Impresion 3d para hacer frente al coronavirus

Ingenieros, médicos, makers y tecnólogos forman este improvisado grupo en las RRSS que está logrando, en tiempo récord, fabricar piezas hospitalarias indispensables para el funcionamiento de un respiradero, vital para la supervivencia de los casos más graves de coronavirus.


Es  ya casi imposible seguir los avances que a diario se esta realizando desde  el forocoronavirusmakers.org ( A.I.R.E. o Ayuda Innovadora a la Respiración), equipo que por cierto , hasta hace casi nada  ni tenia contacto entre sus miembros  , consiguiendo de una manera colaborativa  ,altruista  y desinteresada intentar mitigar  la escasez  de material sanitario  fabricando  en un tiempo récord  y a a precios irrisorios   todo tipo de material sanitario , pantallas, utensilios , etc,   así como   respiradores  open source  ante el  grave problema de  indisponibilidad de stock de estos carisimos dispositivos que  cuestan a la sanidad pública casi 15.000 euros  por dispositivo.  

Es interesante destacar  que en este foro están presentes  médicos e ingenieros sanitarios que indican y marcan las pautas para crear un proyecto que cumpla con todas las garantías sanitarias.

También  es importante destacar que las soluciones que se están buscando pretenden ser  soluciones de código abierto, rápidas y baratas  para poder ser rápidamente replicables y escalables gracias  a  técnicas  de fabricación modernas como son el corte laser, los cnc   o la impresión 3d .

Veamos ahora  los 4 principales frentes abiertos :

Respiradores Open Source

Desgraciadamente la estimación de respiradores que se necesitarán solo en España en los próximos días es de miles de respiradores, incluso contando con todos los que se están comprando a nivel estatal, regional y privado. Dado que en los próximos días u horas se liberaran algunos de los diseños es importante que aunque se haga con buena fe ser lo mas filedignos  a las  pruebas que ya se han hecho dado que es cierto que  algunos de estos podrian ser contraproducentes al poder producir mas daño al paciente que beneficios para el   .

Reesistencia Team ya ha conseguido  desarrollar los primeros respiradores autónomos Open, basados en el denominado sistema Jackson Rees .

En el foro  hay varios prototipos de respiradores DIY en proceso de validación clínica muy avanzados  : Reespirator23, Oxygen, Makespace Madrid,varias empresas importantes en industria y varios muy prometedores de personas individuales. 

El equipo asturiano ha mostrado una demo de su prototipo que promete mucho , el cual será validado con el Departamento de Sanidad del Principado de Asturias. Si se demuestra que puede ser útil en situaciones de escasez de respiradores comerciales, las comunidades maker en cada CC.AA. pueden llevar el proyecto a escala España en cuestión de días. 

https://twitter.com/ReesistenciaT/status/1241052680119824385?s=20


Respirador maker asturiano

Pantallas

Dada la eficaz protección  física   que ofrecen, el equipo  esta imprimiendo en 3d estructuras que van montadas  sobre la cabeza   para albergar un filtro de acetato el cual ha demostrado ser muy eficaz    si lo complementas con mascarillas  y gafas de protección

El modelo mas popular por su simplicidad   y rápida impresión  es MODEL SACYL.STL  .

Estos son algunos de los parámetros que se están usando para imprimir el  Modelo SACYL:

      • Diámetro del Nozzle: 0,4mm
      • Altura de capa : 0,28 – 0,30
      • Grosor de pared: 1,2
      • Capas superiores/inferiores: 4
      • Relleno: 50%
      • Patrón de relleno: grid, rejilla
      • Velocidad: 80 mm/s
      • Velocidad superior/inferior: 40 mm/s
      • Sin soporte

 

Por cierto,  para acelerar la producción   podemos imprimir en cualquier impresora 3d  de  300x300x300  dos unidades por impresión  , como vemos en la imagen superior,

A todos aquellos personas que estén fabricando pantallas, las tengan ya hechas o las vayan a fabricar es importante destacar algunas pautas:

      •  Eliminen los filos cortantes (pasando un cutter es suficiente), sobre todo la zona que entra en contacto con la frente.
      • Redondear los picos inferiores del acetato, si es que lo tiene a disposición
      • Para que la pantalla no se empañe, es necesario que deje pasar algo de aire por la parte superior, sí ha impreso algún modelo sin agujeros intente ver la forma de realizárselos sin destrozar el trabajo realizado.

Una vez impresas  es importante que se registre cada una de las pantallas ( hay grupos de Telegram en https://t.me/coronavirus_makers) . Mientras se termina de gestionar las logística, cuando  se  tenga un número importante de pantallas (+ de 10) fabricadas, se limpien  y se embolsen  usando bolsas nuevas con auto-cierre (bolsas de basura),guantes y mascarilla y se limpie  cada pantalla con disolución de agua y legía (10%) y papel adsorbente desechable.

Tambien es muy importante, que cuando se cambie de pantalla se  limpie también  los guantes con la disolución, antes de la siguiente pantalla a limpiar.

 

Mascarillas 

Hay muchas confirmaciones de centros hospitalarios informando que las mascaras impresas  en 3D   comparándolas  con una bufanda , sobre  todo por el aspecto psicológico de  que pueden dar una falsa sensación de seguridad. 

Como se puede ver en la imagen   ya esta demostrado que una mascarilla impresa  en 3d   y una bufanda hacen prácticamente lo mismo  debido al carácter poroso  que permite dejan pasar las partículas infecciosas . 

El problema  como nos dicen los expertos no es el diseño ,material  o la buena intención ,   sino la falsa seguridad que puede provocar el llevarla puesta  pues con impresión 3d las mascarillas no aíslan de los virus por muchos filtros que intentemos ponerlos ( por  ejemplo el que usa goma eva )

Por  tanto,  si se quiere ayudar   construyendo material  , es   mas aconsejable imprimir pantallas protectoras  y nos mascarillas 

No obstante desde el grupo de Telegram de  Aire , solicitan ayuda:

      • Necesitan diseñadores 3D con cierta experiencia

      • Necesitan expertos que nos ayuden con morfología facial

      • Necesitan moldes para inyectar silicona

Adicionalmente  también hacen falta filtros de los siguientes tipos para evaluación: recambios de filtros y prefiltros P2, N95, P3, trapezoidales y circulares

 

Valvulas

Por ultimo esperando   que no llegue a ser necesario es interesante recordar la fabricación de reemplazos de válvulas para respiradores en impresión 3D que llevaron a cabo ingenieros italianos para el Hospital de Brescia,

 

 

 

Si es usted querido lector  un maker, aficionado , médico o ingeniero y puede aportar su granito de arena en este proyecto, pásese por sus diferentes grupos de Twitter, telegram  o la  web https://foro.coronavirusmakers.org/:

Software de impresion 3d

Slic3r es un motor de corte 3D de software libre para impresoras 3D. Genera código G a partir de archivos CAD en 3D. Una vez terminado, se envía un archivo de código G apropiado para la producción de la pieza u objeto modelado en 3D a la impresora 3D para la fabricación de un objeto físico.


Para todo el mundo que empieza en el mundo de la impresión 3d  se le abren cuatro opciones  principalmente:

      1. El propio software  del fabricante
      2. Cura de Ultimaker
      3. Slicr3r
      4. Simplify 3d ( de pago)
      5. etc

Ante este gran abanico ,mejor por simplicidad  y garantía de éxito  lo mas recomendables es usar el propio sw recomendado  por el  fabricante de la impresora 3d ( por ejemplo, para las impresoras del fabricante Geeteech es el Easyprint)  para  familiariarizarse con los aspectos básicos del laminado 3D, luego  idealmente  empezar usar  el sw de Cura,pero  quizás si quiere tener más control sobre sus impresiones 3D  (!y sin pasar por caja!) , puede comenzar a usar Slic3r  y  una vez que tenga experiencia, podrá decidir si quiere comprar un programa se supone profesional como es Simplify3D, el cual  brindará mayor precisión en el trabajo con soportes.

Si nos vamos  por tanto a las opciones gratuitas si comparamos Slicr3r  con  Cura  en la mayoría  de los aspectos  Cura supera   a Slic3r:

      • Cura 3D permite rotar las piezas con el ratón manualmente y a su gusto, algo que Slic3r debe mejorar.
      • El acabado final de las capas son un poco mejores cuando se hace el laminado con Cura que con Slic3r.
      • Cura permite crear mejores soportes que Slic3r y permite trabajar con voladizos (overhangs) más extremos que Slic3r.
      • Cura permite crear piezas con impermeabilidad más consistente que Slic3r.
      • Es más fácil usar Cura que Slic3r, ya que permite trabajar con el modelo de forma simple.
      • A veces  se tarda más en lograr los ajustes correctos con Slic3r.
      • Cura ofrece actualizaciones de forma más periódica que Slic3r
      •  Slic3r tiene  limitaciones para piezas superiores a 10Mb donde podemos tener problemas al hacer el código ya que puede quedar el programa sin responder. Si se observa que el programa se cierra inesperadamente, o calcula y a la mitad se cierra, seguramente es problema del .stl o su gran tamaño.
      •  Con Slicr se recomienda trabajar con piezas corregidas con el software netfabb basic y con piezas de tamaño pequeño.

 

No obstante ,  el programa  Slic3r  en algunos puntos  sobresale frente a Cura, por ejemplo:

        • Cuenta con muchas opciones de configuración que permiten un ajuste fino y un control total. Mientras que los usuarios que no tienen mucha experiencia regularmente necesitan sólo algunas opciones, el software Slic3r es utilizado principalmente por usuarios con conocimientos avanzados.
        • El código base de Slic3r incluye más de 1000 pruebas de unidad y regresión, recopiladas en 6 años de desarrollo.
        • Slic3r permite crear una primera capa inferior perfectamente plana y fácil de remover de la cama, sin necesidad de modificar tantos parámetros de la primera capa( quizas Cura engine se mejore en versiones siguintes).
        • Algunos piensan que la interfaz de usuario de Slic3r suele ser más amigable que el  de Cura .
        • Slic3r  permite un mayor control manual sobre la impresión de las piezas
        • Este sw tiene funciones muy potentes como la detección de puentes (bridge detection)  respecto a las que ofrece Cura.
        • Un ejemplo de las ventajas de usar Slic3r es el corte de grandes piezas o diseños de gran tamaño. Al colocar una pieza muy grande en Slic3r, esta se corta en varios trozos diferentes para que entren en tu impresora 3D y luego las exportas en stl. Esta actividad la realiza sin mayores complicaciones.
        • Hay muchos programas para impresora 3D que pueden hacer esto, pero no existe ninguno que lo haga de manera tan eficaz y sencilla.

 

Como   en otras entradas  hemos tratado tanto del sw de  Cura como del propio EasyPrint  vamos a ver en este post los parámetros esenciales del programa Slic3r, así como algunos trucos y consejos que pueden hacer que una impresión reluzca o que falle ya  que en caso  de decidirnos   por  Slicr3r, su correcto uso es importante, ya que de él dependen la mayoría de parámetros de nuestra maquina y extrusor, así como las capacidades de la misma .Por ejemplo, definiendo alturas de capa, velocidades, soportes, temperaturas, etc de nuestra futura pieza, de estos dependerán también los tiempos de producción y el consumo de material.  Incluso toda esta parametrizacion es tan importante que cada parámetro puede diferir de la maquina, aun siendo un mismo modelo o base, así que  es mejor  ajustar los parámetros en entornos no muy alejados de los orientativos, pero no ceñirse a los mismos.

 

 

Descarga e instalación del sw:

1.Para ello abriremos el navegador de internet, y nos dirigiremos hacia la pagina web siguiente: http://slic3r.org/

2.A la edición de este manual, la versión más reciente es la 0.9.7. Al entrar en la web clicaremos en la pestaña de” download now”.

Seleccionamos el sistema operativo y descargamos el paquete necesario para hacer funcionar el programa tanto en 32bit (versión x86) como 64bit(x64).

3.Empezara la descarga del paquete seleccionado en un archivo comprimido (.rar) Al finalizar dicha descarga descomprimiremos el contenido del archivo al lugar donde deseemos tener el programa(p.ej el escritorio).

4.Slic3r es un programa autoejecutable (.exe) y no requiere de instalación previa antes de su utilización. Una vez descomprimido el contenido en el escritorio, seleccionaremos el archivo Slic3r.exe

5.La primera vez que ejecutemos el  software nos aparecerá el configuration wizard.

 

 

Configuración inicial:

 

1.Nos aparece la primera imagen del menú inicial de configuración  tras instalar el programa  y ejecutarlo por primera vez.Si no apareciese el menú inicial de configuración, en Slic3r ir al menú desplegable de  Help/Configuration Wizard

2.Pulsamos en “Next”.   En esta pestaña seleccionaremos el firmware que controla nuestra máquina,el cual por defecto tanto  en la PRUSA 3D como en la BCN 3D   se carga el firmware Marlin asi que pulsamos en “Next”.

3.En esta pestaña aparece el tamaño de nuestra base. Introducimos las dimensiones de la base en mm. Tanto la PRUSA 3D como la BCN 3D utilizan diferentes bases pero del mismo tamaño en x,(por defecto es de 200x200mm para ambas máquinas) .Cuando tengamos las medidas introducidas, pulsamos en Next

4.En esta pestaña aparece el parámetro de diámetro de la boquilla. Se debe introducir el diámetro de la boquilla en mm.  Ojo porque según  la impresora este puede variar ( por ejemplo en la Prusa  i3 W es de 0.3mm)   Cuando tengamos el tamaño introducido, pulsamos Next.

5.En este apartado debemos introducir el diámetro del filamento . Se recomienda consultar la documentación del fabricante del filamento . Posteriormente pulsamos en Next.

6.Ahora se debe introducir la temperatura de la boquilla, el cual como sabemos puede diferir del material que utilizamos .De nuevo es interesante revisar la información que debería ofrecer el fabricante del filamento . Una vez introducidos, pulsamos en Next. Estos  son algunos  valores orientativos:

Material

Temperatura ºC

Pla no translucido

190‐195

Pla translucido

165

ABS

210‐230

                    7.En la ventana siguiente aparece la configuración de la temperatura de la cama caliente . Al finalizar pulsamos en Next. Estos  son algunos  valores orientativos:

Material

Temperatura ºC

Pla no translucido

55‐60 con kapton, 70 sin kapton

Pla translucido

55‐60 con kapton, 70 sin kapton

ABS

90 con kapton, 110 sin kapton

Hemos finalizado la configuración básica del programa .Si fuese necesario , puede cambiar algunos parámetros extras para poder empezar a imprimir  en el  apartado de Configuración Avanzada.

 

Veamos ahora  como p rsonalizar  las difrentes opciones de configuracion en Settings->Print Settings

 

Print settings-Layers and perimeters:

Nombre del parámetro

Función y valor óptimo

Layer height:

Este parámetro nos configura la altura de capa. A mayor altura de capa, menos tiempo y menos gasto de material, pero menos resolución. Para el PLA  de 3mm se recomienda utilizar alturas de capa que van desde los 0,25mm a los 0,4mm.Para el PLA 1,75mm se pueden reducir un 20% estas alturas.

En ABS se puede llegar a reducir la altura de capa a 0,15mm o inferior. Lo recomendable es entre 0,15mm i 0,3mm. No se recomienda trabajar con ABS a 0,4mm, dado que es mucha altura para este tipo de material.

First layer height:

Este parámetro configura la altura de la primera capa de la impresión. Se expresa en % o en mm. Normalmente se recomienda que la primera capa sea inferior en altura, así se asegura una mejor adhesión a ella. Por defecto para uso normal se puede dejar en 100% o se puede introducir entre un 90%‐100%

Perimeters(mínimum):

En este apartado se configura el número de perímetros que ha de tener la pieza. Hay que tener en cuenta que Slic3r modifica este número a más perímetros si detecta que hacer infill en algunas zonas es difícil. Por defecto se puede dejar perfectamente a 3 perímetros. Si se desea un poco mas de estructura externa de la pieza se puede aumentar a 4.

Randomize starting points:

Esta opción obliga a Slic3r a empezar cada capa en un lado o posición diferente de la pieza. Así se elimina el exceso de rebaba si siempre se empieza en el mismo punto cada capa. Se recomienda su uso.

Generate extra perimeters when needed:

Esta opción permite a Slic3r crear más perímetros en espacios donde hacer relleno o infill es complicado. Se recomienda su uso

Solid Layers(Top/Bottom)

Aquí seleccionamos el número de capas solidas que queremos que nuestra pieza tenga. Si por ejemplo escogemos 3/3, nuestra pieza tendrá al inicio 3 capas solidas i por la parte superior 3 capas solidas. La función de estas capas solidas es dar una base y acabado solido y duro. Si se seleccionan más capas solidas se gastará más material pero nuestra pieza tendrá más robustez y dureza cuando trabaje por las capas inferior y superior.

Print settings-Infill:

Infill tiene su traducción directa al castellano como  “relleno”. En este apartado se trabajan todos los parámetros del relleno de las piezas.

Nombre del parámetro

Función y valor óptimo

Fill density:

En este parámetro tenemos que introducir el % de relleno que deseamos. Para piezas meramente decorativas se puede optar por un 40%(0.4). Para piezas con resistencia mecánica se recomienda un 70% o más(0.6)

Se recomienda trabajar alrededor del 60% para la mayoría de piezas. Hay que tener en cuenta que a menor porcentaje de infill menos material se consumirá y más rápida ira la construcción, a cambio obtendremos menos resistencia y piezas más huecas.

A más % de relleno, mas material se consume y más lenta va la construcción, a cambio obtenemos una pieza mucho mas solida. Datos curiosos: Para hacer piezas completamente huecas utilizaremos un infill del 0%, y para obtener piezas solidas 100%.

Fill pattern:

Aquí se configura el patrón de relleno con el que se desea rellenar toda la pieza a excepción de la capa superior e inferior. Tenemos diferentes maneras de rellenar según la geometría de nuestra pieza. Se recomiendan los infill rectilíneo para piezas normales y concéntrico para geometrías con círculos o circulares.

Top/bottom fill patern:

Aquí se configura el patrón de relleno con el que se desea rellenar la capa superior e inferior.

Tenemos diferentes maneras de rellenar según la geometría de nuestra pieza. Se recomiendan los infill rectilíneo para piezas normales y concéntrico para geometrías con círculos o circulares.

Infill every:

Este parámetro nos define cada cuantas capas es necesario hacer infill. Si seleccionamos 2 tendremos capas de relleno cada

2 capas. Se recomienda altamente el uso de 1 para este parámetro, es decir que cada capa genere relleno.

Solid infill every:

Este parámetro define cada cuantas capas se hace un relleno solido. Se recomienda un 0 para este parámetro si se buscan piezas con resistencia normal o media, y un valor diferente si se desea una resistencia extra. Hay que tener en cuenta que una capa solida consume más material y tiempo que una pieza normal. Si introducimos un 5, cada 5 capas tendremos una solida, tardará un poco más y consumirá más material, pero tendremos más resistencia.

Fill angle:

Aquí podemos configurar el ángulo con el que deseamos obtener el infill. Si introducimos un 45, nuestro patrón de relleno trazará las líneas a 45º. Se puede introducir casi cualquier valor, pero 45º es óptimo para la programación del software.

Solid infill threshold área:

Este parámetro obliga a Slic3r a generar infill solido para aéreas menores del valor especificado. Se recomienda el valor por defecto (70).

Only retract when crossing perimeters:

Esta función, si esta activada, hace la función “retract” del extrusor solo en el momento que dos perímetros se cruzan entre ellos. Por defecto y su valor óptimo es desactivado.

Print settings-Speed:

En este apartado se tratan las velocidades de impresión de todas las partes características de una pieza.

Nombre del parámetro:

Función y valor óptimo:

Perimeters:

Aquí se configura la velocidad de impresión de los perímetros. Para impresiones con acabados buenos se recomiendan velocidades de perímetros alrededor de los 40mm/s. Se puede llegar de forma estable a velocidades de 70mm/s .

Para pruebas de velocidad las maquinas tienen el límite en los 250mm/s

Small perimeters:

Este parámetro solo afecta a perímetros con radios inferiores a 6,5mm. Para estos radios se escogen velocidades más lentas que los perímetros normales. Así se pueden trazar de forma correcta.

De no ser así estos perímetros nunca quedarían bien definidos. Se recomiendan velocidades de alrededor de un 20% más lentas que para los perímetros estándar. Se pueden expresar en %(seria optimo un 80%) o en mm/s que se tiene que calcular. Si se observa que los perímetros pequeños no salen correctamente, reducir la velocidad de los mismos.

External perimeters:

Este parámetro solo afecta a los perímetros más externos de la pieza, es decir, los que nosotros vemos. Se puede modificar dicha velocidad para hacer que vaya más lento y que su acabado visual sea mejor. Se recomienda de un 90% a un 100%

Infill:

Aquí se determina la velocidad de relleno. Para piezas convencionales sin geometrías raras se recomienda un 150% de la velocidad de los perímetros. Para piezas raras o complejas, introducir un 120% o 130% de la velocidad de los perímetros. Se tiene que introducir en mm/s

Solid Infill:

Es la velocidad del infill de las capas solidas. Se recomienda dejar este valor al mismo que el infill normal.

Top solid infill:

Este parámetro hace referencia a la velocidad del infill de la capa superior. Se acostumbra a reducir el valor de la velocidad para obtener un mejor acabado visual de la misma. Se recomienda poner un 10% o un 20% menos que la velocidad del solid infill.

Support material:

Velocidad a la que se imprimen las estructuras del material de soporte. Se puede dejar el valor óptimo, y si se observa que al realizar las estructuras no son óptimas, reducir la velocidad a 40mm/s o 50mm/s.

Bridges:

La velocidad con la que se fabrican los puentes. El software slic3r interpreta los puentes como partes donde debe cerrar o unir dos partes de material separadas por un trozo al aire. Se acostumbra a realizar los puentes a una velocidad rápida para eliminar la posible forma de catenaria del material. Con 70mm/s suele funcionar correctamente. Si se observa falta de material, reducir la velocidad. Si se observa el material en forma de catenaria, aumentar la velocidad. Se recomienda que las geometrías no tengan puentes muy largos ya que si no es inevitable tener la geometría de catenaria. Si se quiere mejorar el acabado de los puentes se puede utilizar un ventilador de capa*( Ver manual : Instalación de un ventilador de capa)

Gap fill:

Parámetro que controla la velocidad de relleno en zonas de pequeño infill. Este infill característico de las zonas pequeñas es característico por crear un zigzag pequeño. Se recomiendan valores bajos dado que a altas velocidades de este parámetro pueden aparecer vibraciones excesivas y resonancias que nos harían perder definición.  Entre 10mm/s y 20mm/s

Travel:

El parámetro de travel nos define la velocidad en vacío de la maquina. Este parámetro se puede aumentar hasta 150mm/s con seguridad. Es la velocidad de traslado cuando la maquina no imprime.

First layer speed:

Este parámetro nos permite definir un % de velocidad para la primera capa. Esto nos ayuda a poder hacer que la primera capa vaya, por ejemplo, un 30% más lenta que de normal. Al ir la capa más lenta, nos aseguramos una adhesión perfecta y un mejor “primer” acabado.  Se recomienda un 50% a un 70%. Si se observa que la primera capa no se pega correctamente a causa de la alta velocidad, reducir hasta un 30%.

Print settings-Skirt and brim:

Cuando empezamos una impresión siempre habremos observado como un  borde alrededor delimitando la zona de impresión parámetro que Slic3r lo conoce como Skirt. Esta delimitación se utiliza para la limpieza de la boquilla antes de la impresión. Más vueltas siempre mejor, dado que estará más limpia la boquilla antes de empezar.

En las nuevas funciones de Slic3r también ha aparecido otro parámetro especial que nos crea un borde extra en las piezas para que no se despeguen. Lo llamamos Brim.

Nombre del parámetro:

Función y valor óptimo:

Loops:

Este parámetro nos configura el número de vueltas alrededor delimitando el área de impresión que se realizaran. Para piezas que ocupen más del  50% de la superficie de impresión se recomiendan 2 vueltas. Para piezas pequeñas este número debe aumentarse considerablemente, alrededor de 4 o 5. A más vueltas, más limpia la boquilla.

Distance from object:

Esto nos defina la distancia o separación del skirt de las piezas de la impresión. El valor de 6mm es óptimo si se modifican el número de vueltas, aumentándolo para piezas pequeñas. Si no se modifican las vueltas, este número ha de aumentarse para piezas pequeñas hasta 12 mm si la base lo permite.

Skirt height:

Esto nos determina la altura del skirt, expresado en número de capas que tiene que tener en altura. Se recomienda que solo realice el skirt en la primera capa, así que dejamos un 1

Minimum extrusión Length:

Este parámetro contrarresta los anteriores. Aquí solo tenemos que definir la cantidad de material que consideramos que debe extruir antes de empezar la pieza en mm y el calcula el numero de loops que debe hacer. Si están los anteriores bien configurados, no se utiliza.

Brim width:

Aquí configuraremos que distancia han de tener los bordes extras del Brim para que obtengamos una adhesión extra. Recordad que estos mini pies después deben ser retirados. Se recomienda de 1mm a 3mm.  Se introduce un 0 si la pieza es plana y su adhesión ya es buena de por sí.

Print settings-Suport material:

Las estructuras de soporte son usadas para  fabricar piezas con voladizos o elementos flotantes que de no ser por estos nunca se podria imprimir. Siempre hay que configurar este parámetro pensando en que posteriormente debe ser retirado mediante un cúter o algún elemento cortante.

Estas son las opciones disponibles:

  • Generate support material: Activando esta opción le permitirá a Slic3r decidir si tiene que hacer soportes o no y donde hacerlos.  Slic3r crea el mismo y calcula dichos soportes. Si tenemos piezas con elementos flotantes o voladizos, se recomienda activarlo. Recomendamos que tenga esta opción activada.
  • Overhang threshold: Este parámetro nos permite configurar a partir de que ángulo de pared Slic3r creará soportes . Aquí se puede definir a partir de cuantos grados queremos que Slic3r cree los soportes. Normalmente funcionara bien con un valor de 45 grados en la mayoría de los casos.
  • Enforce support for the first: Se puede forzar a que se genere material soporte durante las capas que necesitara, independientemente de los ángulos que haga la pieza. Esto es muy útil para piezas que tienen una base muy pequeña o que cuentan con poca estabilidad.
  • Raft layers: El raft es una “cama” de material que se hace para que repose la pieza, normalmente para mejorar la adherencia o para piezas donde la capa inferior no es plana. Aquí puede definir cuantas capas de Raft quiere o necesita hacer.
  • Pattern: Nos permite escoger el patrón de andamio para los soportes. Se recomiendan la nueva generación de estructura de panel de abeja si se requieren crear planos flotantes, dado que es más resistente, pero más difícil de retirar. Sino, como valor correcto como norma general es el rectilíneo.Por tanto en esta opción puede elegir el tipo de estructura de los soportes. Para piezas con puentes grandes o voladizos se recomienda la estructura de panal de abeja porque es mucho más resistente; para las piezas restantes con el relleno rectilíneo es suficiente y más fácil de retirar.
  • Pattern spacing: Aquí se define el espacio entre las líneas de la estructura del soporte, mientras menos distancia más rígido es el soporte pero tendrá más dificultad para retirarlo. Los valores frecuentes son de 2 a 4 mm en función de la pieza.
  • Pattern angle: Permite definir el ángulo de rotación entre las distintas capas horizontales del soporte, es decir define el ángulo con el que quiere realizarse el andamio. Como el soporte lo va a retirar después, no es un parámetro que influya demasiado. Este se puede configurar entre 0 o 45 grados indistintamente. En la mayoría de casos no tiene mucho sentido su modificación, así que se recomienda dejarlo en 0º
  • Interface layers: Aquí puedes definir cómo hacer la unión entre el soporte y la pieza. En este parámetro se definen cuántas capas de unión deseas colocar. Para las piezas en las que quieras un acabado especialmente bueno, puedes escoger unas capas de unión diferentes para poder desprender mucho mejor el soporte de la pieza sin perder acabado superficial.
  • Interface pattern spacing: Aquí puedes marcar la distancia entre las líneas del relleno de esta parte de unión entre la pieza y el relleno.

Print settings-Output options:

La mayoría de los parámetros están en función experimental, y para impresiones cotidianas no tienen utilidad alguna. Para los curiosos, ahí va su explicación.

Nombre del parámetro:

Función y (valor óptimo en fase beta)

Complete individual objects:

Esta opción es una novedad que tiene su sentido teórico pero poca facilidad de aplicación. Nos permite realizar impresiones secuenciales, es decir, imprimir toda una pieza de golpe, después ir a otra pieza y así sucesivamente. La idea es de mejorar la perdida de material si una pieza falla y todas las demás se ven afectadas. El problema aparece en la segunda o n piezas siguientes a la primera: las colisiones con el extrusor en el momento de imprimir la segunda pieza con la primera.

Extruder clearance :

Esto nos permite definir que radio de espacio tiene el extrusor para trabajar en impresión secuencial sin que tenga impactos con otras piezas.

Verbose G‐code:

Si activamos esta opción nos explicara cada paso del g‐code comentado al lado. Esto nos es practico si queremos estudiar cuales son los pasos de la lógica del software, ya que si abrimos el g‐code con el notepad sabremos que significa cada línea.

No se recomienda si se va a imprimir desde tarjeta SD dado que el archivo g‐code ocupara más espacio de lo normal.

Output filename format:

Formato del nombre de los g‐code. Por defecto esta introducido que nos salga con el mismo nombre que el .stl. Recomiendo no cambiar dicha opción, dado que es muy práctica.

Post‐processing scripts:

Totalmente para desarrollo. Nos permite incorporar nuestros scripts para post‐trabajar el gcode.

Print settings-Multiple Extruders:

Trabajar con múltiples cabezales nos puede permitir imprimir en varios colores y con diversos materiales en una sola pieza.

En este apartado se nos permite escoger cada extrusor (en caso de utilizar múltiples cabezales) hará cada parte de la pieza.

Print-Settings -Advanced

El programa Slic3r se estructura en bastantes opciones que tienen que ver el espesor del extrusor, el Overlap , el Flow   así como otras opciones ( XY Size Compensation    y Resolution).

De esta parte solo se puede decir una cosa, cuidado. Son parámetros nuevos y la mayoría en fase bastante verde que no nos aportaran de momento nada nuevo. Se suele  recomendar corregir el parámetro de extrusión width‐ First Layer‐ y ponerlo de 200% a 100%.

 

Ahora vemos otras opciones de Settings-Filaments

 

Filament Settings:

Aquí introduciremos los parámetros del material que utilizamos. La mayoría se configuran con el wizard inicial, pero por si no lo has seguido puedes volver a configurarlo por aquí. Filament:

Nombre del parámetro:

Función y valor óptimo:

Diameter:

Se debe introducir el diámetro de nuestro material. Si se observa que no saca suficiente material en el momento de la impresión debemos observar que realmente hemos puesto bien este valor, y en su defecto corregir o poner un diámetro más pequeño. Para los materiales de 3mm de RepRapBCN se encuentra como óptimo 2.93mm

Extrusion multiplier:

El ratio de vueltas que da el engranaje pequeño del motor respecto el grande. Este parámetro está definido ya en el firmware de la maquina, así que nunca se debe modificar por Slic3r: Dejar el valor en 1.

Extruder (Temperature)

Nos permite escoger la temperatura de fusión del material y a la cual fijaremos nuestro extrusor. Se recomienda ir al apartado 6 de Configuración inicial de este manual. Para el valor de primera capa utilizar el mismo valor que en el resto.

Bed(Temperature)

En este apartado se define la temperatura de la base. Para su valor óptimo mirar punto 7 de configuración inicial de este manual. Se recomienda siempre la 1 capa subir 5 grados del resto de las capas.

Cooling:

En este apartado se deben incluir los parámetros para el ventilador de capa que se sitúa en el carro del extrusor y dirige aire a la capa y la pieza. Así se consigue que la pieza se solidifique antes y, al hacer una capa superior, no haya errores de que la capa inferior no esté dura.

Debe estar marcado el enable cooling, aunque no tengamos ventilador instalado para que funcionen los parámetros indicados más abajo.

Así, de este apartado solo comentar que, independientemente de tener ventilador o no, podemos configurar:

Nombre del parámetro:

Función y valor óptimo.

Slow down if layer print is below :

Su función es disminuir la velocidad en la impresión de la capa si el tiempo de impresión de esta es menor del tiempo indicado. Esta función es muy útil si tenemos piezas muy pequeñas o cúpulas. Se recomienda un valor de 5 segundos.

Min print speed:

Velocidad mínima de impresión. Juntamente con el parámetro superior, cuando la capa es más rápida que el tiempo indicado, se reduce a la velocidad indicada aquí. El valor de

10mm/s es correcto.

Printer settings:

Aquí se definen la mayoría de parámetros característicos de la maquina.

General:

Parámetros del tamaño de la base y firmware.

Nombre del parámetro:

Función y valor óptimo

Bed Size:

Definimos el tamaño de la cama o base. Este parámetro ya ha sido definido en el configuration wizard, para las maquinas PRUSA 3D y BCN 3D es 200x200mm

Print center:

Aquí escogemos donde centraremos la impresión. Por defecto y como óptimo es una impresión centrada en la base, por lo tanto 100x100mm

Z offset

Este parámetro nos define la altura inicial que tiene la impresión. Si la máquina está bien calibrada a 1 decima el extrusor de la base este parámetro tiene que ser 0. Si por ejemplo observamos que la impresión sale muy levantada de la base, este parámetro nos permitirá definir un Z origen más bajo.

G‐code flavor:

Seleccionamos nuestro firmware.  Para  las impresoras de RepRapBCN es Marlin.

Use relative distances:

Siempre tener la opción desactivada.

Extruders

Definimos el numero de cabezales que tiene nuestra maquina. Por defecto será 1.

Custom G­code:

En esta parte no hay parámetros propiamente dichos. Aquí se pueden configurar g‐codes para que se ejecutan al inicio de la impresión y al final de la misma. Se ha añadido el código que se apague el bed al finalizar la impresión: Simplemente se trata de tener lo mismo que hay en pantalla.

Extruder 1:

Aquí se definen parámetros de los extrusores. Como se ha introducido que solo tenemos un extrusor, solo nos aparecen valores para un solo extrusor.

Nombre del parámetro:

Función y valor óptimo:

Nozzle diameter:

El diámetro del agujero de nuestra boquilla. Para el Greg’s Extruder, Miniextruder o hotend V5 el agujero es de 0,5mm

Extruder offset:

Solo si tenemos un doble extrusor o mas cabezales. Se tratará con más detalle en el futuro manual del doble extrusor.

Length(Retract):

Este parámetro hace referencia a la cantidad de material que el extrusor tira hacia atrás cuando el mismo pasa de imprimir a dejar de imprimir y moverse. Para el Greg’s Extruder este parámetro es 2mm.

Lift Z:

Aquí introducimos la altura que sube el extrusor cuando cambia de pieza que está imprimiendo. Para piezas con una pequeña base o muy altas o con mucho detalle se recomienda usar 0,3mm. Para impresiones normales 0,2 o 0,15mm es óptimo.

Speed:

Velocidad a la que el extrusor hace el retract del material. Se recomienda un valor alto para hacer el vacio de la boquilla rápido y limpio. Una velocidad entre 30mm/s y 50mm/s es correcta.

Extra Length on restart:

Dejar este parámetro siempre a 0. Nos indica la cantidad de material que el extrusor debe tirar de nuevo cuando cambia de pieza y hace retract. Este parámetro no funciona bien y acostumbra a sacar excesivo material al nuevo inicio. Dejar en 0 .

Minimum travel after retraction:

Este parámetro nos indica el recorrido mínimo que el extrusor tiene que hacer para detectar que tiene que hacer todas las funciones comentadas anteriormente o hacer un retract en términos técnicos.  Si por ejemplo introducimos 5mm, si el extrusor debe desplazarse 6mm hará retract y si debe desplazarse 4 no hará

nada diferente. Es recomendable situar este parámetro entre 5 y 7 mm

Length2

Parámetro solo utilizado en doble extrusor. Más detalle en el futuro manual de doble extrusor.

Extra length2

Parámetro solo utilizado en doble extrusor. Más detalle en el futuro manual de doble extrusor.

Guardar y cargar configuraciones:

Una vez realizada una configuración, estas se pueden guardar para volverlas a utilizar en un futuro.

La forma más sencilla de hacerlo es dirigiéndonos al menú file‐export config. Ahora la guardamos y le ponemos un nombre que nos sirva para identificarla en un futuro y nos pueda servir para más piezas.

Para cargar una configuración ya guardada anteriormente, menú file‐import config.

Finalizar la creación del g­code:

Una vez ya definidos todos los parámetros, cargado la pieza .stl y ajustado todo lo necesario, solo nos queda darle en la pestaña plater‐ export g‐code y esperar a la creación del código.

Ejemplo  de uso

  • Identifique  el modelo de impresora a usar. Algunas empresas proveen los perfiles de impresión recomendados para iniciar en Slic3r de sus modelos de impresoras, las cuales son descargables en línea. Esta opción facilita las cosas, pero siempre tendrá que ajustar parámetros de acuerdo a cada caso. Si los fabricantes de su impresora no brindan esta opción, se puede comenzar con la configuración inicial provista en el manual de Slic3r y luego probar con los diferentes parámetros hasta llegar a su configuración ideal.
  • Añada el archivo de configuración recomendada para Slic3r de su impresora  en “File / Load Config”. Normalmente vienen en 3 tipos: alta, media y baja: esto se refiere a la calidad de la impresión.Si su impresora no posee perfiles de impresión para Slic3r, entonces procede a configurar los parámetros estándar de acuerdo al manual.
  • Desde la pestaña “Plater” pulsa en “Add”  y elija el archivo (.stl * .obj, * .amf * .pov) a importar o arrastra el archivo a la base de impresión. Una vez importado verás la proyección 3D sobre la base.
  • Modifique los parámetros para definir cuántas copias del modelo deseas imprimir a la vez o añade otros archivos para imprimir diferentes objetos en 3D a la vez.
  • Cuando las piezas tengan la posición deseada pulsa en “Export G-Code…”. Escojae el nombre del archivo y listo. Ya tendrá un archivo G-Code correctamente configurado y listo para enviarlo a la impresora 3D.

Cómo construir un banco de energía con supercondensadores.

Para ensamblar supercondensadores de forma segura veremos cómo conectar supercondensadores en serie y en paralelo para hacer un banco de energía de forma segura con placas para proteger los supercondensador es de daños por sobretensión.


Recientemente se ha introducido en el mercado los “supercondensadores” o lo que es lo mismo condensadores de gran capacidad pero que mantienen prácticamente el mismo factor de forma que los condensadores electrolíticos que estamos acostumbrados a usar en electronica . 

Un aspecto muy diferenciador  de esta nueva tecnología  es que gracias a esta se puede  almacenar energía sin reacciones químicas , lo cual permite que los súpercondensadores se carguen y descarguen mucho más rápido que las baterías y debido a ello  no sufren el desgaste causado por las reacciones químicas, también durando mucho más tiempo (como sabemos a diferencia de los condensadores ordinarios, las baterías almacenan energía en una reacción química, y debido a esto, los iones se insertan realmente en la estructura atómica de un electrodo : a diferencia de un condensador, los iones simplemente “se adhieren”.)

Normalmente si  descargamos nuestra batería del coche a menudo e intentamos arrancar nuestro coche una vez más ,esto  causará más daño a la batería del coche y eventualmente  no cargará de nuevo , hasta que llegue un tiempo rodando otra vez. Sin embargo esto no es cierto para los super-condensadores: por ejemplo un condensador tradicional del tamaño de una batería de célula 18650  , tiene una capacidad de aproximadamente 20 microfaradios, pero si tomamos un supercondensador  de tamaño similar, este  puede llegar a tener una capacidad de 300 Farads lo que  significa que para la misma tensión, el supercondensador  podría en teoría almacenar hasta 15 millones de veces más energía.

 A pesar  del gran avance ,sin embargo no todo son ventajas en los condensadores pues un condensador típico de 20 microfaradios sería capaz de manejar hasta 300 voltios, mientras que un ultracondensador solo puede llegar  a soportar  2,7 voltios, lo cual significa que  si se usa un voltaje más alto, el electrolito dentro del supercondensador comienza a descomponerse  y podría por tanto llegar a destruirse: por este motivo en realidad un super-condensador tiene la capacidad de almacenar alrededor de 1.500 veces la energía de un condensador de tamaño similar.

Por todo esto los supercondensadores  aunque  el campo de aplicación es muy grande : alimentación de emergencia ideal para CMOS, RAM, VCR, radio, televisión, teléfono, instrumentos inteligentes, datos de conducción, tres ICs, relojes electrónicos, linternas LED, dispositivos inteligentes, motores de juguetes, pantalla DC, USV industrial, válvula magnética, IC, reflectores LED, etc.    deberíamos  tenemos  tener en cuenta algunas consideraciones ya comentadas antes de proceder a  usarlos.

Preparación de un supercondensador

Como hemos ya comentado los supercondensadores deben  ser cargados SIEMPRE con circuitos de carga balanceadas pues sin estos corremos el riesgo de destruirlos .No obstante si piensa que son complejos no es así puesto que  estos, circuitos son asequibles de bajo costo  , sencillos ( en realidad hablamos de  un simple circuito de conmutación que no deja pasar la tensión de carga al condensador por encima del umbral )  y  son  muy fáciles de instalar pues van encima de cada condensador ya que están diseñadas con la misma forma para colocar estos justo encima y dar continuidad eléctrica ( y carga ) al conjunto

Por ejemplo si conectamos 5 supercondensadores en serie a 12v  el  voltaje no se dividirá por igual entre los diferentes terminales de los condensadores (2.2V),lo cual ya no está dando una pista de sus limitaciones especialmente a la hora de cargarlos puesto que en caso de asociación serie ,  hasta que cada supercondensador esté completamente cargado,  el voltaje en los extremos de cada condensador subirá y bajará casi como en vumetro de leds precisamente :es precisamente esta la razón  por la que  debemos usar un circuito de protección que proteja los condensadores labor que realizan las placas balanceadoras las cuales mantiene el voltaje entre los condensadores entre 2.7V o menos , es decir los mantiene en  la zona segura de funcionamiento segura cortando la tensión de carga cuando se supera ese valor protegiendo así de este modo al supercondensador

Estas placas por tanto nos descargan de un  trabajo tedioso  pues para cargar un simple condensador de 2.7V 500F   con 2.4 v de forma segura sin usar una placa balanceadora deberíamos conectar un voltímetro y un amperímetro simultáneamente durante unos 30 minutos para llegar casi a los 2V con una intensidad de unos 0.19Amp controlando en cada  momento que no se supere  el umbral . Una vez cargado aunque baje la tensión estos se comportan manteniendo la corriente casi invariable

 

Vamos a ver como calcular la capacidad  resultante de la asociación mas tipica de 5 supercondensadores  

  • En el caso de dos condensadores serie sabemos que esta es la capacidad resultante  es  1/c= 1/c1+ 1/c2

Por tanto la capacidad resultante será : 1/Cfinal= 1/500+ 1/500  =>  Cfinal =250F  

Asimismo  las tensión final es el sumatorio de las parciales:V=V1+v2

Es decir  V= 2.7 +2.7 =5.4V                                                                                                                                                                                                                          

  • En el caso de  tres  condensadores serie sabemos que esta es la capacidad resultante  es

      1/c=1/c1+1/c2+1/c3    lo que da  Cfinal=  166.67F

        Asimismo  las tensión final es el sumatorio de las parciales:    3x 2.7V 500F =8.1v                                                                                                                                                                                                                                                                                      

  • En el caso de cuatro condensadores serie  1/c=1/c1+1/c2+1/c3 +1/c4

Por tanto la capacidad resultante será Cfinal=125F

Asimismo  las tensión final es el sumatorio de las parciales:4 x 2.7V 500F =10.8V                                                                                                                                                                                         

  • Finalmente en el caso de cinco condensadores serie 1/c=1/c1+1/c2+1/c3 +1/c4+1/c5

Por tanto la capacidad resultante será Cfinal=100F

Asimismo  las tensión final es el sumatorio de las parciales  5* 2.7V 500F =13.5V , que es justo el valor que queremos llegar        

 

 

 

 

 

Calculo final

En el calculo anterior de  5 supercondensadores serie  obtuvimos  una tensión útil de 13.5V d3l conjunto   pero con una capacidad final  muy mermada de 100F  así que para aumentarla  si tomamos dos agrupaciones de 5  condensadores en serie  en  paralelo la  capacidad aumentará manteniéndose la tensión final;

 

 

La  capacidad  de este conjunto  aumenta justo el doble tal y como nos dicen los cálculos

          1/cfinal= 1/c1+1/c2+1/c3 +1/c4+1/c5 + 1/c6+1/c7+1/c8 +1/c9+1/c10  =>

         1/cfinal= 1/500+1/500+1/500 +1/500+1/500 + 1/500+1/500+1/500 +1/500+1/500 =>

          cfinal=200F  

Asimismo  las tensión final es el sumatorio de las parciales de una agrupación al estar ambas en paralelo

Es decir  V= 10 x 2.7V = 13.5V

En resumen    tenemos  con ambas agrupaciones  un supercondensador equivalente   de 3.5V 200F

 

Como C=As/V ( AS=Amperios por segundo) , entonces AS=C+V,

 AS= 200F x 13.5V =2700 Amp/seg   

Vemos   que para nuestra agrupación  serie y paralelo de 10 supercondensadores  obtenemos pues  una capacidad en AS  de 2700 Amp/seg

 

Por otro lado como la capacidad de un acumlador normalmente se mide en  unidades  de tiempo (AH= Amperios hora)  como AH =AS/3600s

C (en Amphora) =2700 (enAmp/seg)   /3600= 0.75Ah

Vemos   que para nuestra agrupación de 10 supercondensadores  una capacidad en AH de 0.75AH  que sería la capacidad de esta agrupación , lo cual  nos hace ver en números  que con estas agrupaciones siguiendo estas fórmulas ya comentadas  necesitamos bastantes elementos (  por ejemplo  para obtener un powerbank de 15AH necesitaríamos  unos 200 supercondensadores de 2.7V 500nf)

Una vez hecho los cálculos  llega el momento de construir el  banco de supercondensadores , para  lo cual lo primero es soldar los condensadores a las placas de  protección respetando escrupulosamente la  polaridad  .

Ya montados los módulos de condensador con las placas toca interconectar estos   para obtener  los 0.75AH    . Debemos   tener en cuenta ,dada la corriente que debe pasar por estos cables  que deberemos hacer   la interconexión   con cables  de cobre   de cierto espesor . En este sentido como un cable de 1.1mm soporta  unos 99 Amp en alterna  lo ideal es usar varios cable juntos para que no haya problemas   de calentamiento de estos

Este es el resultado final del montaje

 

 

Medición  de corriente  y tensión de carga

La mejor manera de monitorear la carga de  un acumulador o una  la agrupación de supercondensadores es usar  un medidor multifuncional de panel , pero !atención !  , porque este debe ser especial  para  corriente continua, lo cual será claramente evidente cuando  sea necesario un shut  que deberemos conectar en serie con la carga  (en nuestro caso el banco de supercondensadores)

Normalmente en estos medidores  el shunt se conecta  en  el polo negativo en serie con la carga   en el que precisamente  en ambos extremos  conectaremos  los hilos de medición  siguiendo el esquema siguiente 

Este tipo de multímetros  DC 4 en 1  suelen tener  una precisión de medición de grado 1.0, combinando  la medición de voltaje, corriente, potencia y energía en un combo, súper compacto y liviano que puede ser portátil y fácil de usar.   También  suelen  tener una  función de alarma mostrando el voltaje parpadeando  la luz de fondo  simultáneamente si el voltaje va más allá del umbral de alarma   que se puede establecer si es necesario( el rango va desde   6 a los 90v ).

Además estos instrumentos almacenan automáticamente los datos de  la última prueba de modo que  cuando se  apagan  el valor energético se puede restablecer por una pulsación corta el botón de función en segundos.

En  concreto este medidor, puede medir voltios, amperios, vatios y energía individualmente contando con un shunt de 100 A / 75 mV, adecuada para mediciones de gran alcance . Cuenta  con una pantalla Digital Súper Grande de  51x30mm de  LCD azul para mostrar la tensión, corriente, potencia y la energía.  Con este medidor, puede medir voltaje 6.5V – 100V DC, amperios 0.0A – 100A y vatios 0.0w – 10Kw.

 

 

Si tiene dudas sobre su uso en este video podemos ver el medidor   en funcionamiento  usando precisamente  est  para monitorizar la carga de nuestro conjunto de 10 supercondensadores

 

Conclusión 

Realmente ya hemos visto como montar  los supercondensadores  para fabricar  un banco de energía de supercondensadores  para uso doméstico utilizando  placas de protección  para ensamblar los condensadores   de 2.7V 500F  montados en una combinación mixta de serie y en paralelo de forma segura.

El valor total de la capacidad de los  10 supercaps resultante de es  de 13.5V ,como hemos calculado es de 200F  que traducido a Ampx hora es de  0.75AH .siendo e tiempo de carga promedio para este paquete de unos 8 minutos  utilizando un  cargador lento  comercial  tradicional  de  batería del automóvil.

No nos cansaremos de repetir que las placas de carga son imprescindibles  porque  protegen los condensadores de daños por sobretensión.

 

Finalmente  en este video podemos ver el montaje de este conjunto   y su utilización practica

 

 

 

Sencillo soldador de puntos

Veremos como realizar un soldador de punto de un modo seguro usando una bateria de automovil


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues está muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ). Además  hay tambien un motivo obvio : si no contamos con un  horno microondas¿  vamos a tener que comprar un transformador de microondas  ( nuevo o no)   y que tendremos que desmontar?

 

 

Bien  en un  post  anterior vimos como una alternativa  a  los soldadores de punto basados en transformadores  de microondas era  usar supercondensadores  , pero   son caros  y dificiles de conseguir , así que es bueno explorar otras alternativas como  pueden ser las  baterias de automovil ( nueva  o usada ) como fuente de energía

Como parte de un proyecto de dotar de un nueva  batería  de litio  a un precio razonable   basada  en celdas 18650  para una bicicleta de montaña eléctrica  el autor de este proyecto (Rory ) necesitaba una gran batería de litio  que encajasen  en su presupuesto según sus  especificaciones:

  • Barato: solo se planea si es a bajo  coste
  • Confiable : deberia  poder ofrecer  más de 500 pares de soldaduras por puntos para hacer
  • Fácil y rápido de hacer -:idealmente usando piezas que se pueda  disponer r
  • Relativamente seguro: No hay altos voltajes presentes

Rory necesitaba ser capaz de soldar la tira de níquel a los terminales celulares 18650 para fabricar   su soldador ocasional  .   Los soldadores  18650  de punto están ampliamente disponibles en la red y probablemente valga la pena la inversión si usted tiene la demanda para ello. Sin embargo, como Rory sólo planeaba construir una batería, realizó su propio soldador de puntos  sin tener que adquirir uno comercial.

Para situarnos ,una búsqueda rápida de YouTube nos ofrece  el canal de darkkevind  donde demuestra su soldador basado  en  una batería de coche estándar conectada a un solenoide motor de arranque de moto. El solenoide se activa mediante un pulsador que cambia la potencia a dos electrodos de soldadura hechos de clavos de cobre. Su diseño es funcional  pero como todo en este mundo  se puede mejorar para  hacer un sistema más confiable  como el que vamos a ver en las líneas siguiente con el diseño de Rory.

 

 

Soldador con bateria de 12V 

El diseño de Rory  cuenta con un solenoide de arranque DELCO 130493  como  interruptor   de potencia para conectar  momentáneamente las bornas de la batería a las puntas de soldadura .Como el lector puede adivinar  en realidad   para este proyecto en realidad   puede usar   cualquier solenoide de motor de arranque de 12V  ( incluso aunque sea para motocicleta) .

En este modelo en concreto es  muy interesante   el diseño de los terminales que pueden  ser vinculados muy bien a una abrazadera de terminal directamente a la batería y además el soporte también permite montar el gabinete de electrónica junto a este  .

Como puede apreciarse en la imagen los terminales laterales  son los de interruptor del relé, es decir las conexiones de potencia que conmutará el solenoide  .Obviamente do las  conexiones centrales  son las de la bobina del solenoide ( de ahí su menor dimensión) 

 

Como se puede apreciar los pernos de terminales solenoide de 8 mm se sujetan muy bien en los terminales de la batería y la bobina solenoide está entre el perno pequeño en el soporte derecho y el soporte de montaje

En el  montaje del Rory el  solenoide es controlado por un circuito de temporizador construido alrededor del multivibrador monoestable dual de precisión  CD14538BE  de Texas Instrument que funciona en modo “no refrigerable”. 

Como rory no ha compartido la configuración del circuito  vemos   abajo  un multivibrador monoestable usando IC CD4538. Es un IC multivibrador monoestable/aestable de precisión libre de activación falsa. Esto se puede utilizar para varias aplicaciones en las que se requiere un ciclo de sincronización preciso.  CD4538 es el IC multivibrador monoestable/estable de precisión que está libre de activación falsa y es más fiable que el popular temporizador IC 555.

Aquí el IC se conecta como temporizador monoestable de corta duración usando el r1 y el C1 como componentes de sincronización. Con los valores dados, la salida de IC1 permanece baja durante tres minutos. Cambiando el valor de C1 o R1 se pueden obtener varios intervalos de tiempo, que  son los valores   que deberemos ajustar para unos 20ms   ( idealmente 10 y 110 ms a través de un potenciómetro) .

A diferencia de 555 IC en el modo monoestable, aquí en CD4530, la salida de IC se vuelve alta en el encendido y se vuelve baja cuando el pin 5 del gatillo consigue un pulso de transición bajo a alto. Cuando se presiona S1, el pulso de alta marcha activa el IC y su salida baja. Esto impulsa la carga a través del transistor PNP T1. La carga puede ser un LED, zumbador, etc.  Lógicamente para cargas más grandes ( como es en este ejemplo) no basta un simple transistor de pequeña  potencia( como en el esquem  de abajo)  pues la bobina solenoide deberia ser  accionada con un transistor de potencia  como por ejemplo  un mosfet FQP30N06L. 

En la solución final basada en el circuito anterior  y que el autor no ha compartido , además   usa algunos  componentes  pasivos adicionales para eliminar el rebote de un interruptor de pie básico . La bobina solenoide es accionada por un mosfet FQP30N06L  ( con su correspondiente diodo en paralelo)  . Además  el temporizador es ajustable entre 10 y 110 ms a través de un potenciómetro estando el circuito  alimentado por una batería separada de 9V aunque podría ser alimentado por la propia  batería del coche con el desacoplamiento adecuado.

De todos modos aunque no sepamos los valores exactos del esquema  del monoestable  que uso Roru ,    este montaje   se puede comprar ya montado  y probado  (buscar 12v DC Delay Relay Timer) por unos 6€  , lo  cual es importante no sustituye  al delco puesto qeu lso contactos del rele   de este tipo de circuitos  no supera 10A con 220V en ac (2200w) , claramente insuficiente para la corriente de soldadura que sera a 12V pero en CC  

A pesar de la conmutación lenta del solenoide, los contactos permanecerán cerrados durante la misma duración que la corriente que se suministró a la bobina. En este caso  el solenoide tarda alrededor de 5 ms para cerrarse, pero el diodo a través de la bobina mantiene el campo magnético activo, permitiendo   enviar  pulsos precisos en el ajuste mínimo de 10 ms del temporizador

Todo esto está montado en una carcasa de aluminio fundido a presión. Tenga en cuenta que la bobina solenoide está conectada entre el terminal de tornillo ‘S’ y el soporte de montaje. El terminal ‘I’ es el contacto NC del solenoide, no una conexión de bobina…

Otros aspectos interesantes constructivos  es  que los electrodos se fabrican utilizando clavos de cobre soldados a longitudes cortas de cable trenzado de 8 awg. Las uñas de cobre se pueden afilar rápidamente utilizando un archivo, por lo tanto, no requieren que sean reemplazables. Unas pocas capas de termorretráctil proporcionan aislamiento térmico y eléctrico.

 

 

Como en las primeras pruebas se hicieron con una batería nueva y la resistencia interna es muy baja, el  resultado fueron  pulsos de corriente muy altos que destruyen las tiras de níquel si el pulso superaba los 20 ms ,  Rory  experimentó con una “resistencia limitante de corriente” formada por una longitud de alambre de relleno de soldadura TIG de 1,6 mm lo cual le  permitia ejecutar pulsos de soldadura de corriente más baja y así encontró que el resultado era una soldadura mucho más fuerte con  un pulso de corriente más corto (  usó un conductor con una longitud aproximada de 50 cm).

Como después del primer pulso la resistencia estaba muy caliente, aumentando la resistencia lo que  hizo que el rendimiento no fuese fiable en las siguientes soldaduras   la solución fue sumergir el cable en agua  mediante un buen vaso de plástico Ikea ( con una base muy gruesa y algunos pernos M8 que aseguraron todo juntos y mantuvieron el agua dentro).

 

 

 

Cabe señalar algunos puntos interesantes de este montaje:

  • Un pulso de alrededor de 40ms produce las mejores soldaduras con esta  configuración. Arrancar la tira de níquel de la 18650 dejaría la parte soldada todavía unida a la batería rasgando el níquel circundante.
  • La batería del coche debe estar conectada a un cargador durante el uso si se hace una gran cantidad de soldaduras. De lo contrario, el voltaje caerá, causando corriente de soldadura poco fiable. Puede usarse  un cargador de corriente constante 5A que se puede dejar conectado durante la soldadura aunque aunque un cargador de 2A más o menos estaría bien.
  • Se requiere una presión uniforme firme en cada electrodo para hacer que cada soldadura por puntos sea de igual resistencia. Los electrodos de soldadura se calientan mucho lo cual debe tener en cuenta para no quemarse .
  • A medida que el agua que enfría la resistencia se calienta hacia su punto de ebullición, no puede eliminar el calor tan rápidamente de la resistencia debido al efecto Leidenfrost (donde las burbujas de vapor aíslan el alambre). Esto permite que la resistencia funcione más caliente, lo que reduce la corriente de soldadura. Suba  el temporizador de pulso a 50mS en este punto. El agua podría ser reemplazada, o un recipiente más grande utilizado para contener el agua de refrigeración.
  • Relativamente el proyecto es  seguro ,aunque es recomendable usar gafas de seguridad debido a las chispas  ocasionales. Guantes también sería una buena idea, así como trabajar fuera lejos de cualquier cosa inflamable.

 

 

Fuente original en  hackaday.io 

Software gratuito para diseño de cocinas

Como todos sabemos hay un montón de variables a tener en cuenta a la hora de planificar una cocina, pero afortunadamente el software nos ayuda a superarlo muy bien como podemos ver en este post.


Nunca es divertido pasar por una renovación de cocina, pero si lo pensamos sobre el papel ( o mejor desde el ordenador ) ,  seguro que es divertido planear y diseñar una cocina gracias al  software de diseño de cocinas  donde se puede fácilmente planear y diseñar su nueva cocina por su cuenta, sin descuidar por cierto   ningún aspecto de una casa como por ejemplo  el tipo de suelo, el color de las paredes o la iluminación o incluso elementso de decoración.

Dado que la cocina es uno de los espacios más utilizadas en una casa, es importante una planificación cuidadosa por lo que previsualizar  en una vista 3d   nos puede ser muy útil a la hora de acometer  futuros trabajos   siendo un gran punto de partida, especialmente si se vamos a contratar  un especialista o un fabricante de cocinas pues se puede facilitar  para que tengan algo con lo que trabajar.( y por supuesto si vamos a auto-construir nuestra propia cocina, donde tener un plan se convierte  en una necesidad).

 

Es ovbio  que el uso del increíble software actual (especialmente las versiones 3D) , el cual no necesariaemnte  tiene qeu  ser profesional  ni de pago nos va  a  permitir visualizar nuestra futura  cocina mucho mejor que un simple dibujo 2D en blanco y negro, pero  tampoco debemos desdeñar los nueceros  recursos que hay en la red como por ejemplo otras cocinas diseñadas por millones de personas a lo largo  del mundo , las cuales suelen mostrarla en pinterest .

 

Un primer  consejo sobre el software de diseño de cocinas pues pude ser empezar por mirar las miles de  imágenes de la cocina que hay  por la red , y una vez que encuentre un diseño de cocina que le guste , trabaje a partir de eso con un software  especifico pues asombrosamente, existen  opciones libres de la herramienta del diseño de la cocina en línea.

 

A continuación vamos   a ver  muestra nuestra de  lista de opciones de software de diseño gratuito que incluyen el diseño de la cocina.

 

Sw de Leroy Merlin

Comenzamos nuestra revisión y lista de las mejores opciones de software de diseño de cocina con opciones gratuitas. Gratis es genial y francamente, sorprende el nivel de calidad y características que algunas de las opciones gratuitas incluyen.

En el caso del sw de  Leroy  Merlon  ofrece no solo el diseñador  ,  planificador , presupuestador ( lógicamente basados en los modelos que disponen )  y una vista 3d , sino también un interesante asistente automático   que en función de la forma de la planta de la cocina nos  ofrece opciones automáticas para completar nuestra cocina simplemente con un click ,lo cual nos va facilitar bastante las cosas

Para empezar , podemos acceder al sw de diseño de cocinas en linea  gratuito  en http://www.leroymerlin.es/productos/cocinas/planificador-de-cocinas-3d  

Una vez  completado el  registro ( es gratuito y solo piden un email), tendremos que descargar el sw,

Ya validado  en la url , nos muestran  varias propuestas para que elijamos nuestro look  cocina ideal que se ajusta a nuestras  necesidades  o  gustos que se identifica con nuestro u estilo  que puede ya se haya  imaginado o haya visto en la red.

Elegido el modelo de cocina nos tocar dibujar, por lo que para empezar el nuevo proyecto debemos  añadir las medidas de la cocina, las puertas, ventanas y los elementos técnicos  de la forma mas precisa posible , pues este paso es fundamental para que el diseño final pueda ser tangible  de un modo realista.

Creada la planta  toca la  fase de diseño, donde aquí destacamos que para crear su cocina de forma muy sencilla podemos usar  al asistente virtual, el cual  ofrecerá propuestas automáticas que pueden  ajustarse a sus necesidades .No obstante si lo prefieres, también puedes diseñar su proyecto desde cero de forma manual.

 

Para poder retomar y hacer cambios en el diseño podemos  y debemos guardar nuestro boceto ( no hay limite en cuanto al numero de  proyectos )  y de esta forma podrá acceder a ellos en cualquier momento para revisarlos, modificarlos o añadir elementos de decoración.

 

 

 

Sw de IKEA

El Planificador de Cocinas 3D de IKEA es ideal si va a comprar una cocina IKEA  pues al contrario de lo que sucede con el sw de leroy Merlin en el caso de Ikea sus módulos no siempre atienden a medidas estandard aunque a  cambio una cualidad de  las cocinas IKEA es que se suelen tener un aspecto moderno ofreciendo durabilidad y calidad   sin sacrificar el costo 

La decisión de comprar una cocina IKEA suele  reducirsea los principales factores: precio, diseño y flexibilidad.

  1. Precio: IKEA ha creado un monopolio en lo que respecta a la economía de escala para muebles para el hogar. Gracuias  a su diemnsion  IKEA  tiene un increíble poder de fijación de precios para crear excelentes productos a precios increíbles.Sucede que uno de estos excelentes productos es su línea completa de gabinetes SEKTION.
  2. Diseño : Hay otros sistemas de gabinetes producidos en masa disponibles en lugares como Home Depot o Lowes, pero simplemente no sostienen una vela en los gabinetes de IKEA. Los gabinetes IKEA son completamente modulares y con un poco de pensamiento creativo es sorprendente lo adaptables que realmente son cuando se trata de diseño.
  3. Flexibilidad : , los gabinetes IKEA se pueden instalar de muchas maneras diferentes, lo que le brinda un increíble nivel de flexibilidad para un sistema de gabinete listo para usar. Esto también significa que si se cansa de las puertas de su gabinete en 10 años, o se arruina uno de los frentes de los cajones, es fácil cambiarlos por otros nuevos.

La clave de estos factores es que no es necesario sacrificarse por uno para obtener los otros pues se  suelen obtener  diseños flexibles a precios fantásticos.

Para empezar , podemos acceder al sw de diseño de cocinas en linea  gratuito  en IKEA 3D Kitchen Planner

 

 

 

El software de planificación de cocina IKEA comienza haciendo que dibuje su  espacio con las proporciones correctas lo que  le permite diseñar su espacio a escala. El software le permite agregar y eliminar gabinetes, cambiar frentes de puertas, agregar encimeras, cambiar hardware de puertas, agregar iluminación e incluso agregar electrodomésticos. 

Luego, cuando esté listo, active el modo 3D para ver cómo su diseño cobra vida. Todo esto suena genial, pero también induce dolor de cabeza. Algo tan simple como mover objetos por la habitación puede causar accidentes, por lo tanto, guarde con frecuencia.Incluso los muros tienden a moverse a voluntad.

Al final, el software le proporciona una lista de compras para todo lo que necesita para construir su cocina en la vida real.

El software de cocina de IKEA da como resultado una relación de amor y odio. Le permitirá visualizar su cocina antes de comprar cualquier cosa y le dará una lista de compras que le ayudará con el presupuesto. 

 

 

Otros  programas de diseños de cocina

 

Sin duda los dos programas anotados son delos mas usados , pero a continuación  veamos algunos  otros programas que son realmente “freemium”, lo que significa que obtiene acceso gratuito a las funciones básicas, pero tiene la opción de pagar por las funciones premium.

 

Stratosphere’s

En realidad, esta plataforma diseña todas las habitaciones de la casa  ,lo cual significa que  también  tiene algunas características  para diseñar una cocina agradable  en consonancia con el resto de su hogar.

Se accede  en esta url:  Software de Diseño de Interiores

 

Este sw  está completamente disponible en línea y  también tiene  algunas características premium.

Por último, si estás en un dispositivo móvil, asegúrese de hacer clic en la versión para móviles , pero debe saber que es bastante difícil usar software de diseño en un teléfono (las tabletas están bien pero los  ordenadores portátiles o de escritorio son las mejores).

 

Backsplash and Cabinet Design Software

Esta es una oferta única en el sentido de que se centra en el diseño de salpicaderos y armarios siendo muy fácil de usar para probar patrones de salpicaduras, colores de gabinetes y diseños de encimeras entre sí.

Es totalmente gratis (ofrecido por un minorista de backsplash así que esperan que,  como el resto de sw  presentado en este post,   compremos sus productos ).

Se accede  en esta url: Backsplash and Cabinet Design Software

 

Este es software libre (no es barato desarrollar y proporcionar software en línea) por lo que los gráficos no son tan nítidos como los proveedores de software premium, pero es una gran plataforma para jugar con varios diseños, para hacerse una idea de algunos colores, materiales y formas básicos del backsplash.

 

Homestyler

Homestyler es una opción de software de diseño de interiores en línea muy popular (en gran parte porque es gratuito y ofrece salida en 3D).

Este programa en particular ofrece  módulos de cocina.

Se accede  en esta url: Homestyler

Se empieza  con la planificación del diseño y la planta .A partir de ahí, usted elige el módulo de cocina para que pueda introducir los elementos específicos, tales como armarios, encimeras, fregaderos, electrodomésticos, etc.

Otra característica interesante es que ofrece una versión móvil.

Home Hardware Kitchen Design Software

Home Hardware ofrece una de las mejores plataformas de software gratuito para el diseño de cocinas.

Tienen una opción en línea dedicada a las cocinas e incluye varias plantillas para trabajar (o crear las suyas propias desde cero).

Se accede  en esta url: Home Hardware Kitchen Design Software

 

Toda la plataforma de software está disponible en línea para que no tenga que descargar nada. Además, hay varias plantillas prediseñadas que puede cargar y partir de ahí.

 

Planner5D

Este software es de diseño gratuito  ofreciendo diseños de interiores de aspecto muy real.

Si bien permite diseñar casas enteras y oficinas, tiene un gran módulo de diseño de cocina,así que sí, puede usarlo para diseñar sólo su cocina.  La desventaja de esta opción es que las opciones de diseño para su cocina son más limitantes que otros programas de software de diseño (pero es gratis).

Se accede  en esta url: Planner5D

 

El programa por defecto es el mejor en el escritorio. Si quiere al version  móvil, tendrá  que instalar la aplicación para IOS o Android.

Hay algunas características premium que requieren que se pague unq pequeña cantidad por ello.

 

Lowe’s Virtual Kitchen Designer

Lowe’s utiliza la misma plataforma de software de cocina virtual que Home Hardware.

Al igual que la otros programas , el sw es totalmente gratis con la esperanza de que usted compre gabinetes de cocina y similares de ellos.

Se accede  en esta url: Lowe’s Virtual Kitchen Designer

Puede hacer clic en las imágenes para ampliarlas y ver el nivel de detalle y calidad del diseño tridimensional y el renderizado.

Es un poco lento de cargar y un poco difícil de usar, pero  los resultados pueden ser bastante buenos de forma gratuita.

 

 Roomstyler

 

Roomstyler es una opción de software de diseño 3D en línea fácil de usar con un módulo de cocina también.

Como muchas otras plataformas, usted comienza con el diseño/huella, y luego agrega los elementos individuales de diseño. Con Roomstyler, usted simplemente elige el módulo de cocina con el que puede completar el diseño de la cocina.

Curiosamente, Roomstyler es una de las pocas opciones que ofrece utensilios de cocina, cristalería, otros platos, pequeños electrodomésticos de cocina, etc.

 

Se accede  en esta url:   Roomstyler

 

Realmente se puede diseñar la cocina hasta el último detalle (aunque no estoy seguro de lo útil que es añadir platos y utensilios a su plan de cocina).

 

Floor Planner

Floor Planner le permite crear un diseño de forma gratuita. Usted debe pagar por planes adicionales.

Es una buena opción para crear diseños o planos. Así que si quiere probar ideas de diseño de cocina, esta es una buena opción. Sin embargo, si usted está buscando una representación 3D de lujo de su diseño de cocina, le sugerimo que pruebe otras  opción diferente  como las comentadas anteriormente.

Se accede  en esta url: Floor Planner

 

 Prodboard Online Kitchen Planner

Es impresionante  lo reales que son los planos de la cocina generados por el planificador de cocina 3D de Prodboard.

Mientras que Prodboard se centra en la venta de una licencia de su software a las empresas, usted puede utilizar el planificador de cocina de forma gratuita.

Se accede  en esta url:  Prodboard Online Kitchen Planner

 

 RoomToDo Software.

El software RoomToDo sirve tanto a personas que buscan crear diseños de hogar en 3D, incluyendo cocinas, como a empresas como diseñadores de interiores, minoristas de muebles, agentes de bienes raíces y otras empresas que necesitan software de diseño de cocinas de marca blanca.

Se accede  en esta url:  RoomToDo Software.

Cuando visite la página de inicio, verá un ejemplo de lo impresionante que es este software en el diseño de espacios tridimensionales y diseños para el hogar.

 

 

Al abrir el lienzo de diseño, descubrirá la opción de diseño de cocina en las opciones de navegación de la derecha. Dentro del portal de diseño de cocinas hay opciones para diseñar una cocina estupenda.

También existe una versión completamente móvil de este software.

 

 

Sin duda existen muchísimos programas  de diseño  de cocinas  tanto en linea como instalables ( últimamente incluso para otros dispositivos como móviles o tabletas )   , pero en este post nos hemos querido centrar en opciones no profesionales gratuitas por lo menos para que nos puedan dar idea de hasta donde podemos llegar con nuestras ideas

Calculo de un radiador para calefacción

En los casos de calefacción urbana, los sistemas de calefacción de cada uno de los edificios servidos pueden ser distintos (calefacción por radiadores, calefacción por suelo radiante, calefacción por aire) puesto que la central térmica se limita a proporcionar el calor en forma de agua caliente.


En el momento de planificar el confort de una vivienda, es conveniente calcular la calefacción para así poder tener en cuenta el tipo de caldera, la potencia de esta, el numero de radiadores y el número de elementos de cada radiador para que luego no ocurran sorpresas desagradables con la temperatura del hogar.

A la hora de elegir , cambiar o modificar un sistema de calefacción tanto central de agua caliente como eléctrico existen diferentes aproximaciones para hacer un cálculo aproximado de la potencia calorífica que se necesita para calentar cada habitación de nuestra vivienda siendo lo mas normal estimar el cálculo watios (W) pues es un dato que suelen ofrecer todos los fabricantes de radiadores

En caso de calefacción central lo primero, saber que caldera tenemos y que potencia calorífica nos puede proporcionar, ya que puede ser escasa. Y la caldera depende del tamaño de la instalación, pero con una de 28 kw deberíamos tener suficiente.

 

 

Contar con una buena instalación de calefacción es imprescindible para el confort de nuestro hogar durante el invierno. Por eso, es importante tener en cuenta las características de nuestra casa a la hora de escoger el sistema que más nos conviene.

  • Localidad donde se instalarán los radiadores
  • Tipo de vivienda ,Piso (entreplanta, ático o piso rodeado de pisos) y número de fachadas a la calle.
  • Orientación de la vivienda.
  • Metros cuadrados para cada habitación  y altura del techo.
  • Uso   que se le va a dar a esa habitación  ya que en pasillos podemos redondear a la baja, mientras que en salas de estar haríamos lo contrario.
  • Nivel de aislamiento de la vivienda.

Por todo ello para efectuar el cálculo de las necesidades caloríficas de una vivienda, deben determinarse las pérdidas de calor por transmisión en paredes, ventanas, suelo, techo, puertas y las pérdidas por infiltraciones de aire para cada uno de los locales que componen la vivienda.Además, deberá añadirse unos suplementos por orientación norte, intermitencia y por dos o más paredes al exterior.

 

Para facilitar y determinar, de un modo rápido y aproximado, la potencia calorífica de una vivienda, es importante tener en cuenta distintos factores, como son:

  • Factor A:Base en W/m². El factor varía en función del uso al que se destina la habitabilidad del local, del emplazamiento en el contexto del edificio y del régimen de calefacción que se utilice en la edificación. No es lo mismo vivir en un primer piso que en un quinto.
  • Factor B: Coeficiente corrector, se aplica en base a la temperatura de cálculo en el exterior del edificio a calcular.
  • Factor C: Factor que regula las necesidades a partir del tipo de construcción, basándonos en la antigüedad del edificio.

De esta forma, uno de los métodos más eficientes para calcular las necesidades térmicas de nuestro hogar, consiste en multiplicar la superficie del local (habitación) por estos tres factores, variables en función de las características y situación de la vivienda., es decir usando la formula

Potencia  necesaria  por m2=  A  x  B  x C x  superficie en m2 de la habitación

En la practica  estos  tres factores vienen dados por el fabricante de modo que según las tablas del fabricante del radiador establecemos el coeficiente (los vatios por metro cuadrado para esa vivienda en ese lugar) y solo tenemos que multiplicar los metros cuadrados (de cada estancia) por los vatios necesarios por metro cuadrado que nos indica la tabla del fabricante en función de las características de la vivienda.

 

Calcular calefacción en función de la superficie 

Para calcular la potencia de calefacción que necesitaremos por metros cuadrados (en W), plantearemos la siguiente fórmula de cálculo que será válida para estancias con una altura menor de 2,5 metros cuadrados:

Potencia requerida (W)= AxBxCxDx85

A = Espacio a calentar,Apunta en la fórmula los metros cuadrados de la estancia a calentar

B = Orientación.De la orientación de la vivienda depende que reciba una mayor o menor cantidad de luz solar. Una casa con orientación Sur siempre es más soleada y por tanto, está más caliente. Estos coeficientes son los los mas normales:

  • Norte: (VALOR = 1,12)
  • Sur: (VALOR = 0,92)
  • Este: (VALOR = 1)
  • Oeste: (VALOR = 1)
     

C = Aislamiento:El aislamiento es básico para determinar una mejor o peor eficiencia energética de un edificio. Una vivienda con carente de aislamiento sufrirá pérdidas de calefacción y por lo tanto de energía. A menor aislamiento, mayor consumo de calefacción. Sabido ésto, elije entre estas tres opciones:

  • Buen aislamiento: Ventanal doble y tabique doble (VALOR = 0,93)
  • Aislamiento sencillo: Ventanal sencillo y tabique doble o ventanal doble y tabique sencillo (VALOR = 1)
  • Sin aislamiento: Ventanal sencillo y tabique sencillo (VALOR = 1,10)

D = Zona climática,El Código Técnico de la Edificación establece en el DB H1 las zonas climáticas en las que se divide nuestro país identificándolas mediante una letra en la división de invierno y un número de verano. Como estamos realizando un cálculo de calefacción, nos referiremos a las zonas climáticas en invierno.Consulte en el mapa siguiente la zona climática en la que se encuentra su vivienda y aplique su valor a la fórmula.

Mapa de zonas climáticas en España
  • Zona A: (VALOR = 0,88)
  • Zona B: (VALOR = 0,95)
  • Zona C: (VALOR = 1,04)
  • Zona D: (VALOR = 1,12)
  • Zona E: (VALOR = 1,19)

Cálculo de radiadores por volumen

Su supera la altura de 2,5 m  cada habitación , para saber cuántos radiadores debemos instalar en una habitación, conviene realizar el cálculo por volumen en metros cúbicos ya que la altura es un aspecto muy importante a valorar.

Los pasos para conseguir el cálculo de radiadores por m3. 

  • Calcular volumen en metros cúbicos es el resultado de multiplicar al superficie en en metros cuadrados por la altura de cada estancia.
  • Calcular las kcal/h necesarias para calentar la habitación.La formula  para calcular los KW/h en función de la Kcal/h es  simplemente dividendo  kcal/h entre 860 obteniendo así los  kW/h de potencia necesaria. Según el tipo de habitación, utilizaremos distintos valores de cálculo:

dormitorios … m3 x 45 = kcal/h.

baño, sala estar, comedor … m3 x 50 = kcal/h.

pasillos, lavaderos … m3 x 40 = kcal/h.

 

  •  Calcular los elementos del radiador: las kcal/h o kW/h obtenidas habrá que dividirlas por la potencia calefactora de cada elemento del radiador y el resultado es la cantidad de elementos que serán necesarios en el radiador.

Por ejemplo para saber cuántos radiadores necesitaremos para calentar una casa de 75 m2, con una altura de 2,5 m,

  •  Calcular volumen en metros cubicos75 *2.5   nos da 187,5 m3
  • Calcular las kcal/h necesarias para calefactar la habitación  187,5 m3 x 40 = 7500 kcal/h / 860 = 8,7 kW/h 
  • Calcular los elementos del radiador:  Si tenemos un radiador de 1.000 W (1kW), sabemos que necesitaremos al menos 8 radiadores para calentar toda la vivienda. 

De todas formas, volvemos a recordar que estamos hablando de unos cálculos muy simples. Para que las potencias realmente se correspondan con las necesidades de una vivienda, el cálculo debe realizarse mediante la valoración de ubicación de vivienda, orientación, m2 de aberturas acristaladas, m2 de pared exterior, m2 suelo exterior o con vecinos, m2 techo con vecinos o exterior, coeficientes de transmisión, etc … algo que recomendamos pedir a un instalador profesional para que se realice un cálculo real y sobre todo eficiente de la calefacción que necesita su vivienda. 

 

 

Calculo online

En esta pagina se  puede calcular las necesidades caloríficas así como los elementos de calefacción necesarios de cualquier estancia.

Funcionamiento: 

  1.  Para insertar una nueva estancia, pulse sobre el botón ‘Añadir’
  2. Tenemos que seleccionar;Zona Climática,Aislamiento,uso de la Habitación,Orientación y  superficie  en metros cuadrado
  3. Después pulsar en el icono de ‘Guardar‘( el disquete)  para fijar los datos o ‘Borrar’ para eliminarlos.
  4. Obtendremos el valor delas Kcalorias  necesarias en función de las condiciones elegidas.Como en este programa nos da el resultado en Kcal  por lo que para pasarlos a Watios:

    kcal/h dividido entre 860 = kW/h de potencia necesaria.

  5. El programa  ademas suma el total de Kcal , lo cual nos puede ser interesante para calcular la potencia de la caldera en caso de un sistema centralizado
  6. También podemos saber de forma individualizada   el numero de elementos necesarios   por estancia para  un tipo de radiador del fabricante 



Los datos de cálculo son aproximados y están basados en condiciones medias de aislamiento y altura de 2,50 m y las  potencias radiadores certificadas a Delta t=50

 

Alternativas compatibles con el formato dwg

El Autodesk AutoCAD es uno de los programas más utilizados por los diseñadores. Por este motivo, e vamos a hablar de programas que permitan editar la extensión nativa de AutoCAD. Estamos hablando de DWG (el archivo contiene diseños, datos geométricos, mapas y fotos).


Autocad de Aautodesk es sin duda  el programa líder en la industria del diseño ,  produciendo un software de alta calidad muy flexible,  pero  cuyo coste lamentablemente no siempre esta al alcance de todos los bolsillos.

En este post  vamos  ver alternativas libres o de pago menor  de AutoDesk AutoCAD, que creemos que merece la pena usar siendo alternativas libres de software de CAD 2D  ideales para arquitectos o ingenieros que tienen un  ajustado presupuesto y no quieren usar la versión pirata de AutoCAD.

Sin duda, AutoCAD es el software de CAD primario al igual que como Photoshop es para retoque fotográfico. AutoCAD es utilizado en una amplia gama de industrias, incluyendo arquitectos, gerentes de proyecto e ingenieros, entre otras profesiones. El formato de archivo DWG se ha adoptado ampliamente y ahora es compatible con muchas otras alternativas como vamos a ver.

DraWinG (DWG) es un formato de archivo de dibujo computarizado, utilizado principalmente por el programa AutoCAD, producto de la compañía AutoDesk. El nombre de la extensión .dwg se originó de la palabra inglesa “drawing”.

Existen visores gratuitos de dwg , incluso en linea y gratuitos desde el propio Autodesk  (https://viewer.autodesk.com/) ,  así como otras aplicaciones que permiten el visionado de ficheros  Dwg  como Free DWG Viewer  , DWG TrueView, pCon.planner , Ms Office AutoCad Pdf Psd Tiff Viewer Free, o eDrawings

 

Veamos  algunos programas  que pueden llegar mas lejos que los visores de dwg que hemos mencionado anteriormente  , que son OPEN SOFTWARE   y que soportan también los ficheros dwg generados   por  el programa  Autocad.

 

nanoCAD

NanoCAD es un sistema de CAD 2D de nivel profesional con soporte DWG nativo y personalización completa  que es totalmente gratuito, para fines comerciales, profesionales o personales (pero hay que  registrase  desde el propio programa , para obtener un numero de producto  con el que activar el software).

Este programa es  rápido, liviano, capaz y, a diferencia de la mayoría de los programas de CAD gratuitos, no necesita escribir ningún código  siendo una de las opciones mejor en cuanto a programa de edición grafica CAD gratuitos .

Cualquier ingeniero podría dominar fácilmente nanoCAD ya que todo está en su lugar correcto: el menú, los iconos de botones, los paneles, la línea de comando y los comandos son fácilmente reconocibles.

 

Esta  aplicación de CAD es  fácil de usar ofreciendo una gran experiencia de usuario proporcionando alto rendimiento, capacidad completa, una interfaz clásica y soporte de formato DWG nativo  que ha sido construido para entregar documentación de proyecto y diseño para todas las industrias.

Incluye una completa suite de herramientas básicas y avanzadas para crear archivos de CAD DWG compatible con estándar de la industria ofreciendo características innovadoras, colaborativas y personalizables para mejorar su eficiencia.

También incluye varias API de, permitiendo algo de automatización de tareas rutinarias para el complejo desarrollo de aplicaciones de CAD. Todo de forma gratuita.

  • Interfaz clásica en CAD – cualquier ingeniero puede dominar fácilmente nanoCAD ya que todo está en sus lugares correctos: menú, iconos de botón, paneles, línea de comandos y lo mismo comandos es fácilmente reconocible. Esto facilita nanoCAD migrar a puesto que la empresa necesita no hay tiempo para capacitar a sus ingenieros.
  • *.Dwg nativo *.dwg de apoyo – del mundo más popular formato de archivo de documentación técnica – – es el formato de archivo nativo nanoCAD. Proyecto creado usando nanoCAD y guardado como archivo *.dwg podría ser fácilmente abierto y editado en cualquier aplicación CAD *.dwg que hace a su vez herramienta perfecta nanoCAD para colaboración de proyectos de apoyo y compartir.
  • Herramienta de diseño – nanoCAD incluye todas las herramientas necesarias para el diseño básico y permite la creación y edición 2D y 3D vectores primitivos, textos, tablas, bloques, exhibición de la documentación técnica gráfica y configuración de impresión usando un modelo o una hoja.

 

QCAD

QCAD es otra aplicación para edición en 2D asistido por ordenador. Con QCAD usted puede crear dibujos técnicos como planos para edificios, interiores, piezas mecánicas o esquemas y diagramas. QCad utiliza el formato de archivo de AutoCAD DXF internamente y guardar e importar archivos. EL Soporte DWG AutoCAD está disponible como un plugin comercial. QCAD está disponible en dos versiones: Community edition y Professional edition. QCAD Community Edition es gratis y de código abierto.

QCAD

Con QCAD usted puede crear dibujos técnicos como planos para edificios, interiores, piezas mecánicas o esquemas y diagramas. QCAD trabaja en Windows, macOS y Linux.

El código fuente de QCAD está liberado bajo la GPL versión 3 (GPLv3), una popular licencia de código abierto.

SolveSpace

SolveSpace

SolveSpace es otro programa de código abierto  para diseño 2D y 3D CAD  Es un modelador paramétrico basado en la restricción con capacidades de simulación mecánica simple. Esta desarrollado por Jonathan Westhues. 

Las aplicaciones incluyen:

  • Modelado de piezas 3d, dibujar con Extrude, gira y Boolean (Unión / diferencia) operaciones
  • Modelado de piezas en 2d, dibujar la parte como una sola sección y exportar a DXF, PDF, SVG; montaje 3d de uso para verificar
  • piezas impresas en 3D, la exportación la STL u otro acoplamiento triángulo esperado por impresoras 3d más
  • Preparación de datos CAM — exportación 2d vector art para un cortador por chorro de agua de máquina o láser; o generar paso o STL, para la importación en el software de terceros CAM para el mecanizado
  • Diseño de mecanismos: utilizar el solucionador de restricciones para simular vínculos planos o espaciales, con el perno, bola o articulaciones diapositiva
  • Geometría plana y sólida, reemplazar mano resuelto trigonometría y hojas de cálculo con un plano acotado

SOLVESPACE es un CAD de 3d paramétrico de libre (GPLv3) herramienta.

LibreCAD

LibreCAD

LibreCAD es una aplicación CAD de fuente abierto libre para Windows, Apple y Linux. El ppoyo y la documentación está libre de nuestra comunidad de usuarios, colaboradores y desarrolladores grandes, dedicado. LibreCAD puede leer archivos DWG (y otros) a partir de la última generación todas las noches. Escribe archivos DXF, pero también puede exportar SVG, JPG, PNG, PDF y otros archivos. Tiene capas, bloques, splines, polilíneas, herramientas de elipse, avanzadas herramientas de línea y círculo tangentes, herramientas de transformación, un avanzado sistema de encajarse a presión y mucho más.

FreeCAD

FreeCAD

FreeCAD es un modelador 3D paramétrico de código abierto principalmente a objetos de la vida real de cualquier tamaño de diseño. El modelado paramétrico permite modificar fácilmente su diseño que se remonta en la historia de su modelo y cambiando sus parámetros. FreeCAD está dirigido directamente a ingeniería mecánica y diseño de producto pero también se adapta a una amplia gama de usos en ingeniería, arquitectura u otras especialidades de ingeniería. De hecho se  puede usar Freecad para diseñar modelos 3D de impresión. 

FreeCAD cuenta con herramientas similares a Catia, SolidWorks y Solid Edge y por lo tanto también cae en la categoría de MCAD, PLM, CAx y CAE. Se basa en una función modelador paramétrico con una arquitectura de software modular que hace fácil proporcionar funcionalidad adicional sin modificar el sistema. Por tanto  (como se menciona en la descripción) esta orientado para CAD paramétrico 3D y no tiene ninguna funcionalidad de redacción que  valga la pena hablar

No es un programa malo, pero no un reemplazo de AutoCAD. Tiene más semejanza a SolidWorks que AutoCAD

 El desarrollo es totalmente Open Source (licencia LGPL). 

DraftSight

DraftSight es un programa de  diseño 2D profesional y elaboración de soluciones que le permite crear, editar, ver y marcado cualquier tipo de dibujo 2D. Usa  una interfaz de usuario familiar que concede  una mínima curva de aprendizaje facilitando una fácil transición desde la actual aplicación de CAD.

Basado en arquitectura avanzada, DraftSight tiene un diseño compacto, debe tener menos de unos minutos para descargar y se ejecuta en múltiples sistemas operativos, incluyendo Windows XP®, Windows Vista® y Windows® 7.

Alternativas  con  coste menor

DraftSigh

DraftSight es un grado profesional, abierta producto de CAD 2D para los usuarios que quieren una mejor manera de leer, escribir y compartir archivos DWG. DraftSight es fácil de usar y está disponible para los usuarios CAD profesionales, estudiantes y educadores para descargar y activar para free.* basado en arquitectura avanzada, DraftSight tiene un diseño compacto, debe tener menos de unos minutos para descargar y funciona en múltiples sistemas operativos, incluyendo Windows XP®, Windows Vista® y Windows® 7.

Tiene versión gratuita (la versión gratuita realmente permite lectura y escritura archivos de autocad. rbadillarx )  y multiplataforma. Acepta huéspedes 

Este  software es muy  compatible con autocad.(la compatibilidad es buena,pero  no perfecta..por desgracia.)

BricsCAD

Una poderosa plataforma de CAD, con las características familiares de aplicaciones nativo DWG. BricsCAD® unifica diseño 2D avanzado con la inteligencia de 3D modelado directo. Para Windows, Linux y Mac. Es compatible con cientos de aplicaciones de terceros basadas en .dwg, de todo el mundo y todo esto a un precio muy justo.

BricaCAD se ejecuta AutoCAD más nativo de programación lisp, diesel, interfaces, pgp, brx (arx modificado).

MicroStation

Famoso y veterano  software de CAD 3D modelado, redacción y visualización de software para arquitectura e ingeniería.

La versión gratuita esta muy limitada

ActCAD

ActCAD es una programa de edición 2D y 3D de modelado CAD para ingenieros, arquitectos y otros técnicos consultores. ActCAD es un software nativo de DWG y DXF CAD para crear y editar dibujos. ActCAD utiliza el motor de IntelliCAD, alianza abierta de diseño DWG/DXF bibliotecas, ACIS Kernel de modelado 3D y muchas otras tecnologías. Además, ActCAD tiene muchos comandos adicionales, características y otras herramientas de productividad.

Con características completas, validez global de toda la vida y la disponibilidad a un precio muy asequible, es la alternativa a Autodesk AutoCAD. Su característica de transferencia de licencia del uno mismo también me permite cambiar mi licencia de una PC a otro sobre la marcha. 

Completa 2D y 3D funciones sin ningún tipo de limitaciones. Las licencias no expiran y tenemos soporte técnico gratuito.

La mejor parte de ActCAD es poder hacer prácticamente nada sin una interfaz. Eres capaz de ejecutar todos los comandos solo escribiéndolos. Es personalizable, ligero, fácil empezar.

pCon.planner

Profesional mobiliario 2D- / 3D-tool para todo el mundo: el pCon.planner es una gratuita aplicación que le permite cómodamente y profesionalmente crear conceptos de decoración compleja y visualizarlas en una calidad fotográfica.

Formatos soprtados son : dwg, dxf, 3ds, skp… I

Lo idiomas disponibles : Inglés, alemán, holandés, Francés, Italiano, Portugués, rumano, español;

ZWCAD

Software ZWCAD, como una muy confiable y potente herramienta de CAD, satisface las necesidades de la industria de elaboración, incluyendo arquitectura, ingeniería, construcción (AEC), mecánica, electrónica y diseño 2D/3D… y quien crea dibujos de CAD.

Más barato que Autocad, y tienen las mismas opciones. 

Funciona estable y rápido, no está mal. Gran experiencia en abrir, editar dibujos DWG.

GstarCAD

GstarCAD es una alternativa con valor agregado de AutoCAD y software de CAD internacionalmente usado de bajo costo. Basado en la tecnología de IntelliCAD, su gran compatibilidad con AutoCAD hasta la versión 2013 y APIs sofisticadas (GRX, VBA, VLisp, SDS, Lisp) fácilmente hace cualquier redacción, datos de diseño y aplicación de AutoCAD sin problemas siendo manejado en su forma original

En el año 2019 de GstarCAD es más compatible y más rápido que nunca. Se recomienda este programa para e arquitectura  e ingeniera(civil,mechanical)

Es mucho  más barato que AutoCAD contadno con un  interfaz muy similar a Autocad y sobre todo mismos comandos.

Hay un aa versión Pro de GCad Pro versión todavía es muy accesible que viene con herramientas similares a las herramientas Express. Un Editor de bloques dinámico también se incluye en la versión Pro. También es compatiple con CADProfi Addons

Es más barato, pero tiene interfaz y función similares. Así que por qué molestarse con AutoCAD