Construir una consola retro con Orange Pi PC


RetrOrange Pi es un proyecto sin fines de lucro. Se compone de una configuración básica de Retropie con la mayoría de los núcleos de Libretro encima de una versión de Jessica Desktop de Armbian preinstalada incluyendo   ademas  OpenELEC .Mas especificamnte RetrOrangePi  es por tanto una distribución de juegos y medios basada en Armbian (Debian 8), es decir  Full Armbian 5.23 con versión de escritorio de Jessie con el núcleo 3.4.113 (backdoors fijados)  que es  compatible con dispositivos H3 / Mali , como por ejemplo la Orange Pi PC . Ha sido  desarrollado y mantenido por Stevie Whyte y Alerino Reis con la colaboración de Wang Matt.

Gran parte del software incluido en la imagen tiene licencias no comerciales. Debido a esto, vender una imagen RetrOrange preinstalada no es legal, ni incluirla con su producto comercial .

Las plataformas soportadas  por esta distribución son las siguientes:  Nintendo DS, Neo Geo Pocket, Neo Geo, Neo Geo, Neo Geo, Nintendo, Neo Geo, Neo Geo, Neo Geo Pocket Color, PC Engine (TurboGrafx), Playstation 1, Playstation Portable, Sega32x, SegaCD, SG-1000, Super Nintendo, Vectrex, ZxSpectrum

Ademas, recientemente se han incorporado  otras plataformas como Amiga (emulador FS-UAE, fullscreen ahora, sonido de disquete, lanzador),Atari 5200 ,Atari 8bit (modelos 400 800 XL XE) ,Coco / Tandy ,Colecovision (ColEm emu * Colección personalizada BlueMSX núcleo **),Creativision ,Daphne (emulador Philips Cdi),Dosbox (versión GLES) y Dreamcast (fijo reicast-joyconfig),OpenMSX (con soporte .dsk) ,PPSSPP (nueva versión 1.3 de repo odroid),TI99 / 4A (Texas Instruments) entre otras.

Retrorange Pi incluye además OpenELEC (Kodi Jarvis 16.1) con el apoyo de la CEC por Jernej krabec y  Kodi Krypton beta6 (populares reproductores multimedia  que sirven ademas para ver estaciones de TV por internet,ect )  ,  pero tenga cuidado ,pues si ejecuta cualquiera de ellos cada que arranque su OrangePi arrancará con Kodi/OpenELEC y no podrá volver a Emulation Station sin hacer una serie de pasos que pueden ser complicados para muchos usuarios.

kodi01 kodi02

Ademas también tenemos un escritorio Linux completamente funcional bajo el eficiente Xfce

Incluye  teclado en pantalla con fácil configuración wifi y control de almacenamiento con características adicionales añadidas por el equipo ROPi: configuración de visualización, OpenELEC / Desktop launcher y switcher de música de fondo integrado en el menú principal.

También soporta  Plug n ‘Play – USB roms autoload (lee desde / media / usb0) (buggy) entre sus muchas carasterictics

Instrucciones  de instalación

Lo primero  es descargar la imagen correspondiente  en su ordenador, segun la  placa  que tenga , descargue la última imagen del sitio oficial  http://www.retrorangepi.org/#download  .

Por ejemplo para Orange Pi PC el fichero descargado seria RetrOrangePi-3.0.1.Orangepipc.tar.gz

Para descomprimir la imagen,  si estamos en Windows  primero en un fichero tar lo mejor es usar  el  famoso descompresor 7-Zip

Para descomprimir el tar obtenido por el 7-zio    ahora si podemos usar el  Winrar  para obtener el fichero .iso

Para crear la imagen en la sd existen dos métodos  principalmente  , veamos el procedimiento tradicional:

  • Inserte la tarjeta SD en el lector de tarjetas SD  de su ordenador comprobando cual es la letra de unidad asignada. Se puede ver fácilmente la letra de la unidad, tal como G :, mirando en la columna izquierda del Explorador de Windows.
  • Puede utilizar la ranura para tarjetas SD, si usted tiene uno, o un adaptador SD barato en un puerto USB.
  • Descargar la utilidad Win32DiskImager desde la página del proyecto en SourceForge como un archivo zip; puede ejecutar esto desde una unidad USB.
  • Extraer el ejecutable desde el archivo zip y ejecutar la utilidad Win32DiskImager; puede que tenga que ejecutar esto como administrador. Haga clic derecho en el archivo y seleccione Ejecutar como administrador.
  • Seleccione el archivo de imagen ISO  que ha extraído anteriormente
  • Seleccione la letra de la unidad de la tarjeta SD en la caja del dispositivo. Tenga cuidado de seleccionar la unidad correcta; si usted consigue el incorrecto puede destruir los datos en el disco duro de su ordenador! Si está utilizando una ranura para tarjetas SD en su ordenador y no puede ver la unidad en la ventana Win32DiskImager, intente utilizar un adaptador SD externa.retro
  • Haga clic en Write  Escribir y esperar a que la escritura se complete.
  • Salir del administrador de archivos  y expulsar la tarjeta SD.

Existe un procedimiento alternativo que permite usar diferentes funcionalidades en diferentes sistemas operativos en una única herramienta

  • Ir a etcher.io donde podemos descargar el software para cada sistema operativo
    pudiéndose e elegir aquí el sistema operativo que desea para Mac, linux o Windows
  • Una vez descargado el sw  instale en su equipo y  ejecute
  • Ahora seleccione la imagen ISO
  • Seleccione la unidad de tarjeta sd donde desee crear la imagen
  • Luego haga clic en flash, y la imagen será transferido a su tarjeta SD

etcher.PNG

 

Al finalizar de crear la imagen extraiga de su pc de  forma ordenadas

Coloque la sd en su Orange Pi PC ( o la placa que tenga)

El usuario y la contraseña predeterminados son:

user – pi
pass – pi
root – orangepi

Los emuladores ya están instalados (al menos los más comunes). Para agregar ROMs, simplemente coloque los archivos en la ~/RetroPie/roms/$CONSOLE , donde $CONSOLE es el nombre de la consola de destino, por ejemplo, snes o arcade.

Para usar la GUI, seleccione Desktop desde el menú EmulationStation, inserte la unidad USB con sus ROMs, cópielos en la RetroPie/roms/$CONSOLE (acceso directo en su escritorio).

Información importante:
 

  • En caso de que su placa no parezca arrancar, trate de reformatear su tarjeta SD con SDFormatter 4.0 por Trendy (con ajuste de tamaño )  pruebe con una fuente de alimentación diferente (real 2A) y  otra  sdcard (Original, class10 recomendado), y por último, pero no menos importante, asegúrese de estar conectado al televisor compatible con HDMI 720 (sin adaptadores DVI)
  • En el primer arranque se instalará automáticamente el sistema, cambiara el tamaño de la tarjeta SD y se reiniciara de nuevo asi que por favor tenga paciencia
  • Los emuladores ya están instalados , pero sólo aparecen en EmulationStation cuando se agregan roms.
  • Para agregar ROMs, simplemente coloque los archivos en la carpeta / home / pi / RetroPie / roms / $ CONSOLE, donde $ CONSOLE es el nombre de la consola de destino, por ejemplo, snes o arcade. Puede iniciar Desktop desde EmulationStation y conectar una unidad USB con sus ROMs. Las carpetas de Roms también son partes de samba.
  • Debido a nuestra configuración personalizada, no ejecute ‘sudo apt-get upgrade’. Puede romper algunas cosas.

 

 

Web oficial de RetroRangePiorange314.com/RetrOrangePi

Anuncios

Cómo instalar ArmBian en Orange Pi PC


Armbian es una distribución ligera basada en Debian o Ubuntu especializada para placas de desarrollo ARM. Compilado desde cero, contando con poderosas herramientas, desarrollo de software, y una comunidad vibrante.Otras placas ARM pueden ser las Raspberry PI, Odroid, Cubieboard… cada una de un fabricante distinto y luchando por hacerse con su espacio

Para instalar Armbian, primero debemos elegir entre un entorno gráfico o linea de comandos pues dependiendo lo que queramos hacer, elegiremos uno u otro sistema. Según la placa tendremos soporte completo con una de cuatro sistemas básicos  Debian Wheezy  (Jessie)  o   Ubuntu Trusty  (Xenial)

Ademas  dentro de esas distribuciones, podemos elegir entre “Legacy” y “Vanilla”,ambos estables y listos para producción, pero se debe elegir en base a nuestras necesidades, ya que su soporte básico es diferente:

  • Legacy: aceleración de vídeo, sistema al que conectar pantallas y otros periféricos, como teclado, ratón…
  • Vanilla: servidores sin monitor o periféricos, que se vayan a controlar remotamente por ssh ( por ejemplo desde el putty)

Más información acerca de Armbian se puede encontrar: Aquí  y se puede encontrar la guía de instalación: Aquí

Ok, ¿qué necesitamos para iniciar este pequeño proyecto?

Hardware necesario:

  1. Orange Pi PC
  2. 5V / 2A con el barril del CC Jack o el cable grueso del USB (utilicé 5V / 1,5A de mi teléfono viejo)
  3. Tarjeta SD – Clase 10!
  4. Teclado y ratón
  5. Cable HDMI
  6. Cable ethernet de LAN
  7. Lector de tarjetas

Software necesario:

  1. Descargar Armbian – Jessie,versión servidor  para el Orange Pi PC   Aquí
  2. Descargar SDFormatter: aqui
  3. Descargar Etcher: Here
  4. Descargar 7-Zip: Aquí
  5. Descargar Putty: aqui

Upzip, formato e instalación de Armbian a la tarjeta SD

Upzip, Formato e Instalación de Armbian a Tarjeta SD
  • Empezar a descargar Armbian (ver enlaces anteriores) e instalar SDFormatter, Etcher y 7-zip.
    (No estoy explicando cómo instalar esas aplicaciones porque es bastante sencillo.
  • Cuando esto se hace, abra la carpeta donde descargó la imagen de Armbian,
    Esto debe ser nombrado así:
    “Armbian_5.20_Orangepiplus_Debian_jessie_3.4.112_desktop.7z
  • Abra 7-zip y descomprima este archivo en un nuevo directorio para que tenga algo como: “Armbian_5.20_Orangepiplus_Debian_jessie_3.4.112_desktop.img 
  • Conecte su tarjeta SD a su computadora, en este caso utilicé un lector de tarjetas USB
  • Iniciar SDformatter
    • Drive: Seleccione su tarjeta SD ( Compruebe esto! )
    • Vaya a las opciones -> “Ajuste del tamaño del formato” -> YES (El valor predeterminado es “No”) -> OK
    • Compruebe nuevamente si la tarjeta SD está seleccionada en la sección “Drive”.
    • Haga clic en “Formato”
  • Iniciar Etcher (ejecutar como Administrador!)
    • ” Seleccionar imagen ” -> Seleccione su unzipt:
      Archivo “Armbian_5.20_Orangepiplus_Debian_jessie_3.4.112_desktop.img”
    • Seleccione ” Cambiar ” para cambiar su letra de unidad para usted Tarjeta SD
    • Seleccione “Flash!” Y esperar hasta que esto se haga
  • Desconecte su tarjeta SD cuando se haya completado este proceso, use la opción “Quitar hardware y expulsar material de forma segura” en Windows para asegurarse de que está bien

Conecte su Orange Pi PC  y arranque por  primera vez con Armbian

 Ok, ahora es el momento de conectar todos sus dispositivos y cables para iniciar su Orange Pi!
  • Conecte un teclado + mouse a USB
  • Conecte su cable HDMI a su TV  o monitor
  • Conecte el cable LAN al enrutador / conmutador
  • Inserte la tarjeta SD en la ranura de la tarjeta SD
  • Por último, pero no menos importante, conecte el cable de alimentación a su Orange Pi (recuerde que no hay soporte en el Micro USB como fuente de alimentación)
  • ¡Que empiece la diversión!

¿Cómo arrancar?

El primer arranque toma alrededor de 3 minutos y luego se reinicia y tendrá que esperar otro minuto para iniciar sesión. Este retraso se debe a que el sistema actualiza la lista de paquetes y crea SWAP de emergencia de 128Mb en la tarjeta SD.

¿Cómo iniciar sesión?

Ingrese como nombre de usuario ” root” en la consola o mediante SSH y use la contraseña ” 1234″ . Se le pedirá que cambie esta contraseña en el primer inicio de sesión. A continuación, se le pedirá que cree una cuenta de usuario normal que esté sudo (admin) habilitada.
Incluso te está preguntando si quieres cambiar la resolución de la pantalla, pero para mí está bien en 720P.
Estoy usando la línea de comandos con SSH (masilla) la mayor parte del tiempo.

Su escritorio ya está listo para usar! :

Le mostrará algo como esto: donde como vemos aparece la dirección IP a la que nos podemos conectar por ssh

Inicie Putty y conéctese a la dirección IP de su Orange Pi así (ver captura de pantalla):

Nombre de host (o dirección IP): 192.168.1.48 (sólo mi ejemplo, cambie a su IP)
Puerto 22 (predeterminado)
Y haga clic en “Abrir”

Putty le dará un mensaje de seguridad la primera vez, simplemente haga clic en “Sí”.

Ingrese con “root” como nombre de usuario, y su propia contraseña.

Actualizar, establecer una IP estática y deshabilitar raíz para iniciar sesión.

Su Orange Pi debe ejecutar el escritorio y SSH ahora mismo, pero queremos hacer más!

Estos 3 pasos no son obligatorios, pero me gustaría recomendarlo o al menos echarle un vistazo.

  • Actualizar / actualizar su Armbian
    Inicie sesión con Putty en su Orange Pi, y use este comando para actualizar / actualizar su Armbian:
    ” Sudo apt-get update  o simplemente   “apt-get update” si esta logado como root
    Después de esto:
    Sudo apt-get upgrade -y ” o simplemente apt-get upgrade -y  si esta logado como root     .En caso de error puede que tenga   que selecionar la opcion -f , es decir            apt-get -f install
  • Configurar un IP estático
    Quiero tener una dirección IP estática (no DHCP) en mi Orange Pi, así que sé con seguridad que estoy conectando a mi Orange Pi en la misma dirección IP todo el tiempo.
    Inicie sesión con Putty en su Orange Pi y utilice este comando ifconfig  para ver los detalles de su IP actual:

    [email protected]:~# ifconfig
    eth0 Link encap:Ethernet HWaddr d2:94:6d:f5:41:56
    inet addr:192.168.1.48 Bcast:192.168.1.255 Mask:255.255.255.0
    inet6 addr: fe80::d094:6dff:fef5:4156/64 Scope:Link
    UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
    RX packets:20090 errors:0 dropped:0 overruns:0 frame:0
    TX packets:9527 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:1000
    RX bytes:24031895 (24.0 MB) TX bytes:757452 (757.4 KB)
    Interrupt:114
    lo Link encap:Local Loopback
    inet addr:127.0.0.1 Mask:255.0.0.0
    inet6 addr: ::1/128 Scope:Host
    UP LOOPBACK RUNNING MTU:16436 Metric:1
    RX packets:1 errors:0 dropped:0 overruns:0 frame:0
    TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:0
    RX bytes:104 (104.0 B) TX bytes:104 (104.0 B)

    [email protected]:~#

  • En este caso, quiero usar esta dirección IP 192.168.1.48 como una dirección IP estática, pero usted tiene que comprobar qué dirección IP que desea utilizar en este rango.Tipo:
    nano / etc / network / interfaces “, el texteditor Nano se abrirá y le mostrará la configuración de red, busque los detalles de “eth0”, como esto:

source /etc/network/interfaces.d/*

# Wired adapter #1
allow-hotplug eth0
no-auto-down eth0
iface eth0 inet dhcp
#address 192.168.0.100
#netmask 255.255.255.0
#gateway 192.168.0.1
#dns-nameservers 8.8.8.8 8.8.4.4
# hwaddress ether # if you want to set MAC manually
# pre-up /sbin/ifconfig eth0 mtu 3838 # setting MTU for DHCP, static just: mtu 3838

# Wireless adapter #1
# Armbian ships with network-manager installed by default. To save you time
# and hassles consider using ‘sudo nmtui’ instead of configuring Wi-Fi settings
# manually. The below lines are only meant as an example how configuration could
# be done in an anachronistic way:
#
#allow-hotplug wlan0
#iface wlan0 inet dhcp
#address 192.168.0.100
#netmask 255.255.255.0
#gateway 192.168.0.1
#dns-nameservers 8.8.8.8 8.8.4.4
# wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
# Disable power saving on compatible chipsets (prevents SSH/connection dropouts over WiFi)
#wireless-mode Managed
#wireless-power off

# Local loopback
auto lo
iface lo inet loopback

  • Ahora necesitamos cambiar la parte ” dhcp ” a ” static “, y llenar todos los detalles de la dirección

    IP.Cambiarlo así:# Wired adapter #1
    allow-hotplug eth0
    no-auto-down eth0
    iface eth0 inet static
    address 192.168.1.48
    netmask 255.255.255.0
    gateway 192.168.0.1
    #dns-nameservers 8.8.8.8 8.8.4.4
    # hwaddress ether # if you want to set MAC manually
    # pre-up /sbin/ifconfig eth0 mtu 3838 # setting MTU for DHCP, static just: mtu 3838# Wireless adapter #1
    # Armbian ships with network-manager installed by default. To save you time
    # and hassles consider using ‘sudo nmtui’ instead of configuring Wi-Fi settings
    # manually. The below lines are only meant as an example how configuration could
    # be done in an anachronistic way:
    #
    #allow-hotplug wlan0
    #iface wlan0 inet dhcp
    #address 192.168.0.100
    #netmask 255.255.255.0
    #gateway 192.168.0.1
    #dns-nameservers 8.8.8.8 8.8.4.4
    # wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
    # Disable power saving on compatible chipsets (prevents SSH/connection dropouts over WiFi)
    #wireless-mode Managed
    #wireless-power off# Local loopback
    auto lo
    iface lo inet loopback

    Guarde este documento pulsando ” ctrl + x “, ” Y ” y pulse enter ( no cambie el nombre de archivo! )
    Ahora necesitamos reiniciar el servicio de red en Armbian, pero no sé por qué, reiniciando Armbian funciona muy bien aquí. Puede reiniciar tecleando este “reboot”.

  • Putty le dará un mensaje ” Server inesperadamente cerrado conexión de red “, pero eso no es extraño, que está reiniciando el Orange Pi.
    En putty utilice el botón “Restart ression” para reiniciar la conexión a su Orange Pi.Ahora cambiamos una dirección IP DHCP a una dirección IP estática para ” ETH0 “.
  • Desactivar la conexión root de SSH en Armbian
    ¿Por qué debemos desactivar la cuenta de root para el inicio de sesión de SSH? Bastante simple, la seguridad !
    Casi todas las distribuciones de Linux tienen la cuenta “root”, así que si alguien quiere hackear / fuerza bruta
    Un servidor Linux que están intentando iniciar sesión con esta cuenta. Al deshabilitar esta cuenta, primero deben encontrar una cuenta de usuario.Para solucionar este problema, debemos editar el archivo ” sshd_config “, que es el archivo de configuración principal del servicio sshd. ¡Asegúrese de que su segunda cuenta funcione! Al principio, Armbian le pidió que creara una segunda cuenta de usuario con una contraseña. Cierre sesión en Putty e intente iniciar sesión con esta cuenta. En mi caso creé una cuenta ” orangepi “.Tipo:
    ” Sudo nano / etc / ssh / sshd_config “Encuentre esta parte: (en Nano puede buscar con “ctrl + w”)
    ” PermitRootLogin “Te mostrará:
    # Autenticación:LoginGraceTime 120
    PermitRootLogin sí
    StrictModes síCambie el “ PermitRootLogin  ” a ” PermitRootLogin no ”
    Guardar esto golpeando ” ctr + x “, Y (es) y pulse enter (no cambie el nombre del archivo!)
    Reinicie SSH escribiendo:
    ” Sudo service ssh restart “Cierre la sesión e intente ingresar con “root”, si ha cambiado esto correctamente, le dará un error ahora.
    “Acceso denegado”.
    Inicia sesión con tu segunda cuenta ahora, en mi caso es “orangepi” y ya está!

Software adicional

Estos son sólo extra como: 

  • GPIO 
    Al igual que la Raspberry Pi (RPI), el Orange Pi (OP o OPI) tiene algunos GPIO para jugar.
    El RPI usa un programa llamado “WiringPi”, pero para el Orange Pi tenemos “WiringOP”!
    Se puede encontrar más información: aquí y aquí

    • Ir a su homedirectory
    • Tipo: “clon de git https://github.com/zhaolei/WiringOP.git -b h3″
    • Tipo: “cd WiringOP”
    • Tipo: “sudo chmod + x ./build”
    • Tipo: “sudo ./build”
    • Tipo: “gpio readall” para ver una visión general de todos los puertos GPIO.
  • VNC sobre SSH
    Puedo copiar pasado este sitio web completo, pero toda la información es:Aquí
  • RPI-Monitor
    Puedo copiar pasado este sitio web completo, pero toda la información es:Aquí
  • Webmin 
    Puedo copiar pasado este sitio web completo, pero toda la información es: Aquí

Convierta en mini PC una Raspberry Pi


Hablamos de un curioso Kit   que   permite cambiar completamente la funcionalidad de una Raspbrry  pi 3 conviertiendo ésta  en un  funcional minipc con una estética muy lograda

El kit se conecta a una Raspberry Pi( que por   cierto no va incluida)   a través del   puerto GPIO de 40 pines del que hemos hablado en este blog  permitiendo que luego conectemos una unidad SSD a esa placa auxiliar gracias a la interfaz mSATA y a la presencia de un pequeño adaptador de corriente que suministra la energía necesaria para que tanto la Raspberry Pi como la unidad de almacenamiento funcionen sin problemas. Obviamente precisamente uno de los puntos interesantes de este kit es que gracias a  este puerto  la Raspberry Pi puede iniciarse desde el SSD, y no necesariamente desde una tarjeta microSD como es lo habitual . Incluso la placa HAT lleva un conector macho superior para encadenar con otra placa HAT adicional que necesitemos.

 

rp3

Además ofrece un reloj en tiempo real (RTC) para mantener el reloj en hora incluso sin alimentación (incluye batería CR2032),

 

pila.png

Otro detalle interesante que se hecha en falta en su versión  de caja tradicional  es contar   con  un botón  un control de alimentación inteligente  que permite encender y apagar la Raspberry Pi de forma segura  sin perder datos y sin necesidad de quitar el cable de alimentación.

caja.png

 

Respecto a  la elegante caja esta aprovecha los puertos de la Raspberry Pi 3, contando con refrigeración mediante un pequeño disipador, un adaptador USB y una pila para el reloj del sistema,botón de encendido  e incluso una abertura para puede instalar una Raspberry Pi Cam en la parte frontal de la caja.
El kit incluye:

  • HAT para instalar disco SDD mSATA
  • Disipador de calor para la Raspberry Pi 3
  • Adaptador USB externo (Micro-Type A)
  • Espaciadores largo (x4) ,  corto (x4) y tornillos para sujetar la Raspberry Pi (x4)
  • Elegante caja 18x18x4,5cm
  • Batería (CR2032)
  • No incluye la Raspberry Pi 3.

 

 

Respecto al al software  recomiendan  RaspAnd OS que también incorpora de inicio varias aplicaciones recientemente actualizadas entre las que podemos mencionar Spotify TV 1.2.0, Rotation Control Pro 1.1.2, Google Play Games 3.9.08, Clash of Clans 9.24.9, el gestor de correo Gmail 7.4.23 o Aptoide TV 3.2.1.

Además merece la pena saber que también se ha incluido el paquete GAPPS para que los usuarios que se decanten por esta interesante alternativa, a su vez también tengan acceso a los servicios de la firma Google. Llegados a este punto decir que GAPPS incluye Google Play Services, pero no la tienda oficial Google Play Store.

 

Como vemos pues con este kit  por  unos 65€   podremos  convertir  una  Raspberry Pi 3 en un ordenador con WiFi, Ethernet, Bluetooth, RTC, Cámara y SSD   que ademas conectado  mediante HDMI a una pantalla nos permitirá  disfrutar de una experiencia PC auténtica.

Nueva rom Android para Orange pi PC


Desde 2012 la Raspberry Pi ha ido  creciendo  de  gran popularidad, estando  hoy en día  posicionada como una de las placas de desarrollo de referencia. Uno de sus rivales clásicos en los últimos tiempos están siendo las Orange Pi, una placa con un diseño similar pero  basado  en  procesadores de Allwinne

Shenzhen Xunlong dispone de la  placa SBC  muy similar a la Raspberry Pi a falta de 1 conector  USB , pero con un coste   bastante inferior  en Aliexpres. Es ademas abierta y hackeable. La placa de desarrollo low cost compite abiertamente   con  otras tantas existentes  donde  la mas destacable es también la Banana Pi  ,  pretendiendo todas  ellas  competir  con la Raspberry Pi.

 

orangepi

 

Esta placa integra una CPU basada en ARM Cortex A7 Dualcore y Quadcore (en la versión más potente), una GPU Mali compatible con OpenGL y 1GB DDR3 RAM, posibilidad de direccionar hasta 64GB de almacenamiento mediante tarjetas o por un puerto SATA, conexiones para audio, conector CSI para cámara, HDMI, VGA, USB OTG, USB 2.0, alimentación, GPIOs, IR, AV, receptor de infrarrojos, Ethernet RJ45 10/100M, tres puertos USB 2.0, uno microUSB OTG, un micrófono, un interfaz CSI para cámara y un encabezado de 40 pines compatible con Raspberry Pi,etc

Sobre diferencias respecto  al original,ciertamente casi todas las placas SBC son bastante similares orientándose para ser clones  mas baratos  de  la Raspberry Pi. Es cuestión de gustos o necesidades, pues  como hemos visto no se pueden alegar diferencias sustanciales, excepto porque se basan en arquitecturas diferentes a la ARM (como las basadas en x86) de la cual se comenta tienden a calentarse mucho precisando normalmente de un radiador pasivo o si es posible mejor  activo (equipado con un miniventilador).

orange_pi

En cuanto a los sistemas operativos soportados, se encuentran Raspbian, Ubuntu, Debian, Android 4.4 y otras versiones del sistema de Google  descargable desde la pagina oficial .. Todos ellos pueden ser movidos por los chips de Allwinner y el hardware que entregan estas placas SBC (Single Board Computer).

 

Desde la pagina oficial hay una imagen para Android ,pero desgraciadamente no funciona, pero gracias a la comunidad que hay detrás de esta placa  se ha creado una nueva imagen que si es funcional  ,  la cual ademas intenta explotar al máximo el hw de esta placa.

Como el procedimiento de instalación de una imagen Android es ligeramente diferente a una imagen basada en Linux, vamos a ver como crearla.

Para crear la imagen necesitaremos los siguientes  elementos  software:

 

La  instalación de seta nueva ROM es sencilla :

  • Descargar  Android firmware http://sh.st/nJPLZ
  • Descomprimir el archivo con el winrar
  • Inserte una microsd en su PC
  • Abra Phoenix Suite, y seleccione el archivo de imagen que descargó y descomprimimos en los dos primeros pasos
  • Asegúrese que en disK aparece la unidad donde ha metido la sd ( si por error es otra unidad borraría su contenido)
  • Pulse  Format no Normal
  • Espere a que finalice el proceso
  • Chequee ahora el checkbox Startup!
  • Pulse  el boton  Burn!

 

 

phoenix.PNG

  • Tras unos minutos debería ver llegar hasta el final y concluir el proceso

phoenixfin

NOTA: si en este proceso del da  ERROR puede ser por la falta de capacidad  o por el tipo de memoria ( recomendable al menos una microsd HC de  16GB)

 

En la version del firmware  V1.2 incluye:

  • Librerías multimedia actualizadas
  • Actualizado mi librtmp personalizado en Kodi
  • Otras pequeñas …

Registro de cambios V1.1:

  • Todo lo anterior menos el kernel personalizado, no es necesario …
  • Basado en 202k4
  • Root actualizada
  • Busybox actualizado
  • Añadido Nano editor de texto. Abra Terminal y escriba nano
  • Añadido entorno Bash. Abrir terminal y tipo bash
  • Añadido soporte init.d.
  • Otras cosas pequeñas ….

Registro de cambios V1:

  • TWRP 2.8.7.0 (Thks Abdul_pt)
  • Kernel de tronsmart (julio) Configuración personalizada.
  • Xbox360 inalámbrico y soporte de cable.
  • Custom Kodi 14.2 CedarX Hw aceleración del código fuente zidoo (thks zidoo y kodi equipo) limpiar y eliminar todas sus protecciones!
  • ¡Actualizó todas las aplicaciones de Google!
  • Limpia todo lo que el dragón recurso eater spyware crap
  • Se agregaron algunas aplicaciones de preinstalación. Youtube, Terminal, Reboot, Explorador de archivos ES, AdAway …
  • Aumento de los búferes TCP
  • Se ha agregado un Nexus10 build.prop

Construyase su propio Ambilight en seis sencillos pasos


Ambilight es una tecnología diseñada para mejorar la experiencia visual  analizando una señal de video  entrante y produciendo una  luz lateral ambiental adecuada al contenido que se está visualizando en la pantalla  con  un resultado bastante atractivo , el cual  además de la sensación de estar viendo una pantalla aun mayor.
Hasta hace muy poco este efecto solo se podía conseguir si comprábamos una TV que contara con ese sistema y no había otra opción, pero   gracias  a la potencia de la Raspberry Pi  2 o 3  , una capturadora  de vídeo  y por supuesto , una tira de 50 leds WS2801  es bastante sencillo tal y como vamos a  ver a continuación.

En este  post  vamos a ver como es posible emular un sistema “Ambiligt”  donde el hardware que controlará  todo el sistema sera únicamente una Raspberry Pi 2  o 3  equipada con una distribución compatible ( Openelec)   y el software de control de  leds Hyperion. Además de controlar los leds, la combinación de la Raspberry Pi junto con Kodi constituye un excelente Media Center capaz de reproducir todo tipo de contenidos de audio, vídeo e imagen, de reproducir nuestra colección multimedia almacenada en el PC o en un disco externo, e incluso de reproducir directamente contenidos on-line si se posee  las  subscripción en el hogar  y por supuesto cuenta con la conexión  de suficiente ancho de banda como por ejemplo ftth.
Es importante ademas resaltar  que es  posible disfrutar de la emulación de  ambilight con fuentes de vídeo externas a la Pi  usando una económica  capturadora  de vídeo  que permitirá  que la emulación no solo funcione con el contenido multimedia que reproducimos desde la Raspberry Pi  , también  responderá a la señal de video externa que le introduciremos  procedente de una fuente externa de video como por ejemplo puede ser la señal de video procedente de un descodificador de Imagenio .
Para concretar  un poco  mas  en este montaje  necesitaremos los siguientes componentes:
  • Una Raspberry Pi 2 o 3
  • Un tarjeta microsd  de al menos 2GB   donde instalamos  el sw para la Raspeberry Pi
  • Fuente con salida microusb  para la Raspberry Pi (5V/1Amp)
  • Tira de leds con el chip WS2801
  • Fuente dimensionada para alimentar la tira de leds (5v /2amp debería bastar)
  • Capturadora de video usb USBTV007 o compatible
  • Caja para albergar la Raspberry-Pi 2

PASO 1: SELECCIÓN DE TIRA DE LEDS y ALIMENTACIÓN

Antes de empezar  con el montaje ,  la tira de  leds   RGB   direccionable es muy importante que ésta esté basada en el chip  ws2801 (LEDs WS2801). Existen tiras basadas en el chip WS2801   en formato “luces de navidad”, pero lo mas habitual es adquirirla en forma de cinta autoadhesiva pues es mucho mas sencillo instalarlas detrás de nuestro TV  pues  se pueden pegar directamente en la parte de atrás del tv  y no necesitan un engorroso cableado   y ademas  no nos  dará  ningún tipo de problemas  con la Raspberry Pi

Un ejemplo de tira  compatible con WS2801 es  esta  que puede comprarse en Amazon por menos de 27€

tira de leds.png

 

Un aspecto importante que no debemos  olvidar  es que para alimentar dicha tira de leds  WS2801 ,  necesitaremos aparte  una fuente de alimentación  dimensionada para el número de leds que vayamos a adquirir , (lo normal seria  una fuente de  5v y 2A para  unos 50 leds)

Este tipo de tiras de leds  tienen que alimentarse  con una fuente de alimentación externa así que si pensaba alimentarlos con la propia Raspberry olvídese, ya que no va a tener los suficiente intensidad para ello  Para saber que fuente de alimentación necesita , tendría  que conocer el consumo .Dado que el voltaje de alimentación es de 5V  y el consumo viene indicado en vatios por metro, por ejemplo 8.64 watts por metro puede calcular la  intensidad necesaria  aplicando   la siguiente formula:

I (Amp) =P (Watts) / V (voltaje) ->  8.64/5 = 1.728 amperios. por tanto necesita una fuente de alimentación de 5V y 1.728 amperios (mejor 2 amperios para que vaya holgada)

Si se quiere ahorrar los cálculos visite http://www.rapidtables.com/calc/electric/Watt_to_Amp_Calculator.htm

Como regla aproximada  para 50 LEDs se necesitan al menos una fuente de  2 amperios ,para 100 leds 4 amperios, etc.

 

PASO 2 :CONEXIÓN RASPBERRY PI

Desde el punto de vista técnico usar un  conversor de niveles es lo correcto , pero es posible que muchas tiras de leds WS2801  a pesar de ser compatibles con niveles TTL , también sean tolerantes a 3.3V  y por tanto para conectar estas a la Raspberry Pi  2  o 3  no sea necesario por tanto este conversor , por lo que en una primera aproximación se podría prescindir de este circuito

Loas tiras de  LEDs  WS8201 tienen 4 conexiones:

  • Alimentación positiva de +5V DC
  • Tierra
  • Ddata
  • Clock

Los cables de alimentación van conectados a la fuente de alimentación  de  al menos 2 Amperios   y los cables de datos (data y clock) se conectan a los puertos GPIO de la Raspberry. Concretamente el cable data se tiene que conectar al pin MOSI y el cable clock se conecta al pin SCLK.  El negativo además de conectarse al cable de alimentación negativa de los leds debe conectarse a un pin  GND.

 

PASO3 : CONEXION CAPTURADORA

En el mercado existen multitud de capturadoras USB, siendo en general conocidas bajo la marca o  denominación de Easycap. A día de hoy, sólo dos tipos de chipsets son compatibles con el ambilight, por eso es importante seleccionar una capturadora de este tipo que internamente use uno de los siguientes chipsets:
  • STK1160 (el más antiguo)
  • USBTV007 (el más reciente).Se recomiendo adquirir el USBTV007 (también reconocido por Fushicai) porque funciona muchísimo mejor que el obsoleto STK1160.
Las últimas imágenes de OpenELEC son compatibles con ambos chipsets, pero deberemos certificarnos que efectivamente la imagen que tenemos en la Pi soporta el chipset de la capturadora conectada.
easycap.png
Acertar en la compra de la capturadora es el quid del éxito. Hay multitud de variantes, todas ellas conocidas genéricamente por EasyCap, pero no todas nos van a servir. La opción de ir por lo seguro es por ejemplo  adquirir la capturadora en la propia tienda de Lightberry (acertará al 100% porque ellos ya han seleccionado las que efectivamente valen para el ambilight , de hecho actualmente solo comercializan las USBTV007).

PASO 4: INSTALACIÓN DE LOS LEDS EN LA TV

Realmente lo mas sencillo es por optar por tiras adhesivas  WS2801 pues tienen la ventaja que la instalación es más discreta y queda mucho mejor. La desventaja es que seguramente tenga que cortar la tira  para  poder abarcar todo el perímetro de la televisión, lo cual  implica que una vez que haya cortado y pegado cada trozo, tendrá que soldar un conector a ambos lados para volver a unir los contactos de la tira  (aunque  si no quiere soldar la tira esta la opción de comprar tantos metros de leds en formato continuo y pegar esta por todo el perímetro de la TV doblándolas en las esquinas.

Una peculiaridad  de esta tiras ,es que ademas de que se pueden cortarse según la longitud que se requieran ( siempre por la linea de corte que separa cada bloque  chip+led rgb del siguiente) .Otro aspecto muy interesante  es que ,  también es posible ampliarlas gracias a  los conectores que llevan en cada extremo, pudiendo  unirse  entre ellas fácilmente sin soldar nada hasta completar la longitud total que  se necesite ( la cual normalmente sera el perímetro interior de su TV).

No debemos olvidar que esta tiras tienen una flecha que indican el sentido de la conexión de las tiras que debe respetarse escrupulosamente  sobre todo a la hora de conectar varias tiras entre si : es decir siempre empezaremos por la izquierda de la flecha con la conexión a la raspberry y seguiremos el orden de la flecha para interconectar las tiras que se precisen

conector.png

En todo caso , la distribución   mas  normal de montaje de la tira de leds  es pegar la tira horizontal mas grande  en la parte abajo   y seguir  hacia la derecha hasta continuar el perímetro de la TV como se ve en la foto siguiente:

 

PASO 5 :CREACIÓN IMAGEN OPENELEC

OpenELEC se construye desde cero específicamente para una tarea, para ejecutar Kodi pues sólo incluye el software necesario. Debido a esto  es pequeño (aproximadamente 150 MB), se instala literalmente en minutos, y, puede arrancar muy rápidamente en 5-20 segundos, dependiendo del tipo de hardware utilizado. Además, OpenELEC está diseñado para ser gestionado como un dispositivo: puede actualizarse automáticamente y puede gestionarse completamente desde la interfaz gráfica. Aunque funciona en Linux, nunca necesitará ver una consola de administración, un terminal de comandos o tener conocimientos de Linux para usarlo.
Para que nuestra Raspberry Pi funcione como un potente Media Center necesitamos una distribución de Kodi (antes XBMC), y adicionalmente,  el software para el control de los leds  ,que el ideal por prestaciones es el  Hyperion .Este sw puede instalarse  a partir de una imagen de OSMC o bien Openelec ,  pero otra forma mas sencilla y cómoda es  descargarnos alguna de las distribuciones ya existentes al efecto con el sw de Hyperion  ya preinstalado como puede ser la imagen de Lighberry basada en Raspbmc la cual ya  trae Hyperion preinstalado, el driver para la capturadora   y  por tanto  casi todo esta hecho.
En el caso de  disponer de una Raspberry Pi 2 o 3 descargaremos   OpenELEC 7 beta3 for RPi2 / RPi3

lightberry

Una vez descargada descomprimiremos el zip  recuperando la imagen que debería tener el formato   8gbsmallnew0518v2.img.   
Descargaremos e instalaremos  ( en caso de no tener instalado) el sw  SDFormatter con objeto de formatear a bajo nivel la tarjeta microsd.
sdfor
Asimismo, necesitamos  también la utilidad Win 32 Disk Imager que nos va a  permitir grabar de forma sencilla cualquier imagen en la tarjeta microSD:
win32
Tanto en el primer programa, como en este, es obvio que tendremos que cuidar en extremo  la unidad o  drive  /destino  que seleccionemos ,pues podríamos borrar el contenido de nuestra unidad flash usb , un disco externo, etc  , así que como recomendación, al ejecutar estas aplicaciones lo mejor  es extraer de forma segura todas las unidades removibles antes de usar ambos programas.

PASO 6 :CONFIGURACIÓN

Una vez terminada de  generar la imagen extraeremos la SD de nuestro PC  y la introduciremos en nuestra Raspberry Pi .
Una vez arrancada la Raspberry   lo primero es configurar Kodi para que se muestre en español. Para ello debe acceder a
SYSTEM > Settings > Appearance >International > Language , configurar el idioma en español de España y de esta forma ya veremos todos los textos y ayudas en español

También se pueden configurar add-ons, los skins, etc pero sobre todo puede ser interesante conocer  la dirección IP de la Raspberry Pi para conectarnos a esta  via ssh ,para lo cual nos iremos a Sistema–>Información del sistema  y tomaremos nota de la dirección IP ( por ejemplo la ip 192.168.1.54 ). Esta no servirá  para  conectarnos rro ssh ( por ejemplo con el programa putty)    con los siguientes datos:

  • Login as :root
  • [email protected]’s password:openelec
Una vez que ya hayamos configurado Kodi a nuestro gusto y comprobado que accedemos sin problemas a nuestros contenidos multimedia vía red o directamente conectados a uno de los puertos USB de la Pi, pasaremos a personalizar la configuración del Hyperion para  introducir la configuración de LEDS de nuestra instalación de Lightberry.
Para ello tenemos varias opciones,pero la más sencilla y rápida es, con la  Raspberry conectada a internet,  desplazarnos hacia el menú PROGRAMS/PROGRAMAS y ejecutaremos  la aplicación pre-instalada, Hyperion Config Creator  la cual nos permitirá configurar paso a paso la instalación de nuestra  Lightberry en nuestra TV   donde iremos definiendo:
  • Tipo de tira de leds: en nuestro casi   podemos elegir  Lightberry HD for Rasperry pi (ws2801)
  • Numero de leds horizontales ( deben ser idéntico numero de leds  en ambos lados)
  • Numero de leds  verticales   ( deben ser idéntico numero de leds  en ambos lados)
  • Donde comienza el primer led (Right/button corner and goes up)
  • Confirmación  de  que tenemos un capturadora de TV conectada

Una vez terminado el asistente de hyperion confi creator deberíamos ver el arco iris  así como la prueba de colores  , con lo  que deberiamos  haber  terminado de  configurar nuestra instalación , pero ¿como comprobamos si esta funcionando la capturadora?  
Pues usaremos simplemente el segundo menú disponible en  PROGRAMS/PROGRAMAS y ejecutaremos  la aplicación pre-instalada Hyperion  Grabber Screenshot.
Al ejecutar  esta  appp ,  simplemente nos preguntara sobre el tipo de señal de video (en nuestro caso PAL) y en el caso de que tengamos conectada sobre la entrada de video de la capturadora cualquier señal de video ( por ejemplo procedente de un descodificador de imagenio ) entones  si la imagen presentada no es negra  , es indicativo que esta funcionando la capturadora ,  con lo cual  en cuanto reinicie el servicio Hyperion    ya debería ver como cambian las luces en función de la imagen de la fuente de video  externa  ( en nuestro caso desde un descodificador )  ,

 

 

Antes de  terminar  destacsar que para la plataforma  Android existe una app que  permite controlar los leds que tengamos instalados  estableciendo un color  fijo   o  incluso aplicando efectos bastante vistosos. La puede descargar aquí: https://play.google.com/store/apps/details?id=nl.hyperion.hyperionfree&hl=es

 

Si se decide a montar el circuito  lo normal es que le funcione a la primera  y a lo sumo tenga que hacer un mínimo ajuste en la secuencia RGB    ,pero si no le responde puede mirar este post que trata diferentes problematicas   , o directamente probar la tira de leds sobre un arduino

 

 

Fuentes:

https://github.com/tvdzwan/hyperion/wiki

http://lightberry.eu/

Ajustes efecto Ambilight con Raspberry Pi


En un post anterior   vimos como  emular un sistema “ambiligt”  usando únicamente una Raspberry Pi 2  o 3  equipada con una distribución compatible ( Openelec)   y el software de control de  leds Hyperion, con el que podemos conseguir todo hecho  gracias a la distribución Lightberry. 
Además de controlar los leds, la combinación de la Raspberry Pi junto con Kodi constituye un excelente Media Center capaz de reproducir todo tipo de contenidos de audio, vídeo e imagen, de reproducir nuestra colección multimedia almacenada en el PC o en un disco externo, e incluso de reproducir directamente contenidos on-line si se posee  las  subscripción en el hogar  y por supuesto cuenta con la conexión  de suficiente ancho de banda como por ejemplo con ftth.

 La propuesta se completa  con una económica  capturadora  de vídeo  que permitirá  que la emulación no solo funcione con el contenido multimedia que reproducimos desde la Raspberry Pi  , también  responderá a la señal de video externa que le introduciremos  procedente de una fuente externa de video como por ejemplo puede ser la señal de video procedente de un descodificador de Imagenio .

 

Por desgracia a veces la respuesta del Hypercon que  produce en la tira de leds ws2801 no se corresponde  con la imagen capturada , señal que el el fichero obtenido por el asistente (hypercon.config.son ) deberíamos mejorarlo ¿pero cómo?
Pues gracias al programa en java  HyperCon   podemos indicar  la posición exacta de nuestros leds en el caso de que la configuración realizada desde el menu de Hyperion Config Creator   no haya  ofrecido un resultado esperado .

Este software permite entre otras cosas establecer el número de leds que hay que controlar, la posición del primer led, la orientación, el chipset, etc…permitiendo un ajuste muy preciso del comportamiento de cada led de forma individual

Antes de seguir, quiero aclarar para que HyperCon.jar funcione, es necesario tener instalada la ultima version de  Java ,asi que si no la tiene  instalada puede descargarlo aquí

Recordamos que con el menu basico de  Hyperion Config Creator   podemos  definir la instalación de nuestra  Lightberry en nuestra TV   definiendo simplemente 5 parámetros:
  • Tipo de tira de leds: en nuestro casi   podemos elegir  Lightberry HD for Rasperry pi (ws2801)
  • Numero de leds horizontales ( deben ser idéntico numero de leds  en ambos lados)
  • Numero de leds  verticales   ( deben ser idéntico numero de leds  en ambos lados)
  • Donde comienza el primer led (Right/button corner and goes up)
  • Confirmación  de  que tenemos un capturadora de TV conectada

Puede ocurrir que aunque  veamos el arco iris con la configuración obtenida  no se correspondan los colores de los leds con los de la imagen , indicio de que debemos ajustar la configuración manualmente  de forma mas  precisa  por medio del archivo hyperion.config.json  generado por el asistente  de un modo mas exhaustivo usando  el programa en java  HyperCon  o bien de forma manual.

Obviammente para ejecutar dicha aplicacion, como se ha mencionado ,debemos tener instalado en nuestro equipo java

Una vez descomprimido el  pquete de Hypercon , simplemente ejecutaremos el archivo HyperCon_Sssj.jar  ( este fichero estará por ejemplo  en la ruta C:\Users\xx\Downloads\hypercon-master\hypercon-master\debug\)

hypercon

Una vez lanzado el hypercon veremos el interfaz  gráfica con una configuración por defecto que debemos personalizar   con respecto a nuestra instalación.

Debe recodar donde puso el primer led (el que está al lado del conector hembra con los jumpwires).

pantalla

En este ejemplo personal ,el primer led   ha quedado en la esquina inferior derecha cuando se mira la TV de frente ( o a la izquierda abajo si ve por atras), así que el recorrido de los leds va desde la esquina inferior  derecha hasta la izquierda (sentido horario).

Configuramos de este modo:

  •  Direction: clockwise
  •  Led top corner: false
  •  Led bottom corner: false
  •  Horizontal #: 28
  •  Vertical #: 14
  •  Bottom Gap: 0
  •  1st Led offset: -42

En nuestro caso tiene que salir un Led count = 84 (o el número de leds que haya instalado).

Si en su configuración  empezó  por la otra esquina, cambie el desplegable  direction.

En el caso del ejemplo  no se han situado leds en las esquinas, así que hay que especificar  top/bottom a false.

En bottom gap hay que poner el mismo numero de leds que en la parte superior, así lo puede dejar “vacío”.

Muy importante : en  el desplegable  1st Led offset hay que ir aumentando o disminuyendo hasta que el led número 0 quede en la esquina inicial (en este ejemplo en la esquina inferior derecha).

pantalla.png

Una vez configurado según los leds que tenga, vaya a la pestaña External y en el apartado Effects Engine Directory  escriba lo siguiente: /storage/hyperion/effects lo cual  hará que hyperion encuentre el directorio de los efectos.

Asimismo puede ajustar el tiempo en ms que permanezca el efecto al arrancar  en Length ( por defetco 9000ms)

rain

Una vez configurado haz clic en el botón Create Hyperion Configuration para crear el fichero de configuración hyperion.config.json que hay que copiar  en la Raspberry PI en el directorio /storage/.config     (   no confundir  con  la ruta /storage/hyperion/configuration/)

hyperion .

Una vez copiado el fichero  hyperion.config.json en storage/.config reinicie la RPI y si todo ha ido bien deberías ver un efecto de arcoiris.

Configuracion inicial

La configuración del dispositivo contiene los siguientes campos:

  •  ‘name’: El nombre de usuario del dispositivo (sólo se utiliza para fines de visualización)
  •  ‘type’: El tipo del dispositivo o leds (los tipos conocidos por ahora son ‘ws2801’, ‘ldp8806’, ‘ ‘lpd6803’, ‘sedu’, ‘adalight’, ‘lightpack’, ‘test’ y ‘none’)
  • output : La especificación de salida depende del dispositivo seleccionado. Esto puede ser, por ejemplo, el especificador de dispositivo, número de serie del dispositivo o el nombre del archivo de salida
  • rate’: El baudrate de la salida al dispositivo
  • colorOrder’: El orden de los bytes de color (‘rgb’, ‘rbg’, ‘bgr’, etc.).Es muy  importante destacar que si no ajustamos este valor  se pueden cambiar el borde de los colores .Por ejemplo muchas tiran son del t tipo BGR, lo cual significa que si dejamos marcado por defecto en RGB  cambiará en todas las visualizaciones el rojo por el azul y biceversa

Ejemplo de configuración  de la sección  device correspondiente al post anterior  :

“device”: {
“colorOrder”: “bgr”,
“rate”: 500000,
“type”: “ws2801”,
“name”: “MyPi”,
“output”: “/dev/spidev0.0”
},

Color

Podemos manipular la  configuración de manipulación de color utilizada para ajustar los colores de salida a un entorno específico.
La configuración contiene una lista de transformaciones de color. Cada transformación contiene  los  siguientes campos:

  •  ‘id’: El identificador único de la transformación de color (p. Ej. ‘Device_1’)
  • ‘leds’: Los índices (o índices) de los leds a los que se aplica esta transformación de color  (por ejemplo, ‘0-5, 9, 11, 12-17’). Los índices son basados ​​en cero.
  •  ‘hsv’: La manipulación en el dominio de colores Valor-Saturación-Valor con lo siguiente  parámetros de ajuste:
    •  ‘saturationGain’ El ajuste de ganancia de la saturación
    • ‘valueGain’ El ajuste de ganancia del valor
  • ‘rojo’ / ‘verde’ / ‘azul’: La manipulación en el dominio de color Rojo-Verde-Azul con los  siguientes parámetros de sintonización para cada canal:
    •  ‘umbral’ El valor de entrada mínimo requerido para que el canal esté encendido
      (más cero)
    •  ‘gamma’ El factor de corrección de la curva gamma
    •  ‘blacklevel’ El valor más bajo posible (cuando el canal es negro)
    •  ‘whitelevel’ El valor más alto posible (cuando el canal es blanco)

Al lado de la lista con transformaciones de color también hay una opción de suavizado.
‘Suavizado’: Suavizado de los colores en el dominio del tiempo con la siguiente sintonización  parámetros:

  • ‘type’ El tipo de algoritmo de suavizado (‘linear’ o ‘none’)
  •  ‘time_ms’ La constante de tiempo para el algoritmo de suavizado en milisegundos
  •  ‘updateFrequency’ La frecuencia de actualización de los leds en Hz

Ejemplo de configuración  de la seccion color  correspondiente al post anterior  

“color”: {
“transform”: [
{
“blue”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0.0,
“whitelevel”: 0.84999999999999998,
“gamma”: 2.0
},
“leds”: “0-81”,
“hsv”: {
“saturationGain”: 1.0,
“valueGain”: 1.0
},
“green”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0.0,
“whitelevel”: 0.84999999999999998,
“gamma”: 2.0
},
“id”: “leds”,
“red”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0.0,
“whitelevel”: 1.0,
“gamma”: 2.0
}
},
{
“blue”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0,
“whitelevel”: 0,
“gamma”: 2.0
},
“leds”: “82-149”,
“hsv”: {
“saturationGain”: 0,
“valueGain”: 0
},
“green”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0,
“whitelevel”: 0,
“gamma”: 2.0
},
“id”: “ledsOff”,
“red”: {
“threshold”: 0.050000000000000003,
“blacklevel”: 0,
“whitelevel”: 0,
“gamma”: 2.2000000000000002
}
}
],

Leds

La configuración para cada led individual. Contiene la especificación del área  promediado de una imagen de entrada para cada led para determinar su color. Cada elemento de la lista  contiene los siguientes campos:

  •  index: El índice del led. Esto determina su ubicación en la cadena de leds; cero
    Siendo el primer led.
  •  hscan: La parte fraccional de la imagen a lo largo de la horizontal utilizada para el promedio  (mínimo y máximo inclusive)
  •  vscan: La parte fraccional de la imagen a lo largo de la vertical utilizada para el promedio  (mínimo y máximo inclusive)
  •  ‘updateFrequency’ La frecuencia de actualización de los leds en Hz


“leds” :
[
{
“index” : 0,
“hscan” : { “minimum” : 0.0000, “maximum” : 0.0500 },
“vscan” : { “minimum” : 0.0000, “maximum” : 0.0800 }
},
{
“index” : 1,
“hscan” : { “minimum” : 0.0000, “maximum” : 0.0357 },
“vscan” : { “minimum” : 0.0000, “maximum” : 0.0800 }
},

…………………..

{
“index” : 87,
“hscan” : { “minimum” : 0.0000, “maximum” : 0.0500 },
“vscan” : { “minimum” : 0.0000, “maximum” : 0.0714 }
}
],

Configuracion Bordes

La configuración de borde negro, contiene los siguientes elementos:

  •  enable: true si el detector debe ser activado
  •  Umbral: valor por debajo del cual un píxel se considera negro (valor entre 0,0 y 1,0)
    “Blackborderdetector”:

Ejemplo de configuración  de la seccion blackborderdetector correspondiente al post anterior  

“blackborderdetector”: {
“threshold”: 0.10000000000000001,
“enable”: true
},

EFECTOS

La configuración del motor de efectos, contiene los siguientes elementos:

  • paths: Una matriz con ubicaciones absolutas de directorios con efectos
  • bootsequence: El efecto seleccionado como ‘secuencia de arranque’. Es importante cambiar a su valor en OpenElec  “/storage/hyperion/effects”

Ejemplo de configuración sección  effects correspondiente al post anterior  :

“effects”: {
“paths”: [
“/storage/hyperion/effects”
]
},

CAPTURADORA

La configuración del captador de tramas, contiene los siguientes elementos:

  •  width: El ancho de los marcos grabados [pixels]
  •  height: La altura de los marcos grabados [pixels]
  • frequency_Hz: La frecuencia de la toma de marco [Hz]

La configuración de la conexión XBMC utilizada para habilitar y deshabilitar el captador de tramas. Contiene los siguientes campos:

  •  xbmcAddress: La dirección IP del host XBMC
  •  xbmcTcpPort: El puerto TCP del servidor XBMC
  • grabVideo: Flag  que indica que el captador de fotogramas está activado (true) durante la reproducción de vídeo
  •  grabPictures: Flag que indica que el captador de fotogramas está activado (true) durante la presentación de imágenes
  •  grabAudio: Flag que indica que el captador de fotogramas está activado (true) durante la reproducción de audio
  •  grabMenu: Flag que indica que el captador de fotogramas está activado (true) en el menú XBMC
  •  grabScreensaver: Flag que indica que el captador de fotogramas está activado (true) cuando XBMC está en el salvapantallas
  •  enable3DDetection: Indicador que indica que el captador de fotogramas debe cambiar a un modulo compatible con 3D si se está reproduciendo un video en 3D

Ejemplo de configuración sección  effects correspondiente al post anterior  :

 “framegrabber”: {
“width”: 64,
“frequency_Hz”: 10.0,
“height”: 64
},
“xbmcVideoChecker”: {
“grabVideo”: true,
“grabPictures”: true,
“xbmcTcpPort”: 9090,
“grabAudio”: true,
“grabMenu”: false,
“enable3DDetection”: true,
“xbmcAddress”: “127.0.0.1”,
“grabScreensaver”: true

NOTAS

Si no quiere reiniciar lar RPI cada vez que modifique el fichero de configuración hyperion.config.json, puede reiniciar sólo el servicio con los siguientes comandos:

killall hyperiond
/storage/hyperion/bin/hyperiond.sh /storage/.config/hyperion.config.json /dev/null 2>&1 &

Hay que añadir la siguiente línea dtparam=spi=on al archivo config.txt  editando el fichero o bien a través con los siguientes comandos:

mount -o remount,rw /flash
nano /flash/config.txt (se abrirá el archivo, añadimos la línea y guardamos con Ctrl+X)

reboot

Pruebas

Para comprobar el correcto funcionamiento del sistema para Android existe una app que te permite controlar los leds estableciendo un color o aplicando efectos bastante vistosos. La puede descargar aquí

hype

Otra forma de probar es ejecutando el siguiente comando que hará que todos los leds se iluminen en rojo durante 5 segundos, puedes probar varios colores, green, blue entre otros.

/storage/hyperion/bin/hyperion-remote.sh –priority 50 –color red –duration 5000

O este otro que mostrará un efecto de arcoiris

/storage/hyperion/bin/hyperion-remote.sh  –effect “Rainbow swirl fast” –duration 3000

Por ultuio en youtube puede encontrar vídeos de test para probar que los colores se corresponden con la imagen.

Construya su propia cámara de videogilancia usando Raspberry Pi


Gracias a un sencillo kit de carcasa +lente de ojo de pez  junto el software deMotionPie en efecto  es bastante sencillo transformar una Raspberry Pi con cámara en un sistema de seguridad altamente personaliza ble  como vamos a ver en este post

 

Hardware

Los elementos que necesitamos  para este montaje son  los siguientes:

  • Raspberry Pi3  o en su defecto una Rasberry Pi 2
  • Camara para Raspberry Pi  de 5MP Webcam Video 1080p 720p, (la del enlace es una de las mas económicas )
  • Fuente de  5v  de almenos 700mA
  • Lente ojo de pez magnética ( puede servir un mirilla de las típicas que se usan en las puertas )
  • Carcasa para albergar el conjunto .Existe este paquete  que incluye un mate negro especialmente diseñado para esta función incluyendo ademas  la lente y la caja de montaje en pared.Compatible con ambos los V1 y V2 frambuesa Pi cámara módulos originales y recién actualizado para ser compatible con la frambuesa Pi 3!

 

Pasos a seguir

La cámara Haiword  es una de las mas económicas para la Raspberry Pi(unos 15€ en Amazon) .El sensor de resolución nativo es de 5 megapíxeles capaz de 2592 x 1944 píxeles de imágenes estáticas.Soporta vídeo 1080p30, 720p60 y 640x480p60 / 90. La cámara es compatible con la última versión de Raspbian, el sistema operativo preferido de Raspberry Pi
El bus CSI es capaz de velocidades de datos extremadamente altas, y lleva exclusivamente datos de píxeles razón por la que esta cámara  utiliza la interfaz dedicada de CSI, que fue diseñada especialmente para la interfaz a las cámaras .

Para empezar a usar la cámara simplemente conectaremos el cable de cinta de la cámara al interfaz CSI de nuestra Rasberry Pi. Debemos tener mucho cuidado de enrasar muy bien el cable antes de fijarlo al conector  y después bajarle el tope para que no se suelte

 

La cámara de la Raspberry Pi ofrece caja de la cuenta, que puede mejorarse mediante la adición de lentes intercambiables. La lente ojo de pez le dará la cámara de la  Pi una vista panorámica de sus alrededores, ideal para vigilancia, seguridad y escenarios de monitoreo general.

Una vez conectada la cámara ,toca meter el conjunto en una caja que debe tener el agujero para la cámara. Obviamente con un poco de maña podemos utilizar cualquiera de las cajas que haya en el mercado fijar  la cámara por fuera y luego acoplarle la lente .

Un  opción interesante es optar por un kit de caja a medida  pues la flexibilidad de esos diseño suelen ser ideales para usar un Raspberry Pi sobre todo por la integración del módulo de cámara ademas  de complementarse con una lente de gran angular ojo de pez.

El cuadro de ModMyPi Pi cámara está diseñado para albergar un ordenador Raspberry Pi (modelo A o B) y un módulo de cámara de Pi en un gabinete compacto y versátil. Esta integrado todo el diseño para que no dañe el cable de cinta frágil de la cámara expuestos durante la operación. Este caso puede acomodar una lente de cámara magnética opcional, que abre nuevas posibilidades más allá de la excepcional calidad óptica del módulo cámara de Pi. El estuche negro mate es opaco, asegurándose que el led rojo montado en el módulo Pi cámara no afectará la luz ambiental captada por la cámara. La parte posterior de la ‘caja de cámara Pi’ puede aceptar un soporte de montaje en pared opcional para instalaciones permanentes.

Para aprovechar al máximo de él, la caja de la cámara de Pi debe montarse firmemente a una pared o un techo y debe orientarse correctamente. Este soporte permite inclinar y girar el dispositivo. Sólo apriete los tornillos cuando hayas encontrado la posición correcta y listo.

 

La caja de la cámara de Pi está diseñada ademas  para recibir el pequeño aro metálico necesario para atar la lente de ojo de pez magnetizada a la caja.

 

Software de la cámara

Esta es la parte que puede parece mas difícil si no fuera por el paquete  MotionPie. Esta aplicación inteligente viene como una imagen que simplemente escribir en una tarjeta SD y poner directamente en su Pi – sin código, ni enfangarse en infinidad de comandos linux.Puede que  parezca que hacemos  “trampa”, pero funciona muy bien y nos evitara muchos problemas pues es muy  fácil de usar.

Descargar la imagen

Para instalar MotionPie necesita una tarjeta SD en blanco y la MotionPie imagen disponible aquí (golpee el botón de descarga verde grande). Puede utilizar una tarjeta SD de 4 Gb pero puede que desee algo más grande si desea utilizar las funciones de grabación de MotionPie.

Piense en una imagen como sistema operativo, como Windows. Esta imagen es una imagen dedicada para MotionPie, que hace muy fácil de instalar.

Una vez que haya descargado el archivo, descomprima los archivos en una carpeta y mover al siguiente paso.

Escribir la imagen en una tarjeta SD

Pop tu tarjeta SD en tu PC (utilizando un adaptador de tarjeta SD si es necesario) y abrir su imagen favorita de software de escritura – usar Win32DiskImager para Windows.

Abrir Win32DiskImager, debería ver la letra de unidad para la tarjeta SD en la sección superior derecha ‘dispositivo’. Asegúrese de que esto es justo antes de continuar.

Win32DiskImager

A continuación necesitamos decirle a la aplicación que archivo de imagen que queremos  ‘quemar’ a la tarjeta SD. Haga clic en el icono de carpeta pequeño y vaya a la carpeta que extrajo los archivos de MotionPie. Haga clic en el archivo MotionPie.img y haga clic en ‘Abrir’:

MotionPie Image File

El archivo de imagen debe ser un tipo de archivo .img

La ruta del archivo debe verse ahora en la sección de ‘Archivo de imagen’.

Win32DiskImager load image

Ahora haga clic en ‘Escribir’ para  quemar la imagen en la tarjeta SD. Se mostrará una advertencia indicándole que puede dañar el dispositivo. No se preocupe, es un mensaje estándar. Haga clic en ‘Sí’ para continuar:

Nota: La opción ‘leer’ es para hacerlo al revés – lectura de la tarjeta SD y hacer un archivo – ideal para realizar copias de seguridad

Win32DiskImager Warning

Esta advertencia siempre se muestra  !no se  suste !.Una barra de progreso le dará una indicación del progreso pero  eta imagen no es muy grande por lo que sólo debe tomar unos pocos minutos:

Win32DiskImager progress bar

Una vez completado, aparecerá un mensaje. Haga clic en ‘Aceptar’:

Win32DiskImager complete

¡No retire la tarjeta SD todavía!  Ahora estamos listos para quitar la SD no te olvides de ‘expulsar’ el dispositivo de forma segura mediante el icono en la barra de tareas, hay una posibilidad que podría corromper la tarjeta SD ,aso que expulse la tarjeta de forma controlada !la Tarjeta SD está lista ahora, así que conectela ahora a su Pi

Programa de instalación

Tenemos que conectar el MotionPie a una conexión a internet por cable para el arranque inicial (ethernet), pues tenemos que ser capaces de recuperar una dirección IP. No podemos hacer nada de esto a través de una pantalla HDMI pues MotionPie no tiene una salida de vídeo (sólo verá una pantalla colorida).

Una vez que haya conectado todo, conecte su fuente de alimentación micro-USB para el Pi y encienda la Pi. Tenemos que dar al menos unos minutos para dejar la configuración inicial de instalación , así que espere pacientemente.

Dirección IP

Ahora necesita encontrar la dirección IP de su MotionPie para poder iniciar sesión en él. Usted podría iniciar sesión en su ruter  para encontrar las direcciones IP de los dispositivos conectados, pero hoy en dia es muy interesante  la app de Android ‘Fing‘ en Android, ya que es rápida y fácil y nos dara todo lo que haya conectado a nuestra red (incluyendo la raspberry Pi).

Abra Fing, haga una exploración en su red y busque su MotionPie junto con el número de serie (el número de serie es la parte después de’ MP’):

Fing IP address

!Fing es grande para tomar direcciones IP!

Inicio de sesión

Esta parte es la fácil pues usando un portátil/tablet/teléfono conectado a la misma red que su MotionPie, simplemente escriba la dirección IP y pulsar intro (igual debería escribir en una dirección web). En el ejemplo anterior, estoy usando 192.168.1.9.

Debe cargar la interfaz de MotionPie En algún momento se le pedirá  un registro, que es simplemente ‘admin’ y sin contraseña. Para acceso remoto como SSH, el nombre de usuario es ‘root‘ y la contraseña es el número de serie de Pi (que se puede ver por encima cuando la dirección IP).

Utilizar SSH para configurar el adaptador de WiFi para que esta cámara no tenga que depender de una conexión ethernet por cable.

Aquí es lo que MotionPie parece en un teléfono Android .

MotionPie Interface

La parte superior del icono izquierda  lleva al menú de configuración, donde puede ajustar todo tipo de cosas como el framerate, resolución, brillo, contraste, rotación, ubicaciones de almacenamiento y cargas más.  Luego tienes los iconos de la derecha que lleva a la cámara y captura de vídeo, modo de pantalla completa y más opciones. Para utilizar la misma interfaz en un PC o un tablet, es el mismo proceso. Simplemente introduzca la dirección IP y debería poder  ver la imagen captada por la camara de la Pi.

Actualmente no un comando de apagado en la interfaz pero parece una mejora que pronto vendrá . Puede ejecutar más de una cámara de Pi en MotionPie, de modo que se puede  crear una interfaz de seguridad completo:

MotionPie Multiple Feeds

¿Se anima  a usar su raspberry pi como sistema de seguridad?