Como desactivar temporalmente un terminal conectado por wifi


En efecto si es cliente de  Movistar de fibra o  cobre gracias a la  aplicación Movistar Smart WiFi,  disponible en Google Play  (versiones 4.4 y 7.0) y App Store(entre las versiones 7 y 10.3.1)       se puede  desactivar temporalmente cualquier equipo o terminal que esté conectado a la red wifi de su hogar si cuenta con algunos de los siguientes routers :
  • Router Smart WiFi Fibra (HGU Askey RTF3505VW).
  • Router Smart WiFi Fibra (HGU Askey RTF3507VW HPNA).
  • Router Smart WiFi Fibra (HGU Mitrastar GPT2541GNAC).
  • Router Smart WiFi Cobre (XDSL Mitrastar DSL2401HNT1C).
  • Router Smart WiFi Cobre (XDSL Askey RTV9015VW).
  • Router Smart WiFi Cobre (XDSL Light Plus Mitrastar DSL2401HNAT1C

Por el momento, las funcionalidades de la aplicación Movistar Smart WiFi están disponibles solo para el Router Smart WiFi Fibra y el Router Smart WiFi Cobre, pero en caso de ser cliente de  Movistar y no posea un router compatible, se  puede cambiar el actual  por otro  compatible    (es decir alguno  de los anteriores)

Esta app  ademas también permite  otras funcionalidades mas , como por ejemplo;.

  • Cambiar el nombre y la clave de su WiFi.
  • Activar un WiFi exclusivo para sus invitados, sin compartir tu clave.
  • Organizar la conexión de sus hijos o eliminar a intrusos conectados.
  • Bloquear y desbloquear la conexión a WiFi de cualquier dispositivo
  • Optimizar la velocidad de tu conexión con un solo click
Los  pasos para  desconectar o  conectar un equipo o terminal a  su red  en realidad son muy sencillos:

1-Descargue la app

Compruebe que el sistema operativo de su terminal sea compatible con la aplicación  Smart  Wifi, que para Android son las versiones 4.4 y 7.0 y para IOS entre las versiones 7 y 10.3.1.

En función  de que el terminal sea Android o IOs descargue  e instale la aplicación Movistar Smart  Wifi  desde Google Play o desde  la App Store

App Movistar Base Google Play  App Movistar Base App Store

2- Asocie la aplicación Movistar Smart WiFi con el Router Smart WiFi

Asegúrese de que su terminal se encuentra conectado al WiFi del router desde el cual intentamos activar o desactivar el acceso .

Ahora solo tiene que buscar la clave de acceso al router  , la cual  es diferente de la clave de Wifi.

Para Routers Smart WiFi Fibra (es decir el HGU) la clave de 8 dígitos  aparece en el sticker pegado en la parte inferior del router. Para Routers Smart WiFi Cobre (ADSL/VDSL)la clave que viene por defecto en el manual del router“admin” ,pero si la ha cambiado y no la recuerda basta pinchar con un alfiler el agujerito de reset para que vuelva a tomar la pwd por defecto

 Screenshot_2018-04-03-16-19-37-458_com.movistar.base[1]

Ejecute la aplicación  e introduzca    la contraseña del router y empezara la app a recolectar datos de router

Screenshot_2018-04-03-16-21-29-474_com.movistar.base[1]

Una vez concluido el proceso de inicializacion primera , nos dará la bienvenida a la la app:

Screenshot_2018-04-03-16-21-43-317_com.movistar.base[1]

Lo primero que nos sugiere es cambiar la clave de la WIFI , paso que podemos saltar o inlcluso retomar en otra ocasion:

Screenshot_2018-04-03-16-21-55-322_com.movistar.base[1].png

 

Ahora puede pulsar “Sigamos adelante”

3-Bloqueo de un dispositivo:

Una vez ya dentro de la aplicación  Smart WiFi   vera el mapa de dispositivos coenctado a su red  ( también puede  pulsar  la pestaña inferior “Dispositivos” para verlo en forma de lista)

 

Screenshot_2018-04-03-16-22-11-127_com.movistar.base[1].png

Observe que aparecen los equipos  clasificados por tecnologia y tipologia

Si deseamos bloquear un terminal móvil pinche en el icono del movil

Screenshot_2018-04-03-16-22-40-527_com.movistar.base[1]

Seleccione ahora  de la lista presentada el dispositivo que quiere bloquear y presione el botón “Bloquear Dispositivo”

 

Screenshot_2018-04-03-22-18-20-902_com.movistar.base[1]

Al pulsar el botón de bloquear dispositivo se informara en verde de que se ha realizado la operación correctamente:

Screenshot_2018-04-03-22-18-31-962_com.movistar.base[1]

Como es obvio enseguida el terminal  sera desconectado apareciendo en la lista de dispositivos bloqueados.
Screenshot_2018-04-03-22-36-35-199_com.movistar.base[1].png

Puede bloquear y desbloquear cualquier  dispositivo en cualquier momento. Cuando un dispositivo esté bloqueado, no podrá acceder a la WiFi hasta que sea desbloqueado.

Para desbloquearlo ir nuevamente al dispositivo sobre el , pulsar el botón de desbloqueo y enseguida tendrá acceso nuevamente a la red

 

Screenshot_2018-04-03-22-36-39-613_com.movistar.base[1]

4- Otras funcionalidades interesantes

Ademas de desactivar una coenxion , se pueden hacer cosas muy interesantes como desactivar el wifi de inviatdos , compartir la clave o hace un dianostico:

Activar o desactivar el WiFi de invitados

En la app Smart WiFi  pinche el ícono “+” en la pantalla de inicio. Seleccione WiFi Invitados y elijae una clave que no le importe compartir. Una vez habilitada la red de invitados, permanecerá activa hasta que decida desactivarla. Los dispositivos que accedan a esta red, solo accederán a internet, pero no tendrán acceso a su red interna 

Compartir la clave de mi WiFi

En la app  Smart WiFi  pinche el ícono de router “M” (Mi Red). En la sección “Gestiona tu red” elija la red que quiere compartir. Toque la contraseña para copiar el texto o utilize el ícono “compartir” para enviarla por Whatsapp, Correo Electrónico, SMS, Bluetooth, etc.).

Diagnóstico de la conectividad de mi red:

Acceda desde el ícono del router “M” (Mi Red) en su aplicación Smart WiFi ,seleccione “Movistar Base” y pinche el ícono de una herramienta. Una vez seleccionada esta opción, se ejecutará el diagnóstico. Si encontrara alguna incidencia, podrá resolverla apretando el botón “optimizar” o revisando los tips de ayuda.

Cambiar el nombre o la foto asociada a un dispositivo.

Se puede cambiar la imagen que aparece junto al dispositivo,para ello desde la pantalla de inicio de su aplicación  Smart WiFi,seleccione la pestaña “Dispositivos”,elija el dispositivo que quiere personalizar,elija una fotografía para asociarla al dispositivo (puede tomarse  con la cámara  o bien elegir una imagen de la galería de fotos) .También en el campo “Tipo de dispositivo”, puede elegir la categoría a la cual quieres asociar ese dispositivo (Smartphone, Tablet, Smart TV, etc.).

 

Cambiar el nombre y/o la clave de su WiFi

Desde la app pinche el ícono de router. En la sección “Gestiona tu red” elija la red que quiera modificar, tocando su nombre.Puede personalizar el nombre y contraseña de cada red WiFi (WiFi, WiFi Plus o WiFi Invitados) en cualquier momento.

Si cambia el nombre o la clave de la red, los dispositivos que tuviese conectados perderán la conexión automáticamente y tendrá que volver a conectarlos con los nuevos parámetros.

Anuncios

Envío de datos a la nube de Azure desde ESP8266 usando DHT11 o DHT22


 DHT11 y  DHT22 son dos modelos de una misma familia de sensores, que permiten realizar la medición simultánea de temperatura y humedad usando ademas un único  hilo para comunicar los datos vía serie, para lo cual  ambos  disponen de un procesador interno que realiza el proceso de medición, proporcionando la medición mediante una señal digital, por lo que resulta muy sencillo obtener la medición desde un microprocesador como Arduino o ESP8266.

Ambos son similares ( DHT11 presenta una carcasa azul  , mientras que el sensor DHT22  es blanco)  compartiendo además los mismos pines  disponiendo de  4 patillas, de las cuales usaremos sólo 3: Vcc, Output y GND.  Como peculiaridad ,la  salida la conectaremos a una entrada digital  , pero necesitaremos poner una resistencia de 10K entre Vcc y el Pin Output.

El  DHT11  puede medir temperaturas entre 0 a 50, con una precisión de 2ºC, humedad entre 20 a 80%, con precisión del 5% y con una a frecuencia de muestreo de 1 muestras por segundo (1 Hz)

En clara superioridad  con el dHT11 , el modelo DHT22 tiene unas características mucho más profesionales.
  • Medición de temperatura entre -40 a 125, con una precisión de 0.5ºC
  • Medición de humedad entre 0 a 100%, con precisión del 2-5%.
  • Frecuencia de muestreo de 2 muestras por segundo (2 Hz)

Destacar que este tipo de  sensores de temperatura  ( y, aún más, los sensores de humedad) , son sensores con elevada inercia y tiempos de respuesta elevados. Es decir, al “lentos” para reflejar los cambios en la medición.

 

Conectar el DHT11   o el DHT22  a  un Arduino o ESP82366  es sencillo, simplemente alimentamos desde Arduino al sensor a través de los pines GND y Vcc del mismo. Por otro lado, conectamos la salida Output a una entrada digital de Arduino. Necesitaremos poner una resistencia de 10K entre Vcc y el Pin Output.

El esquema eléctrico queda como la siguiente imagen

arduino-dht11-dht22-esquema

Los sensores DHT11 y DHT22 usan su propio sistema de comunicación bidireccional mediante un único hilo , empleando señales temporizadas por lo que en general, lo normal es que empleemos una librería existente para simplificar el proceso.Por ejemplo podemos usar la librería de Adafruit disponible en este enlace.

Una vez  descargada e instalada  la librería  por ejemplo podemos capturar la información de un sensor DHT11  con este código :

#include “DHT.h”
#define DHTTYPE DHT11   // DHT 11
const int DHTPin = 5;     // conexion del pin digital
 
DHT dht(DHTPin, DHTTYPE);
 
void setup() {
   Serial.begin(9600);
   Serial.println(“DHTxx test!”);
 
   dht.begin();
}
 
void loop() {
   //esperar unos 2000ms
   delay(2000);
 
   // Leyendo temperatura  o humedad  toma  sobre unos 250 ms
   float h = dht.readHumidity();
   float t = dht.readTemperature();
 
   if (isnan(h) || isnan(t)) {
      Serial.println(“Fallo al leer el sensor DHT “);
      return;
   }
  
   Serial.print(“Humedad: “);
   Serial.print(h);
   Serial.print(” %\t”);
   Serial.print(“Temperatura: “);
   Serial.print(t);
   Serial.print(” *C “);
}

 

 

Conexión de un DHTXX a un  ESP8266 

Para resultados mas profesionales puede usar un DHT22 ( es el usado en el ejemplo ) , pero  como hemos comentado el DHT11  para fines experimentales  es también aceptable .

Las  simples conexiones  la puede utilizar  una  placa de pruebas, y  cables de puente o directamente con cablecillos  para realizar las conexiones de la siguiente manera:

referencia de conexiones

 

Para los pines  del sensor, usaremos el siguiente cableado:

Start (Sensor) Fin (Junta) Color del cable
VDD (Pin 27F) 3V (Pin 8A) cable rojo
DATOS (Pin 28F) GPIO 2 (Pin 9A) Cable blanco
GND (Pin 30F) GND (Pin 7J) Cable negro

 

 

Por  ultimo utilice un cable USB Micro USB a Tipo A para conectar Sparkfun ESP8266 Thing Dev a su ordenador 

Crear un centro de IoT

  1. Inicie sesión en el portal de Azure .
  2. Seleccione Crear un recurso > Internet de las cosas > IoT Hub .Captura de pantalla de la navegación del portal Azure al centro de IoT
  3. En el panel de hub de IoT , ingrese la siguiente información para su hub de IoT:
    • Nombre : crea un nombre para tu hub de IoT. Si el nombre que ingresa es válido, aparece una marca de verificación verde.

     

    • Nivel de precios y escala : para este tutorial, seleccione el nivel F1 – Gratuito .
    • Grupo de recursos : cree un grupo de recursos para alojar el concentrador de IoT o use uno existente.
    • Ubicación : Seleccione la ubicación más cercana para usted.
    • Fijar al tablero : marque esta opción para acceder fácilmente a su hub de IoT desde el tablero.Ventana del concentrador IoT
  4. Haga clic en Crear . Su hub de IoT puede tardar unos minutos en crearse. Puede controlar el progreso en el panel de notificaciones .

Ahora que ha creado un concentrador de IoT, ubique la información importante que usa para conectar dispositivos y aplicaciones a su hub de IoT.

  1. Después de crear su concentrador de IoT, haga clic en él en el tablero. Tome nota del nombre de host y luego haga clic en Directivas de acceso compartido .Obtenga el nombre de host de su centro de IoT
  2. En el panel Políticas de acceso compartido , haga clic en la política iothubowner , y luego copie y anote la cadena de conexión de su centro IoT.

Obtenga su cadena de conexión del hub de IoT

Registre un dispositivo en el hub de IoT para su dispositivo

  1. En el portal de Azure , abra su concentrador de IoT.
  2. Haga clic en Explorador de dispositivos  .
  3. En el panel Explorador de dispositivos, haga clic en Agregar para agregar un dispositivo a su centro de IdC. 
  4. Luego ingrese la ID del nuevo dispositivo en:ID del dispositivo ( Debe saber que los  ID de dispositivo son sensibles a mayúsculas y minúsculas)
  5. Tipo de autenticación : Seleccione la clave simétrica 
  6. Generar claves automáticamente : seleccione esta casilla de verificación.
  7. Conecte el dispositivo al Hub de IoT : haga clic en Habilitar .Agregue un dispositivo en el Explorador de dispositivos de su centro de IoT
  8. Haga clic en Guardar .
  9. Después de que se crea el dispositivo, abra el dispositivo en el panel Explorador de dispositivos .
  10. Tome nota de la clave principal de la cadena de conexión.Obtener la cadena de conexión del dispositivo

 

Reúna los datos del sensor y envíelos a su centro de IoT

En el ejemplo  se  implementa y ejecuta una aplicación de muestra en Sparkfun ESP8266 Thing Dev. La aplicación parpadea el LED en Sparkfun ESP8266 Thing Dev y envía los datos de temperatura y humedad recopilados del sensor DHT22 a su hub de IoT.

Obtenga la aplicación de muestra de GitHub

La aplicación de ejemplo está alojada en GitHub. Clone el repositorio de muestras que contiene la aplicación de muestra de GitHub. Para clonar el repositorio de muestras, siga estos pasos:

  1. Descargue e instale el programa Git ,por ejemplo desde https://gitforwindows.org/git
  2. Abra un símbolo del sistema o una ventana de terminal.
  3. Vaya a una carpeta donde desea que se almacene la aplicación de muestra.
  4. Ejecute el  Git
  5. Ahora desde el interfaz del Git en modo comando ejecute

 

Instale ahora el paquete para  el ESP8266 en Arduino IDE:

  1. Abra la carpeta donde se almacena la aplicación de muestra que descargo desde el comando git clone.
  2. Abra el archivo app.ino en la carpeta de la aplicación en Arduino IDE.
  3. En el IDE de Arduino, haga clic en Archivo > Preferencias .
  4. En el cuadro de diálogo Preferencias , haga clic en el icono que se encuentra junto al cuadro de texto Direcciones URL del administrador de tarjetas adicionales .
  5. En la ventana emergente, ingrese la siguiente URL http://arduino.esp8266.com/stable/package_esp8266com_index.json                                    señalar a un paquete url en arduino ide
  6. Haga  luego haga clic en Aceptar .
  7. En el cuadro de diálogo Preferencias , haga clic en Aceptar .
  8. Haga clic en Herramientas > Placa > Administrador de placas , y luego busque esp8266. Se debe instalar ESP8266 con una versión de 2.2.0 o posterior.En caso del ESP12E DEVKIT V2, seleccione NodeMCU 1.0(ESP-12E Module)

Instalación de  las bibliotecas necesarias

  1. En el IDE de Arduino, haga clic en Programa > Incluir libreria> Gestionar librerias .
  2. Busque los siguientes nombres de biblioteca una por una:
    • AzureIoTHub
    • AzureIoTUtility
    • AzureIoTProtocol_MQTT
    • ArduinoJson
    • DHT sensor library 
    • Adafruit Unified Sensor
  3. Para cada una de las bibliotecas que encuentre, haga clic en Instalar .

Implementar la aplicación de muestra  para ESP8266 

  1. En el IDE de Arduino, haga clic en Herramienta > Puerto , y luego haga clic en el puerto serie que le presente el interfaz de Arduino  para el  ESP8266(por ejemplo “COM3” )
  2. Haga clic en Programa > Subir para crear e implementar la aplicación de muestra en  ESP8266 .

Ingrese sus credenciales

Después de que la carga se complete con éxito, siga los pasos para ingresar sus credenciales:

  1. En el IDE de Arduino, haga clic en Herramientas > Monitor en serie .
  2. En la ventana del monitor de serie, observe las dos listas desplegables en la esquina inferior derecha.
  3. Seleccione Sin final de línea para la lista desplegable de la izquierda.
  4. Seleccione 115200 baudios para la lista desplegable de la derecha.
  5. En el cuadro de entrada ubicado en la parte superior de la ventana del monitor serie, ingrese la siguiente información si se le solicita que los proporcione y luego haga clic en Enviar .
    • Wi-Fi SSID
    • Contraseña de wifi
    • Cadena de conexión del dispositivo

 Nota:La información de credenciales se almacena en la EEPROM del ESP8266 Si hace clic en el botón de reinicio en la placa ESP8266 , la aplicación de muestra le pregunta si desea borrar la información. Ingrese Y para borrar la información y se le pedirá que proporcione la información nuevamente.

Verifique que la aplicación de muestra se esté ejecutando correctamente

Si ve la siguiente salida de la ventana del monitor serie y el LED parpadeante en  la placa ESP8266  la aplicación de muestra se está ejecutando correctamente.

com33.png

 

 

Nota:Si está utilizando otras placas ESP8266, puede seguir estos pasos para conectarlo a su hub de IoT. Según la placa ESP8266 que esté utilizando, es posible que necesite reconfigurar el LED_PIN . Por ejemplo, si está usando ESP8266 de AI-Thinker, puede cambiarlo de 0 a 2 .

 

 

 

Fuente  https://docs.microsoft.com/en-gb/azure/iot-hub/iot-hub-sparkfun-esp8266-thing-dev-get-started

Nuevo movimiento para Xively


Xively fue fundada en 2003 y ofrece una plataforma para la conectividad de dispositivos IoT.

En  este blog hemos  hablado en otras ocasiones de la compañía  y su   gran trayectoria  primero con  el popular servicio de iot de  Pachube.com , despues  con la adquisicion por parte de  cosm.com  y  finalmente despues comprada por logmeIn     reubatizando el servicio como  Xively.com

Podría parecer  que las adquisiciones  habían ya  finalizado por el  momento ,  pero Google ya ha anunciado la  intención de adquirir la plataforma IoT Xively de LogMeIn por USD50 millones el 15 de febrero de 2018.

xively

Este nuevo movimiento alinea a Google con otros proveedores de la nube,  en especial  con  Amzon con su popular  AWS (Amazon Web Services ), que también han expandido sus propuestas IoT a través de adquisiciones, pero sin embargo, el momento y la naturaleza del acuerdo sugieren que puede estar impulsado por las ambiciones de Google en los productos electrónicos de consumo y el hogar inteligente, más que por la necesidad de agregar funciones genéricas a Google Cloud , pues  Google ya  lanzó su Cloud IoT Core para ofrecer servicios de alojamiento IoT basados ​​en su infraestructura en la nube en septiembre de 2017.

Con la adición de la plataforma Xively, Google aprovecharía su solución con un elemento de conectividad del dispositivo, ofreciendo una solución llave en mano para integrar dispositivos en la nube  así que la adquisición saca  a relucir  los intentos de Google de aumentar su participación en la cadena de valor de IoT. 

La movida de Google es similar  a otras empresas , pero es la mas tardía  que las realizadas por  sus rivales directos:

  • AWS compró 2lemetry en 2015.Las herramientas de IoT que AWS tiene, o está planificando, incluyen: IoT Core, Greengrass, IoT Device Management, IoT Device Defender, IoT analytics, FreeRTOS, IoT 1 clic y otros. AWS está tratando de proporcionar un conjunto completo de opciones para los desarrolladores de IoT en muchos mercados verticales y, al hacerlo, está dando menos espacio para que compitan los proveedores de nicho.
  • Microsoft Azure adquirió Solair en 2016.

 

Tanto  AWS como  Azure utilizaron inicialmente su infraestructura en la nube para soportar los requisitos de hospedaje de datos para IoT y luego usaron la plataforma adquirida para avanzar a lo largo de la cadena de valor y simplificar el desarrollo de soluciones para los clientes.

 

Xively y otros desarrollos sugieren que Google apunta a fortalecer su rol en el negocio de la casa inteligente

A pesar de las similitudes con AWS y la compra de Azure de una plataforma IoT, Google puede estar intentando algo diferente con su adquisición de Xively pues si las capacidades de la plataforma IoT fueran tan importantes, podría haber comprado una plataforma anteriormente, o incluso haber creado una internamente. Además, para competir con AWS u otros proveedores de plataforma como PTC ThingWorx, será necesario darle seguimiento con otras adquisiciones o desarrollos internos.

Xively puede ser parte de la estrategia de Google para desarrollar capacidades para productos electrónicos de consumo y dispositivos domésticos inteligentes, en lugar de una plataforma horizontal para todos los verticales.

Una semana antes del anuncio de Xively, la empresa matriz de Google, Alphabet, dijo que estaba incorporando Nest en Google para coordinar mejor estos productos inteligentes para el hogar con otros esfuerzos, como Pixel, Google Home y Chromecast. Con la adición de una plataforma, Google, no solo consolida sus productos de consumo de hardware y software, sino que también establece un ecosistema que conecta a las diferentes partes interesadas que operan en este mercado. El reciente alquiler de IoT de Google y las actividades de Xively sugieren que la adquisición de Xively podría respaldar el enfoque revisado de Google para el mercado de consumo inteligente y hogar inteligente.

 

edge

Xively, como muchas otras plataformas IoT, se posiciona como una plataforma horizontal,pero sin embargo, la mayoría de los casos de uso de Xively son para aplicaciones domésticas inteligentes y relacionadas con el consumidor, como calentadores de agua conectados, rastreadores de mascotas, termostatos y soluciones de iluminación. Los antecedentes de usuarios y dispositivos de Xively combinados con el hardware y las aplicaciones de Google pueden ser parte de un esfuerzo para construir una plataforma de hogar inteligente más completa  asi que la venta de Xively puede representar una revisión del mercado de las plataformas de IoT

La venta de Xively tiene implicaciones más allá de Google pues si bien LogMeIn compró Xively por USD12 millones en 2014 y la venta a Google  se  ha fijado en USD50 millones  ,  también marca la salida de LogMeIn del negocio de la plataforma IoT (de hecho Xively no logró una tracción significativa ya que  reportó ingresos anuales de solo USD3 millones en 2017)

 

n un mercado abarrotado, esperamos que otras plataformas de IoT se consoliden o se cierren silenciosamente ya que el mercado se deja solo a un puñado de jugadores. Esto también tiene implicaciones para los operadores de telecomunicaciones: el desempeño de Xively muestra lo difícil que es desarrollar una plataforma IoT horizontal, pero la reducción en el número de plataformas debería dejar a un número menor de proveedores viables como socios potenciales, lo que probablemente tendrá un impacto positivo en el desarrollo del mercado de IoT.

 

 

 

 

Fuente:   analysysmason.com

Detector de movimiento inteligente


En este ejemplo    volveremos a  usar  un economico NodeMCU ,junto con un  sensor de movimiento PIR  y la plataforma de IoT  Carriots para  construir, usando el IDE de Arduino, un  detector de movimiento inteligente para comerciales y hogar.

El tema  gira en torno a la seguridad de un edificio o casa o una zona restringida detectando cualquier movimiento dentro de un rango específico con un sensor PIR . Gracias al  IoT, además de detectar objetos en movimientos podemos hacer  muchas más cosas como por ejemplo:

  • Encender un dispositivo mediante un relé (en el ejemplo es una luz durante unos 30 segundos).
  •  Al mismo tiempo enviar un correo electrónico al usuario, utilizando la IOT – plataforma Carriots sobre WIFI.
  • El relé se puede conectar a cualquier luz del dispositivo, alarma, cámara, sistema de seguridad…
  • Incluso el disparo puede ser SMS, llamar a las autoridades, llamando a otros servicios…

Node MCU es una plataforma para el desarrollo de proyectos IoT que integra el famoso chip ESP8266, el cual se ha extendido enormemente debido a su facilidad para desarrollar proyectos open source  a los que indudablemente se une su bajisimo precio comparado con otras opciones.
De este componente destaca  integra capacidades de comunicación via WiFi , conteniendo en su interior  microprocesador que puede ser programado fácilmente usando en conocido lenguaje de programación Lua o vía Arduino IDE.

¿Se pregunta cómo controlar  su económico ESP8266 de forma remota desde cualquier lugar del mundo?

En este post repasaremos precisamente el proceso, paso a paso, de cómo escribir código en el IDE de Arduino y programar su ESP8266 permitiendo  que el código  escrito para  el ESP8266 se comunique con la plataforma  de Iot   Carrriots,  la cual  nos va  permitir monitorear  y controlar el ESP8266.

Los pasos  a seguir   para conectar un ESP8266   a  Carriots   son los siguientes:

  •  Instalación del IDE de Arduino .Si aun no lo tiene instalado ,se puede hacer  desde aqui
  • Instalación  del paquete de la placa ESP8266 en Arduino IDE  siguiendo las instrucciones del sitio : https://github.com/esp8266/Arduino

esp

  • Instalación de los controladores USB

Es necesario instalar el controlador USB requerido en su ordenador  para que pueda programar el ESP8266.  Independientemente de la opción de firmware que elijamos, primero necesitamos comunicarnos con la placa de desarrollo ESP-12E utilizando la interfaz USB de la computadora.

El módulo USB a Serial UART incluido en la placa es Silicon Labs ‘CP2012, para lo cual generalmente necesitamos instalar los controladores de puerto COM virtual (VCP) fácilmente disponibles para su sistema operativo específico.Una vez instalado, debemos verificar que el CP2102 sea reconocido por su ordenador

Una vez que el controlador está instalado, podemos conectar el cable USB al puerto USB de la computadora y la placa. Después de hacerlo, deberíamos ver el mensaje: software del controlador del dispositivo instalado correctamente.

Además, podemos verificar manualmente que todo funcione correctamente siguiendo estos pasos:

Abra el Administrador de dispositivos (disponible a través del Panel de control → Sistema y seguridad → Administrador de dispositivos en la sección Sistema)
Debajo de la entrada Puertos (COM & LPT), debe haber un puerto abierto llamado USB-SERIAL CP2102 (COM) donde hay un número típicamente mayor o igual a 3.

Carriots es una Plataforma como Servicio (PaaS en sus siglas en inglés) diseñada para proyectos del Internet de las Cosas (IoT) y de Máquina a Máquina (M2M)

carriots

Carriots es una plataforma IoT creada en España  que  permite crear potentes productos y servicios IoT  haciendo posible conectar fácilmente “sus cosas” al Internet de las Cosas.

Se  pueden construya sus apps inteligentes con Carriots en pocos pasos.

  1. Conectar Dispositivos
  2. Recopilar Datos
  3. Gestionar Dispositivos y Datos
  4. Construir APPs

Principales ventajas

  • Listo para empezar a desarrollar.
  • Minimizar tiempo de desarrollo.
  • Gestión simplificada de múltiples proyectos: Arquitectura de 7 niveles
  • Amplia variedad de APIs y potente SDK: REST API y SDK
  • Escalabilidad inmediata
  • Inicio gratuito y pago por uso.
  • Alojamiento simplificado: Oferta PaaS para escalabilidad fiable.

Hardware

Ahora preparado el entorno , necesitamos el hw  que lo permita , el cual  como vamos a ver,  es muy simple reduciendose a la placa o NodeMCUuna placa de relé, el sensor PIR  y una fuente de 5V DC

Sensor PIR

El sensor PIR usado , es del tipo HC-SR501, de bajo coste   el cual es ampliamente utilizado en diversos equipos eléctricos de detección automática, productos para el control automático especialmente a batería.Tiene alta sensibilidad, alta fiabilidad, bajo consumo de energía, el modo de operación de bajo voltaje.

Especificaciones:

  •  Dimensiones: Cerca de 3,2 x 2,4 cm (L x W).
  •  Rango de tensión: 5V-20V DC.
  •  Corriente estática: < 50uA
  •  Voltaje de salida: 3,3 V (alto) / 0V (bajo)
  •  Modo del disparador: L (no se puede gatillo repetida), H gatillo repetida (Repetición predeterminado de disparo)
  •  El Tiempo de retardo: 0,3 seg 18 seg (ajustable)
  •  Temperatura De funcionamiento: -15 C a 70

 Placa de rele

Por  precio  es mucho mas asequible optar por una placa    de  2 reles    con salida de relé máxima: DC 30V / 10A, AC 250V / 10A. Es  importanet   que el interfaz de tarjeta de relé sea de 5v . En nuestro caso es de 2 canales y cada canal necesita 15-20mA actual controlador

Este tipo de placas es de fácil instalación por el microcontrolador como Arduino, 8051, AVR, PIC, DSP, BRAZO, MSP430, PLC, lógica TTL pues solo ha que conectar la alimentacion  y dos cables de datos en caso de necesitar los dos canales 

Resumiendo , estos son los componentes  necesarias:

  • Placa de desarrollo de NodeMcu Lua WIFI Internet de las cosas basado en ESP8266 – 1 (capacidad de MCU y WIFI)
  • Sensor PIR ( hemos hablado  en este blog )
  • 1 módulo de relé con opto aislamiento de  5V1
  • Fuente de alimentación conmutada  220V/5v ( nos sirve cuaqluier cargador de movil  con salida microusb)
  • Placa Protoboard

Diagrama del circuito:

El circuito   no incluye dificultad alguna ,pues se reduce a conectar el sensor PIR a +5V  y la salida binaria al pin D2, el módulo de rele a +5v   y al pin D2    y por  supuesto la alimentación del circuito que puede ser bien a baterías  o  bien por medio del  propio micro-usb   usado para programar el  NodeMcu

Resumiendo las conexiones con las siguientes:

  • NodeMCU (ESP8266 Dev Kit) D1—> INI del relé
  • NodeMCU (ESP8266 Dev Kit) D2—> Digital sensor PIR
  • NodeMCU (ESP8266 Dev Kit) VCC—> VCC (+) de la batería
  • NodeMCU (ESP8266 Dev Kit) GND—> GND (-) de la batería
  • Relé de VCC—> VCC (+) de la batería
  • Relé de tierra—> GND (-) de la batería
  • PIR Sensor VCC—> VCC (+) de la batería
  • PIR Sensor de tierra—> GND (-) de la batería

Software

Una vez el hardware  montado nos toca escribir el código  el código utilizando el IDE de Arduino para hacer que NodeMCU trabaje con un relé, sensor de movimiento PIR y utilizar IOT plataforma carriots sobre WIFI

El autor se  encontró con  algunos puntos problemas  en el diseño del programa  para ejecutar en la placa NodeMcu;

  • Compruebe que los pines de NodeMcu  están dando la entrada o salida correcta como se están asumiendo, por ejemplo, asegurándose  que usted no está tomando el pin 4 (GPIO) como un pin de entrada asi que por defecto que este pin debe leer…
  • Utilizar un método directo de get y post HTTP en lugar de utilizar una función de visualización por BLYNK o Thinger.io.
  • Observe  que el PIR da salida permanentemenet alta durante un par de envíos pero se necesita traer retraso para evitar el envío de múltiples correos electrónicos. Con algunos servicios como BLYNK este retraso causa un problema  asi que  es mejro a llamar a esa función una vez despues  de 6 o 7 seg.
  • Una vez satisfecha la condición de if loop, llamar a una función, en lugar de escribir todo con el bucle. Esto aporta claridad del código y ayuda en la resolución de problemas.
  • Se  puede  ajustar la sensibilidad del PIR para reducir el tiempo que permanece alta.

A continuación veamos el codigo completo del sw  que habrá que subir  a la placa desde el entorno  de Arduino:

#include “ESP8266WiFi.h”

const char * ssid = “NETGXXXXX”;   //red wifi a la que se conectara

const char * clave = “XXXXXXXXX”;  //clave red wifi para coenctarse

const char * servidor = “api.carriots.com”;

const String APIKEY = XXXXXXXXXX”; //Sustituir con su apikey de Carriots

 const  String DEVICE = “[email protected]”; //Reemplazar por el id_developer del dispositivo de  carriots

int ledpin = 4;

pirpin INT = 12;

int pirstate = LOW;

int val = 0;

void setup() {

Serial.Begin(115200);

Delay(10);

pinMode(ledpin,OUTPUT);

pinMode(pirpin,INPUT);

Serial.println(“calibrando”);

for (int i = 0; i < 20; i ++) {

Serial.Print(“.”);

Delay(1000);

}

//iniciar wifi

Serial.println();

Serial.println();

Serial.Print (“conectarse”);

Serial.println(SSID);

WiFi.begin (ssid, clave);

while  (WiFi.status()! = WL_CONNECTED) {

Delay(500);

Serial.Print(“.”);

}

Serial.println(“”);

Serial.println (“Wi-Fi conectado”);

Serial.println (“dirección IP:”);

Serial.println(WiFi.localIP());

}

//función para hablar con la plataforma Carriot

void sendStream()

{

String txt = “”; //Texto para enviar

if (pirstate == HIGH)

{/ / alarma

txt = “Detecta movimiento;”

} else {/ / alarma en

txt = “Algo mal”;

}

 

Serial.println(txt);

Serial.println(Val); / / para fines de depuración

Client WiFiClient;

const int httpPort = 80;

if  (client.connect (servidor, 80)) {/ / si hay una conexión exitosa

Serial.println(F(“Conectedo”));

//Construir el campo de datos

String json = “{\”protocol\”:\”v2\”,\”device\”:\””+DEVICE+”\”,\”at\”:\”now\”,\”data\”:{\”light\”:\””+txt+”\ “}}”;

//Realizar una solicitud HTTP

Client.println (“POST /streams HTTP/1.1”);

Client.println (“Host: api.carriots.com”);

Client.println (“Accept: aplicación/json”);

Client.println (“User-Agent: Arduino-Carriots”);

Client.println (“Content-Type: aplicación/json”);

Client.Print (“carriots.apikey:”);

Client.println(APIKEY);

Client.Print (“Content-Length:”);

int thisLength = json.length();

Client.println(thisLength);

Client.println (“conexión: cerrar”);

Client.println();

Client.println(JSON);

}

Else {}

//Si no tiene una conexión con el servidor:

Serial.println (F (“Conexión fallida”));

}

}

 

void loop() {}

Val = digitalRead(pirpin);

Serial.println(Val);

if(Val == HIGH) {}

digitalWrite(ledpin,HIGH);

if  (pirstate == LOW) {

Serial.println (“movimiento detectado”);

pirstate = HIGH;

Serial.println (F (“secuencia de enviar”));

sendStream();

Delay(30000);

}

/ * {while(client.available())}

String linea = client.readStringUntil(‘\r’);

Serial.Print(line);

Delay(30000);

} */

}

Else {}

digitalWrite(ledpin,LOW);

if(pirstate == HIGH) {}

Serial.println (“movimiento detectado correo enviado”);

pirstate = LOW;

}

}

}

Programación de disparadores de Carriots enviar Email:

Una vez   que  tenga desplegado el  sw en su  placa NodeMcu  ,la capacidad de activar un correo debe ser  programado o configurado en la plataforma de Internet para este producto que está utilizando (la plataforma Carriots IOT) . Si no sabe como hacerlo en el siguiente video podemso  ver  como  familiarizarse con las funciones y cómo utilizarlas:

 

Obviamente esto podría programarse para llamada, o un texto o una alarma a la policía o quien sea. !Como podemos adivinar   las posibilidades  son infinitas!.

Fuente 

Monitorizacion de liquidos via wifi desde su smartphone


Utilizando la placa WiFi NodeMCU-12E v3 ESP8266  y 2 sondas ultrasónicas de tipo HC-SR04 a prueba de agua , se  puede  medir el volumen de agua en 2 tanques de agua y ofrecer esa información  de un modo gráfico  y en tiempo real.

El  sonar suena por la parte superior del agua, obteniendo la distancia en cm,calculando la profundidad del agua en cm y luego extrapolando  el volumen de agua a litros.   Toda la información se pasa por WiFi en la WLAN al servidor local (RPi3) que ejecuta el servidor local Blynk. Finalmente la información está disponible en un teléfono usando la aplicación Blynk registrada en el servidor local.

Es importante destacar que el el mapeo de los pines es diferente en estas placa frente a lo s pines de un Arduino ( los números de pin son generalmente números de GPIO)

Es  este proyecto se usaran los típicos sensores ultrasónicos HC-SR04 estándar  sensores que transmiten   y reciben  señales  ultrasónicas ,  que en este caso deberán o bien  impermeabilizarse para ser resistentes al agua e impermeables ( el aspecto es muy similar a las mismas unidades que se usan en los vehículos para detectar colisiones al aparcar ) o bien comprarlos  ya  estancos espaciales  para ambientes húmedos, ( como en la foto).

sesnor

Concretamente este sensor se alimenta de  DC 5 V( consumo  30mA) usando  e emisión de frecuencia: 40 khz  con  una detección  máxima distancia de 4.5 m y resolución  cerca de 0.5 cm

Sus conexiones son 4:

  • VCC+ 5 V (fuente de alimentación positiva)
  • Trig (lado de control) RX
  • eco (lado receptor) TX
  • GND (negativo)

El uso de la ubicación disparador del IO TRIG puerto, pone el alto nivel de la señal de al menos 10us; el módulo automáticamente envía 8 trens de  40 KHz  con detección automática si  hay vuelta de señal.Una señal de vuelta se marca como  un alto nivel de salida a través del puerto IO de ECO. El tiempo de duración de alto nivel   ultrasónica es el del lanzamiento de volver.

La formula  para calcular la  distancia es la siguiente:

D(m) = tiempo de alto nivel * velocidad del sonido (los 340 M/S)) /2 

Como vemos este módulo utiliza el método sencillo, un puerto de control con un 10US por encima de alto nivel,  esperando un alto nivel de salida en el puerto de recepción. Una salida puede conducir el temporizador, de modo que cuando este puerto se pone la señal  bajo puede leer el valor del temporizador, y  esta vez para la ubicación del tiempo, se puede calcular la distancia de modo que así  constantemente hay un ciclo de  medicino

Estos sensores HCSR04 los conectamos  a una placa WiFi ESP8266 NodeMCU y yna pequeña placa para la alimenticio  de 3.3v  del ESP8200

El esquema es bastante sencillo como podemos ver en  la siguiente imagen:

Imagen de Primeros pasos con el banco para las pruebas iniciales

El  total de compontes    en resumen son los siguintes :

Para fines de prueba se puede  usar  un  PC para alimentar el circuito ,pero con la idea de que cuando este ya programado  funcione independiente , lo mejor es   utilizar un pequeño conversor  DC-DC de 3 v3  y asi usar cualquier fuente de alimentación de  220v/ 12v para alimentar el circuito (usando el coneversor como adptador de tension) 

 Tenga en cuenta que estas placas ESP12E funcionan con 3,3 voltios pero tienen un pin de suministro de entrada de 5v (VIN) y también funcionan con el suministro de USB cuando están conectados a su PC. No suministre más de 5 voltios al pin VIN si lo usa.

La conexiones  a usar son las siguientes :

  • Sensoring a Arduino GPIO5 (D1)
  • Sensor1 echo a Arduino GPIO4 (D2)
  • Sensor2 ping a Arduino GPIO14 (D5)
  • Sensor2 echo a Arduino GPIO12 (D6)

Estos sensores funcionan también a 3.3 voltios   y dan un  buen nivel de salida asi que no es necesario  convertidores de salida .Conecte ambos VCC a los sensores Arduino 3v3 y conecte ambos sensores GND a Arduino GND.

Puede usar un  LED  pero como se encenderá   solo de 50mS cada 2 segundos,  no merece la pena conectar una resistencia limitadora de corriente, (pero se puede agregar una resistencia 1 / 4W 470R si lo desea.). ElÁnodo del led  (pata larga) ira al Arduino GPIO13 (D7) y el Cátodo a Arduino GND

Tenga en cuenta   que los cables de los sensores  tienen cables coaxiales de 2 m de longitud., si necesita extender estoso pues usar un viejo cable coaxial que tenga , asegúrandose  de cubrir todas las uniones soldadas con termofluente.

 

 Instalando el Software

Este monitor de nivel de agua usa su tarjeta ESP8266 en su teléfono a través de sus servidores.

El servidor de Blynk en la nube sirve su aplicación con la información en los widgets en el teléfono. Al registrarte con Blynk, recibe 2000 puntos de energía de modo que con estos puntos se usan para ‘comprar’ widgets para su programa ( 2000 puntos son suficientes para construir esta aplicación de monitor de agua).

Otra opción es usar un servidor local ejecutándose en una Raspberry Pi, lo cual  permite puntos ilimitados y una mejor seguridad y no usando el servidor Blynk en absoluto,(es completamente independiente). La instalación y configuración de un servidor local está más allá del alcance de este post  sobre todo porque hay muchas instrucciones y tutoriales en la red para hacer esto comenzando con el sitio web de Blynk.

La versión final  utiliza  OTA para recibir actualizacion en el aire desde el wifi sin necesidad de  sacar todo para actualizar el software ( veremos  los cambios y métodos del software OTA más adelante).

 

Lo primero que necesitará es el Arduino IDE si aún no lo tiene.

Descargue la biblioteca Blynk aquí Biblioteca Blynk , la descarga se encuentra en la parte inferior de la página. Siga las instrucciones en esa página para instalar la biblioteca.Obtenga  tambien  la aplicación del teléfono aquí Blynk App .Se puede crear una cuenta para Blynk si desea usar la aplicación. Recuerde la dirección de correo electrónico de inicio de sesión que utiliza, la necesitará más adelante. Probablemente sea mejor usar su cuenta de correo electrónico todos los días.

También necesitará esta biblioteca:NewPing Esta es una excelente biblioteca para usar sus dispositivos. No hay necesidad de perder el tiempo con milisegundos, etc.

Estas instrucciones son para el software ESP8266:

  • Comenzando con 1.6.4, Arduino permite la instalación de paquetes de plataforma de terceros usando Boards Manager. Tenemos paquetes disponibles para Windows, Mac OS y Linux (32 y 64 bits).
  • Inicie Arduino y abra la ventana Archivo> Preferencias.
  • Ingrese “ `http: // arduino.esp8266.com / stable / package_esp8266com_index.json“` en el campo * Additional Board Manager URLs *. Puede agregar varias URL, separándolas con comas.
  • Abra el Administrador de tableros desde Herramientas> Menú de la placa e instale la plataforma * esp8266 * (y no olvide seleccionar su placa ‘NodeMCU 1.0 (Módulo ESP-12E)’ desde Herramientas> Menú de la placa después de la instalación).
  • En el menú, seleccione Boceto> Incluir biblioteca> Administrar bibliotecas.Permitir que termine la descarga. Debería ver las bibliotecas de Blynk instaladas.
  • Para que su PC se comunique con el software USB to Serial de las placas Arduino debe instalar el controlador USB-UART CH341SER_win. Esto es necesario para todas las comunicaciones Arduino a través de USB. Obtengalo aqui

 

 Código de prueba para la placa ESP8266

Comenzaremos con dos sensores que informan la información al monitor serie integrado en el IDE de Arduino. Aún no se informa al servidor Blynk, OTA o WiFi.

Haga doble clic en el archivo ‘water_code_1.in’ a continuación, después de que Arduino IDE comience vaya a Archivo> ‘guardar como’ y guárdelo en su carpeta de bocetos.Se creará una carpeta con el archivo dentro.Confirme que tiene la placa correcta seleccionada, haga clic en el botón ‘verificar’ (botón muy a la izquierda en el IDE). Debe compilar sin error. Conecte su placa al cable USB, desde el menú IDE Herramientas> Puerto> COM n.

El puerto de comunicación correcto se puede encontrar simplemente desenchufando la placa y viendo qué puerto desaparece.Haga clic en el botón ‘Subir’ en IDE Arduino y permita que termine de compilar y cargar.En el IDE seleccione Herramientas> Monitor en serie

El LED debe parpadear cada 2 segundos y el monitor debe informar la distancia, la profundidad y los litros de agua de cada tanque durante 2 segundos, de forma similar a la imagen mostrada.

Imagen del código de prueba para el tablero ESP8266e Estos sensores tienen un rango d aproximadamente 3 mtrs. de modo que están configurados a 3 mtrs en el software de todos modos.

Pruebe cada sensor moviéndolo dentro y fuera de un objeto sólido como la pared, debería ver las figuras cambiar en la ventana del monitor. A medida que la distancia aumenta, simula un nivel de agua más bajo.

Este es  el codigo  final :

#include
#include

#define SONAR_NUM 2 // Number of sensors. Change to suit your requirements.
#define PI 3.1415926535897932384626433832795

//** CHANGE TO SUIT TANK DIMENSIONS
const int MAX_DISTANCE = 300; //max distance to measure
const int Diameter1 = 276; //internal Diameter of tank 1 cm
const int Diameter2 = 276; //internal Diameter of tank 2 cm
const int Depth1 = 265; //total depth of tank 1 cm , from sensor to base inside
const int Depth2 = 265; //total depth of tank 2 cm, from sensor to base inside

const unsigned int Period = 2000; //period between pings, in milliseconds. i.e 1 munute = 60,000. max 65535. Want longer? use unsigned long

//** SENSOR PINS

const int PingPin1 = 5; // GPIO5, D1
const int EchoPin1 = 4; // GPIO4, D2
const int PingPin2 = 14; // GPIO14, D5
const int EchoPin2 = 12; // GPIO12, D6

const int Area1 = PI * ((Diameter1 / 2) * (Diameter1 / 2)); //area of base of tank 1
const int Area2 = PI * ((Diameter2 / 2) * (Diameter2 / 2)); //area of base of tank 2

// Global variables
int Litres1, Litres2, Distance1, Distance2, WaterDepth1, WaterDepth2;

BlynkTimer timer; //config timer

NewPing sonar[SONAR_NUM] = { // Sensor object array.
NewPing(PingPin1, EchoPin1, MAX_DISTANCE), // Each sensor’s trigger pin, echo pin, and max distance to ping.
NewPing(PingPin2, EchoPin2, MAX_DISTANCE)
};

void sendSensorReadings()
{
//***********Readings Tank 1
Distance1 = sonar[0].ping_cm(); //get distance to the top of the water tank 1
if (Distance1 >= Depth1 || Distance1 == 0 ) Distance1 = Depth1; //check it does not go negative
WaterDepth1 = Depth1 – Distance1; //calculate the depth of the water
Litres1 = (Area1 * WaterDepth1) / 1000; //calculate the volume of the water as litres
delay(50);

//************Readings Tank 2
Distance2 = sonar[1].ping_cm(); //get distance to the top of the water tank 2
if (Distance2 >= Depth2 || Distance2 == 0) Distance2 = Depth2; //check it does not go negative
WaterDepth2 = Depth2 – Distance2; //calculate the depth of the water
Litres2 = (Area2 * WaterDepth2) / 1000; //calculate the volume of the water as liters

digitalWrite(13, HIGH); //flash the LED on D7, just to let us know it’s running
delay(50);
digitalWrite(13, LOW);

//************************* can be commented out, test use only
Serial.println();
Serial.println();
Serial.println(“Tank 1 water distance: ” + String(Distance1)); //print depth
Serial.println(“Tank 1 water depth: ” + String(WaterDepth1)); //print depth
Serial.println(“Tank 1 Litres: ” + String(Litres1)); //print litres

Serial.println();
Serial.println(“Tank 2 water distance: ” + String(Distance2)); //print depth
Serial.println(“Tank 2 water depth: ” + String(WaterDepth2)); //print depth
Serial.println(“Tank 2 Litres: ” + String(Litres2)); //print litres
//***********************************************

}

void setup() {

pinMode(13, OUTPUT); //LED GPIO13 D7

timer.setInterval(Period, sendSensorReadings); // Setup a function to be called every ‘n’ seconds
delay(10);

//** can be commented out, test only
Serial.begin(115200); // Open serial console.
Serial.println();
//*******************************

delay(20);
}

void loop() {

Blynk.run();
timer.run();

}

 

Código  Final con WiFi y Blynk

Ahora vamos a conectarnos al servidor de Blynk. Descargue y abre el water_code_2.ino

En el IDE de Arduino, seleccione Archivo> “guardar como” en su carpeta de bocetos.

Abra la aplicación Blynk, inicie sesión. Cree un nuevo proyecto,  dispositivo = ESP8266, tipo de conexión = WiFi, configure el tema que prefiera.presione el botón Crear.Se enviará un token de autoridad a su cuenta de correo electrónico designada.Presione OK  y vaya a su correo electrónico , copie el token de autoridad, péguelo en su programa arduino donde dice ‘char auth [] = “YourAuthToken

También ingrese su SSID y su contraseña.Ahora cárgalo en su ESP.

Ahora  terminaremos el proyecto Blynk viendo como configurar la aplicación.

Configuración del programa de aplicación Blynk

Imagen de la configuración del programa de la aplicación Blynk

 

Entre en su app movil  Blync e introduzca sus credenciales de acceso. Siga los siguientes pasos para configurar la aplicación para la medición de los niveles de dos tanques

  • Presione + en la parte superior de la pantalla en la aplicación, desplázese hacia abajo y presiona Value Display. Haga esto 4 veces
  • Presione + en la parte superior de la pantalla en la aplicación, desplázese hacia abajo y presiona NivelV. Haga esto dos veces
  • Presione + en la parte superior de la pantalla en la aplicación, desplázesee hacia abajo y presiona SuperChart.
  • Diseñe los widgets como en la imagen. Una pulsación larga en el widget le da identificadores para redimensionarlos.
  • Colócalos como mejor le parezca.
  • Presione la primera Pantalla de valor (arriba a la izquierda), asígnele el nombre Profundidad 1, seleccione V1, 0 a 300 y PULSE
  • Presione la segunda pantalla de valores, nombre Profundidad 2, seleccione V4, 0 a 300 y PUSH
  • Presione la tercera pantalla de valores (2 abajo a la izquierda), nombre Liters 1, seleccione V2, 0 a 9999 y PUSH
  • Presione la cuarta pantalla de valores, nombre Liters 2, seleccione V5, 0 a 9999 y PUSH
  • Presione el nivel vertical izquierdo, nómbrelo Nivel 1, seleccione V3, 0 a 1600, APAGADO y EMPUJE
  • Presione el nivel Vertical derecho, nómbrelo Nivel 2, seleccione V6, 0 a 1600, APAGADO y PULSE
  • Presione SuperChart, Litros 1 y Litros 2.
  • Presione el ícono (flujo de datos) al lado de Nombre, PIN = V3, interruptor deslizante = VALORES, minn = 0, máximo = 1600
  • Presione el ícono (secuencia de datos) al lado del segundo nombre, PIN = V6, interruptor deslizante = VALORES, min = 0, máximo = 1600

Puede jugar con las otras configuraciones para adaptarlas a sus preferencias. Para eliminar un widget, arrástrelo a la derecha de la pantalla.

Si todo se ve bien, presione la esquina superior derecha de la pantalla. Si su Arduino se está ejecutando, debería ver los mismos números (excepto la distancia) que en el monitor de serie.

Como se puede ver en la imagen anterior de la app movil  de Blync   debe tener en cuenta que debe ajustar el valor real de  Profundidad1 y Profundidad2  en la app  , pero también deberá reflejar los  valores correspondientes en el codigo de Arduino  para calcular el volumen par lo cual es importante  no olvidar este detalle.

En el ejemplo los depósitos son circulares de modo que hay especificar tanto el diámetro como la profundidad:

 

Imagen de Mount the Sensors en los tanques

También  debe señalar que estos sensores tienen un rango mínimo de 20 cm, lo cual se debe a que el transmisor y el receptor comparten la misma distancia.

 

Configurar la  actualización por  OTA

Imagen de la configuración de la actualización de OTA

OTA o ‘Over The Air‘ es una característica realmente útil, especialmente en este caso donde ESP está dentro de una caja y afuera.

Este es un proceso bastante simple:

  1.  El cargador de arranque OTA se carga primero en la placa.
  2.  La placa se reinicia presionando el botón de reinicio en la placa.
  3.  Su nuevo código para el proyecto de tanque de agua que contiene las adiciones de OTA a su placa por USB.

Las cargas futuras se logran seleccionando el puerto WiFi en Herramientas> Puerto.

Vaya a Archivo> Ejemplos> ArduinoOTA> BasicOTA

El programa se cargará, ingrese su nombre de red y contraseña en el código.Suba esto a su placa. Ahora presione el botón de reinicio en el tablero.

Regrese a su programa de tanque de agua y vea los 3 lugares que se muestran en las imágenes, estos son necesarios para la carga de OTA.

Suba esto a su placa , usando  USB serial.

Si mira en Herramientas> Puerto en IDE Arduino, verá un nuevo puerto.Tendrá ‘esp8266’, la ID de la placa y la dirección IP de la placa.

Para una carga futura, use este puerto, sin necesidad de una conexión serial USB.

La placa ahora puede ser cargada por otros medios , es decir por wifi  sin tener que llevar el pc  y conectarlo por USB.

Montaje  final

Imagen de Monte las tablas en la caja

Puede montar  el ESP8266, tanto las placas ultrasónicas como el convertidor DC-DC en la caja con clasificación IP66, ya que estará   expuesto a los elementos. Si usa conectores de cable hembra-hembra, mucho mejor. Es interesante montar el convertidor CC-CC en una posición donde el conector de alimentación pueda enchufarse desde el exterior. 

También se deben tome todas las conexiones de alimentación y tierra a esta placa para evitar los bucles de tierra usando se 3.3 voltios para todo.

Es interesante hacer un agujero para el LED, e intentar ajustarlo para que no se necesite adhesivo.

Conecte todo y asegúrese de que todo sea resistente a la intemperie

Verifique todo, especialmente el cableado de alimentación.Enchufe la alimentación y conéctelo a la caja, conecte los sensores y enciéndalo.No verá nada en el monitor de serie, pero consulte la aplicación de su teléfono mediante la aplicación Blynk 

Mueva los sensores alrededor, las figuras deberían cambiar en la aplicación. Recuerde que una transmisión de ping e información solo se realiza cada 2 segundos.

Si sus tanques están a una distancia mayor, deberá  usar un extensor WiFi.

.

 

Fuente  Instructables.com

 

Interceptar Amazon Dash Button para otras aplicaciones


Amazon  lleva mas  un año enviando sus famosos  botones Dash , los cuales se pueden transformar en exactamente eso con sólo unos minutos, es   decir que un pequeño dispositivo permita con el simple hecho de darle un botón , desencadenar una  compra predefinida al famoso portal de compra…   pero, obviamente , estos botones  inteligentes están abiertos   a otras posibilidades  sin duda infinitas y que vamos a intentar explorar en este post

Los  famosos Amazon Dash  son  botones pequeños, de plástico  y de un coste ínfimo (  5€) ,pero ademas incluyen  una batería y una conexión WiFi en su interior . Amazon quiere que usted los pegue en el interior de sus puertas y los utilice  para  comprar productos de uso cotidiano  como pueden ser los pañales, té , café,  productos de limpieza   y un largo etcétera.

nescafe.jpg

Existe  una  manera   mas fácil   de darle otros usos a  cualquier botón  Amazon Dash si quiere usar SmartThings para  otras cosas útiles.

Ejemplos de usos:

  • Presionar el botón Dash y encender las luces. (Luces del dormitorio, luces de la sala de estar, todas las luces o lo que sea).
  • Presionar el botón Dash y encender el televisor, cambia a una entrada de TV y abrir Netflix.
  • Presionar el botón Dash y abrir la puerta de la puerta / garaje.
  • Presionar el botón Dash  y abrir una aplicación de cámara en el teléfono e incluso encender la TV y proyectar la cámara al televisor.
  • Presione el botón Dash y abrir una aplicación  en el ordenar que  realice alguna acción.
  • !En resumen: posibilidades ilimitadas!

Entender cómo funciona el registro del botón.

Nuestro objetivo es detectar cuando uno de estos botones Dash se   pulsa  y luego hacer algo más que ordenar  cosas en Amazon. El hack impresionante sería abrir el botón y re-programarlo  ( de hecho esto ya se puede hacer  reprogramando el STM32  que incluye )   pero  vamos a seguir  una  ruta muchísimo mas fácil:  sólo vamos a usar  un programa que rastrea nuestra red wifi para buscar  la evidencia de que el botón fue pulsado  , luego registrar un punto de datos cuando escucha estos y una vez detectado desencadenar una acción .

Resulta que Amazon nos dio una manera muy fácil de hacer esto porque estaban tan preocupados con el ahorro de energía , pues estos  botones  se desactivan la mayor parte del tiempo para conservar la batería dentro y sólo se encienden cuando son pulsados, lo cual significa que tienen que volver a conectarse a su red Wifi cada vez que son pulsados ( y eso  es fácil de detectar).

Los dispositivos de Internet no solo se conectan a una red Wifi y empiezan a hablar con Amazon: se presentan primero a la red local . Esta introducción se hace con algo llamado una sonda ARP , y es esencialmente una comprobación de seguridad para asegurarse de que la dirección MAC que el dispositivo va a utilizar como identificador ya no está siendo utilizada por otra persona.

Cada vez que pulsa un botón Dash, se vuelve a conectar a la red, causando una transmisión predecible  de llamada una sonda ARP que podemos detectar y actuar.

Eso es una gran noticia para nosotros: cada vez que se pulsa un botón Dash, se enciende su radio y transmite rápidamente el mensaje, “Hola! Mi nombre es [Dirección MAC]! “

Así, que conceptualmente, el problema esta resuelto pues sólo tenemos que:

  1. Evitar que el botón realice cualquier pedido
  2. Escuche las sondas ARP del botón Dash
  3. Traducir esas sondas a llamadas   cualquier cosa que se nos  ocurra

Paso 1: Configurar la red wifi en el botón

Para   usar el botón ,primero  debe registrar el Botón básicamente para configurar la red wifi a la que se conectará .  Lo que no queremos es asignar el botón para pedir algo , por lo en lugar de asignar algún producto , antes de finalizar la vinculación simplemente  no haremos nada  !pero el botón de tablero todavía seguirá registrado! , así  que lo sucede a continuación es que cuando presione el botón del tablero, recibirá una notificación  en las versiones antiguas  que dice “Su (inserte el nombre del botón del tablero) está casi listo para usar … bla, bla, bla”.

Pasos del botón Dash (Nuevo botón Dash):

  1. Abra la aplicación Amazon Shopping y vaya a su cuenta.
  2. Vaya a Configurar un nuevo botón de tablero y haga clic en Aceptar y comenzar para comenzar.
  3. Mantenga presionado el Botón de tablero por 6 segundos hasta que la luz destelle en azul y haga clic en Conectar. (Asegúrate de que Bluetooth esté habilitado)
  4. Haga clic en la red Wi-Fi a la que desea conectar el botón del tablero y haga clic en Continuar.
  5. El botón de tablero ahora está registrado. No haga nada todavía.
  6. Donde dice Elija un producto simplemente salga (no queremos pedir nada) haciendo clic en la X en la esquina superior derecha.
  7. Hemos terminado con la configuración del botón del tablero.

Pasos del botón de tablero (dispositivo antiguo):

  1. Abra la aplicación Amazon Shopping y vaya a su cuenta.
  2. Diríjase al botón del tablero con el que tiene programada la configuración y haga clic en Desactivar este botón del tablero. Aparecerá una ventana emergente preguntándole si está seguro. Decir que sí.
  3. Ahora vaya a Configurar un nuevo botón de tablero y haga clic en Aceptar y comenzar para comenzar.
  4. Mantenga presionado el Botón de tablero por 6 segundos hasta que la luz destelle en azul y haga clic en Conectar. (Asegúrate de que Bluetooth esté habilitado)
  5. Haga clic en la red Wi-Fi a la que desea conectar el botón del tablero y haga clic en Continuar.
  6. El botón de tablero ahora está registrado. No haga nada todavía.
  7. Donde dice Elija un producto simplemente salga (no queremos pedir nada) haciendo clic en la X en la esquina superior derecha.
  8. Hemos terminado con la configuración del botón del tablero.

Nota: Puede activar y desactivar la notificación de Amazon Shopping para cada dispositivo que desee habilitar o deshabilitar en caso de que se moleste. Esto se puede hacer abriendo la aplicación Amazon Shopping en cada dispositivo individual y deshabilitando o habilitando “Alexa Shopping & Dash Updates”. Habilite en el dispositivo que planea hacer esta guía de configuración. Deshabilite en todos los dispositivos en los que no planea usar esta configuración. Naranja = Activado.

Paso 2: Captura  de la IP del botón

Una forma fácil de encontrar su ID del botón de pantalla es usar Wireshark (https://www.wireshark.org/#download), que se puede  obtener  mediante una descarga gratuita para Mac / Win.

Una vez  descargada  e instalada la aplicación  podemos lanzar Wireshark, estableciendo el filtro para capturar paquetes en “arp“, seleccionando  el modo wifi para la red y haciendo clic en el icono de Blue Shark para habilitar el filtro al capturar paquetes.

wireshar.png

A continuación, verá una ventana como la siguiente: haga clic en el ícono de Green Shark para comenzar a capturar paquetes, presione el botón de Amazon Dash.

Verá una línea en el parte superior que tiene “AmazonTe …” en la fuente Colunm.

amazonte.png

Selecciónelo y en el panel a continuación, verá la dirección MAC del botón Amazon Dash en parantesis, junto a AmazonTe _… Src, como se muestra a continuación.

mac.png

Realmente la dirección MAC es importante  para algunas aplicaciones,   pero realmente lo que nos va a importar  para capturar la petición,   es la dirección ip  del botón obtenida en la pantalla  anterior   , ( en  nuestro caso : 192.168.1.32)

Alternativamente, puede seguir las instrucciones de node-dash-button para encontrar su id del botón de pantalla.

Nota :   Un pedido real se marca  controlando la luz en el botón Dash para que se vuelva verde. Actualmente se vuelve blanco cuando se transmite una solicitud DHCP o paquete ARP y luego se vuelve rojo cuando no recibe una respuesta de Amazon, así que  cuando usa un botón Dash de la manera normal, la luz se vuelve verde después de que Amazon haya realizado su pedido, pero si eso No es  lo que pretende,  todavía  puede ir a la app( o en la web)  para cancelar el pedido

Paso 3 :  Utilización  sobre windows

Existen scripts en python que pueden ejecutarse  en una raspberry Pi  para  escuchar las peticiones  en la red wifi  de modo que cuando detecten  la ip de nuestro botón desencadenen un acción.
Para  windows existe una  interesante  utilidad que busca cualquier llamada a la IP de nuestro botón  y desencadene la ejecución de un comando o aplicación.

Descargue el sw de aquí: https://github.com/fiveseven808/AmazonDashButtonHack

Una vez descomprimido  tendremos al menos dos ejecutables:

amanzonbut

En versiones  antiguas del botón era posible el auto-descubrimiento  de la ip del botón ( es decir obviar el paso comentado  nº 2),   por  lo que  los pasos  serian los siguientes :

  • Ejecutar  “AmazonButton_Discovery_160715 _ ****. Exe” para comenzar a buscar botones.
  • Pulsamos clic en “Aceptar” en el aviso y comenzariamos  a presionar el botón que desea emparejar repetidamente.
  • Si no se encuentran dispositivos de Amazon, intente de nuevo, pero comience a presionar el botón tan pronto como haga doble clic en el archivo EXE.
  • Si se encuentran más de un dispositivo de Amazon, tendrá que ir y averiguar qué IP corresponde con su botón por su cuenta.
  • Finalmente elija un programa que desea ejecutar cuando se presiona el botón
  • Ingrese un comentario para el daemon, lo cual  identificará el daemon particular que corresponde con el botón en particular.

 

Como el proceso anterior  no es mas eficaz , si ya conoce la IP de su botón( descrito en el paso 2 )  siga los siguientes  pasos:

  • Haga doble clic en AmazonButton_v4.0.exe .
  • Ingrese la IP conocida / reservada de su botón Dash ( en nuestro caso 192.168.1.36)
  • Elija un programa que desea ejecutar cuando se presiona el botón . Por ejemplo puede asociar un fichero mp3  de modo que cuando pulsemos el botón  comience  a reproducirse el tema
  • Ingrese un comentario para el daemon, lo cual identificará el daemon particular que corresponde con el botón en particular.

También permite argumentos vía  parámetros   por  línea de comando por ejemplo para automatizar el arranque de este proceso en el inicio del ordenador :

AmazonButton_v4.0.exe [IP del botón] [Programa para iniciar] “[Comentario opcional]”

Es interesante saber   que incluso se puede repetir  estas llamadas según sea necesario para cualquier otro botón.

NOTA :  Hay informes de que el nuevo botón JK29LP pierde su configuración de Wifi si la desasocia con su cuenta de Amazon. La “solución alternativa” actual es utilizar una cuenta ficticia de Amazon para configurar su botón con su teléfono y luego volver a iniciar sesión en su propia cuenta para que pueda seguir usando la aplicación.

APIs para IoT


Las API están estrechamente vinculadas con el IoT porque le permiten exponer con seguridad los dispositivos conectados a los clientes, canales «Go-to-Market» y otras aplicaciones de su infraestructura informática. Las API conectan «cosas» importantes, como son los coches, dispositivos médicos, redes inteligentes y termostatos, con su ecosistema. .

Veamos algunas de las APIS de Iot mas representativos:

 

 

    ThingSpeak API

ThingSpeak es un plataforma de  IoT que permite recoger y almacenar datos de sensores en la nube y desarrollar aplicaciones IoT ofreciendo tambien aplicaciones que permiten analizar y visualizar sus datos en MATLAB y actuar sobre los datos. Los datos de los sensores pueden ser enviados desde Arduino, Raspberry Pi, BeagleBone Black y otro HW.

Thingspeak está en colaboración con Mathworksque es la empresa de Matlab y Simulink entre otros.

La API de ThingSpeak le permite crear aplicaciones de “Internet de las cosas”. Utilizar la API para crear aplicaciones en la nube que interactúan con los sensores y controles de cualquier cosa que soporta el protocolo HTTP. La API de ThingSpeak es capaz de interactuar con dispositivos de Arduino y ioBridge, iPhone y Android dispositivos móviles, sistemas de automatización del hogar, robots, termostatos, controles industriales, etcetera. ThingSpeak también admite la integración con servicios web externos como Twitter, Prowl, Twilio, WeatherBug y Foursquare, mediante el uso de la aplicación de ThingHTTP. Además de la API alojada libre, la API de ThingSpeak es open source y está disponible en GitHub para su descarga en servidores privados.

thingpeak.png

La API de ThingSpeak siempre trabaja con datos, esa es su gran especialidad. Es una API abierta para el Internet de las Cosas que permite recopilar, almacenar, analizar, visualizar y actuar sobre la información recogida en sensores y dispositivos como aplicaciones web y móviles, redes sociales como Twitter, soluciones de mensajería, VoIP y nube como Twilio, hardware de código abierto como Arduino, Raspberry Pi o BeagleBone (los reyes del Internet de las Cosas y la robótica) o con lenguajes de cálculo computacional como MATLAB… ThingSpeak es una API conocida entre los desarrolladores y dispone ya de una gran comunidad.

ThingSpeak API funciona siempre con canales, los cuales contienen los campos de datos, ubicación y estado. Para empezar a trabajar con esta interfaz es necesario crear un canal, donde se recopilará la información de dispositivos y aplicaciones, datos que posteriormente se pueden analizar y visualizar en gráficos  y el paso final es operar sobre esa documentación. El proceso con la API siempre es el mismo.

Al final, la ruta del proyecto con la API será parecida a lo siguiente, sustituyendo los campos CHANNEL_ID y FIELD_ID por los datos del canal recién abierto.

http://api.thingspeak.com/channels/CHANNEL_ID/charts/FIELD_ID

Un ejemplo del tipo de gráficos que se pueden crear fruto de la recogida, análisis y visualización con ThingSpeak son estas mediciones de temperatura:

Cosm.com

Pachube ha pasado de manos de forma alarmante : primero Pachube que se hizo famosa por monitorizar la radiactividad en Japon  , luego Xively.com   y ahora finalmente cosm ,com .

Esta veterana plataforma le permite almacenar, compartir y descubrir el sensor en tiempo real, datos de energía y medio ambiente de edificios u otros dispositivos. Pachube proporciona la mayor parte de su funcionalidad a través de su API, en lugar de a través de su sitio web. Complemento a los proyectos participantes en tiempo real para que, por ejemplo, edificios, entornos interactivos, contadores de energía en red, mundos virtuales y dispositivos móviles pueden hablar todos entre sí. Datos en tiempo real disponibles. Pachube hace uso de extendido entornos Markup lenguaje (EEML), que se extiende el protocolo de la industria de construcción IFC.

La API de Pachube permite almacenar, compartir y analizar en tiempo real los datos de energía o medioambientales recogidos por sensores en edificios y otros dispositivos. Toda la funcionalidad del sistema de Pachube viene dada por la API, que es la que facilita que la información generada por edificios, contadores de energía o dispositivos móviles con sensores sea recogida y analizada y que todos esos objetos estén conectados entre sí. Es el verdadero Internet de las Cosas.

La API de Pachube funciona en el entorno EEML (Extended Markup Language Environments), un protocolo para el intercambio de datos de sensores en ambientes a distancia, ya sean físicos o también virtuales (un ejemplo típico es la conexión con objetos de Second Life). Que exista un protocolo universal es lo que posibilita que las personas puedan compartir con la comunidad millones de datos en tiempo real de objetos, dispositivos o espacios de todo el mundo.

Los pasos a seguir para comenzar a trabajar con Pachube son bastante sencillos:

●       Agregar un dispositivo: el desarrollador da un nombre, una descripción y permisos de privacidad al dispositivo que quiere agregar y automáticamente se le asigna un ID y la clave de la API necesaria para conectar ese terminal.

●       Conectar el dispositivo: es necesario copiar el ID y la clave de la API en el código del objeto para establecer una relación bidireccional entre ambos. Se pueden conectar dispositivos, pero también apps o servicios. Para realizar esa conexión, aquí hay todo tipo de librerías para dispositivos Android, objetos programados en Java, C, Objective-C, Python, PHP, Ruby y JavaScript, y tutoriales para hardware abierto como Arduino o Raspberry Pi.

●       Prueba de funcionamiento: una vez agregado y conectado, el desarrollador puede empezar a ver valores de datos actualizados en tiempo real en su canal y depurar las alteraciones irregulares que vea en esa información.

 

 

Fitbit API

La API de Fitbit facilita a los desarrolladores el trabajo de interacción con los datos que son recogidos por cualquiera de los productos de Fitbit, ya sea una aplicación, un dispositivo o un servicio. Hoy en día, la API de Fitbit soporta la mayoría de lenguajes de lectura y escritura de información, pero ellos ofrecen una comunidad para desarrolladores donde es posible hacer sugerencias y evolucionar la API.

La API de Fitbit lo que permite en última instancia es que cualquier persona pueda desarrollar una aplicación para acceder y manipular datos recogidos por un dispositivo Fitbit, siempre y cuando cumpla dos requisitos obvios: deben ser datos relacionados con un usuario que sea él y no otra persona y cumplir con las condiciones de uso que establece la documentación de la propia API.

¿Cómo se puede empezar a probar y trabajar con la API de Fitbit?

●       Registro de la aplicación: el registro de la app permite obtener credenciales de cliente de la API. Para hacerlo es necesario disponer primero de una cuenta en el servicio de Fitbit (su apertura es totalmente gratuita).

●       El acceso a los datos de usuario se hace a través de autenticación OAuth. Las solicitudes a la API de Fitbit para leer y escribir datos de usuarios se hacen a través de este explorador de la API. Es posible también suscribirse a la API para tener la actualización de los datos en tiempo real

●       El desarrollador debe escoger alguna librería OAuth 2.0 que opere con el lenguaje de programación y marco de desarrollo utilizado para el flujo de datos. Sin esa librería no se puede crear el protocolo de autorización.

●       Las peticiones a la API necesitan de credenciales de usuario autorizado.