, con un solo click. 

La pega viene con su compatibilidad con Google Home ya que no es del todo correcta. Para el RM Mini3 hay dos app, versión global y europea, que se usan igual para configurar los mandos, pero con la primera de ellas, Google Home no integra ni detecta los dispositivos, sólo los ambientes, y no los ejecuta bien. Con la otra, la europea, Google Home integra los dispositivos, pero solo las de tipo lámpara y tipo aire acondicionado, no las TV ni otros aparatos personalizados.

Respecto a Alexa , aunque la configuración a través de ambientes , escenas y rutinas se hace ardua y repetitiva una vez conseguida el funcionamiento es perfecto. Puedes controlar todo aparato que use infrarojos  que tenga en la misma habitación, y la función de aprendizaje de botones te facilita muchas tareas, así como las funciones pre-configuradas que otros usuarios ya han colgado en el servidor.  Es   un aparato imprescindible en dúo con Alexa.

En el siguiente video podemos ver un ejemplo de integración de Alexa con el Broadlink RM mini3,

Por cierto este  puente  de infrarrojos con wifi   se puede comprar  en Amazon por unos 24,99,   pero tenga cuidado porque hay otros modelos de Broadlink  algo mas económicos que no son controlables por asistentes de voz como Alexa o Google Home.Si necesita controlar aparatos que vayan por radiofrecuencia en lugar de infrarrojos necesitarás su hermano mayor…. El pro