Monte su detector de humo en 2 minutos


Un detector de humo es una alarma que detecta la presencia de humo en el aire y emite una señal acústica  de gran intensidad avisando del posible  peligro de incendio lo cual en ocasiones ,por ejemplo por la noche,  pueden salvarnos literalmente la vida, pues en estados de sueño profundo,   tardamos mucho en reaccionar ante señales evidentes  de posibles incendios. Personalmente creo que es una “inversión” (sobre  15€)   que merece la pena realizar , pues como vamos a ver,  no es para nada complicado su instalación.

 

 

Hay muchos tipos de detectores  diferenciándose sobre todos según al método de detección   implementado en la electronica  que contienen: los iónicos  y los ópticos .

Los menos usados , son los ser  iónicos  , mayormente usados para la detección de gases en ambientes industriales ,los cuales  no son visibles a simple vista .

Estos sensores constan de una cámara formada por dos placas y un material radiactivo (Americio 241), que ioniza el aire que pasa entre las placas,  generando  una pequeña corriente eléctrica permanente, que es medida por un circuito electrónico conectado a las placas, siendo esta  la condición “normal” del detector

 

iones.PNG

Este tipo de composición, los hace  especialmente sensibles a los humos que contienen pequeñas partículas presentes en  de fuego de crecimiento rápido y humo no visible, tal como el que se genera en fuegos de combustión rápida provocados por: gasolina, alcohol, aceites, plásticos, líquidos químicos, etc.  normalmente presentes en laboratorios, talleres, tiendas de pintura,etc.

 

Los  detectores ópticos  son en general  mayormente usados en la actualidad por  su gran fiabilidad   y  bajo precio  detectando humos visibles mediante la absorción o difusión de la luz , pudiendo ser   según la electronica :

  • De infrarrojos directos:   el humo obstaculiza  la luz producida por un led  infrarojo enfrentado a  un LDR generando una alarma
  • De láser : funcionan de un modo parecido al anterior  detectando  un oscurecimiento de una cámara de aglutinación con tecnología láser
  • De tipo puntual : es la tecnologia mas extendida por su gran fiabilidad,   estando  los detectores  puntuales  tanto el emisor y receptor alojados en la misma cámara ( es decir  no se ven al formar sus ejes un ángulo mayor de 90º)  y ademas  separados por una pantalla, de manera que el rayo emitido no alcanza el receptor. Cuando entra humo en la cámara, el haz de luz emitido se refracta en las partículas de humo y puede alcanzar al receptor, activándose la alarma.

sesnor.png

 

Normativa

NF EN 14604  es una normativa  de Noviembre de 2005 DI 89/106 / CE 21/12/1988 que indica la directiva sobre la aproximación de las disposiciones legales, reglamentarias y administrativas de los Estados miembros sobre los productos de construcción.

Esta norma europea especifica los requisitos, métodos de prueba, criterios de rendimiento e instrucciones del fabricante para dispositivos de alarma de humo que utilizan el principio de dispersión o transmisión de la luz, o ionización, para aplicaciones domésticas o similares.

La norma incluye requisitos adicionales para dispositivos de alarma de humo que también son adecuados para su uso en autocaravanas. Para probar otros tipos de dispositivos de alarma de humo o dispositivos de alarma de humo que operan bajo diferentes principios, esta norma debe usarse solo como guía. Las características especiales para alarmas de humo, como un enlace de radio, o características especiales diseñadas para riesgos específicos, no están cubiertas por este estándar. Este estándar permite, cuando sea apropiado, incluir en los dispositivos de interconexión de dispositivos de alarma de humo otros dispositivos de alarma de humo similares y / o incidentales, y desactivar la alarma. Cuando se incluyen dispositivos de esta naturaleza, esta norma especifica los requisitos aplicables. Esta norma no cubre dispositivos destinados a ser incorporados en sistemas que utilizan equipos de control e indicación separados.

 

Electrónica de un detector de humo

 

En la siguiente imagen podemos ver el interior de detector de humo fotoeléctrico de tipo  puntal .

 

 

detector fotoelectrico.jpg

Como podemos ver el circuito es muy sencillo   limitándose a  una  bateria de 9v  conectada  a  una pequeña placa donde van integrados el sensor fotoeléctrico ( suelen ir compactos en una carcasa opaca) , el buzzer piezoelectrico , el led de estado , el pulsador del test, el ajuste de sensibilidad (el trimmer amarillo)  y por supuesto la electronica de control (suele ser un único  chip especializado)

 

 

 

 

 

 

Instalación de un detector de incendios

Resumiendo ,los detectores de humo fotoeléctricos  en general son los utilizados para detectar incendios de pequeña  velocidad de propagación, y  que generan humo visible , como los que se generan en incendio donde tenemos combustibles como: maderas, cuero, lana, y la mayoría de los polímeros, es decir  todo aquellos materiales que tenemos  en  un ambiente domestico ( viviendas  y oficinas), Además estos detectores son menos propensos a falsas alarmas en ambientes controlados.

Ademas  no debemos olvidar  que los detectores iónicos utilizan un isotopo radioactivo de modo que existe el riesgo de un accidente y que este se mezcle con el medio ambiente, generando un problema de contaminación.Además  por su gran sensibilidad son mas propensos a falsas alarmas provocadas por acumulación de polvo y corrientes de aire  no olvidando ademas de que también tienen un coste mucho mayor.

 

Vemos   ahora paso a paso como  instalar  uno de los  detectores  mas sencillos de configurar : el detector de humo tipo GS506

 


Este detector de humo se utiliza para la detección temprana de humo peligroso de modo que tan pronto como el humo entre en el interior del dispositivo, sonará una alarma bastante potente  de 85 dB basados en un piezolectrico

Este  detector detecta el humo y no las llamas, pero es obvio que en casi todas las combustiones   hay presencia de humo  sobre todo si hablamos de ambientes domésticos

Cada 30-40 segundos, el detector de humo realiza un auto-test ,lo cual  puede ser notado por un breve destello del LED. En caso de fallo del sensor o de falta de batería lo indicaría mediante una señal audible

Este modelo para facilitar la instalación  contempla dos mejoras respecto a otros modelos convencionales :

  • Soporte magnético  : para no tener que taladrar nada y hacer mas sencilla su instalación  este detector incluye un  kit de fijación magnética de modo que se puede montar rápida y fácilmente sin el empleo de herramientas, tornillos o tacos.
  • Batería de Litio para 10 años: esto  puede parecer  excesivo , pero en realidad es una excelente decisión del fabricante pues  lo hace inmune a los mantenimientos periódicos producido por el agotamiento de la batería y por tanto mucho mas seguro

 

Estas  son la descripcion de producto:

  • Modelo: GS506 (detector de la alarma del humo)
  • Dimensiones: Ø 100x37mm
  • Rango de temperatura: 0°C a + 45°C
  • Volumen de alarma:  85 dB (A) dentro de los 3 metros
  • Certificaciones: EN 14604, NF
  • Fuente de alimentación: Batería de DC 9V (batería de litio: CR9V)
  • Autonómica : 10 años de batería a largo plazo
  • Advertencia de batería baja

 

 

Montaje del detector

Una vez desempaquetemos  este modelo ,en   primer colocaremos la batería de 9V de Litio,para lo cual eliminaremos precintos  de esta y la fijaremos al porta-pilas del detector.

Destacar que este tipo de baterías, vienen cargadas  obviamente  pero  son algo mas gruesas que la pilas convencionales ,pero aun así caben con un poco de  habilidad dentro del compartimiento de una pila convencional

 

IMG_20180317_132024_HDR[1].jpg

Normalmente ahora fijaríamos la base de sujeción  a la pared mediante dos tornillos para luego simplemente mediante un sistema de bayoneta fijaríamos a esta  el detector ,pero en este producto simplemente colocaremos  ahora la cubierta  quedando como enla siguiente imagen todo el conjunto:

IMG_20180317_132120_HDR[1]

Con este detector se adjunta un de kit de fijación magnética  de modo que se pueden montar rápida y fácilmente sin el empleo de herramientas, tornillos o tacos.
Las siguientes superficies no son adecuadas para la fijación:

  • Empapelado de vinilo
  • Poliestireno,
  • Superficies con revestimiento antiadherente,
  • Superficies siliconadas o recubiertas de teflón
  • Superficies que contienen partículas sueltas
  • Superficies que han sido pintadas varias veces

 

Ahora desprincintado el kit observe que hay dos juegos de chapas;

Tomaremos aquella que tiene los dos  imanes distinguibles por dos pequeños círculos:

IMG_20180317_132338_HDR[1]

Eliminaremos el plástico protector del adhesivo  y lo fijaremos   a la base del detector y  la otra pieza  a la pared o alguna superficie plástica  ( por ejemplo los cajetines de conexiones de la instalación eléctrica )

 

 

Pulse el botón de test   que tiene en el centro del detector para probar su funcionamiento normal . Si oye un fuerte pitido que cesa , !enhorabuena ya ha instalado el detector!

 

Realmente gracias  a los colores neutros, este tipo de sensores  quedan bastante disimulados  si se sitúan en las tapas de los registros o en cualquier parte que incluya algo de plástico ( incluso hay personas  que quitan la carcasa exterior  que suele ir a presión  y la pintan de otros colores).

IMG_20180318_175046[1]

Mantenimiento:

El detector fotoeléctrico está diseñado para detectar el humo dentro de una cámara con uno o dos leds ópticos y  uno o varios sensores  que informan cuando hay humo si detectan luz infaroja por la refracción del humo en su interior. El problema con este tipo de detector es que el polvo o suciedad lo puede llegar a leerse como humo creado falsas alarmas, por lo que si es posible  deberíamos  hacer un plan de mantenimiento para limpiar las cámaras de los detectores fotoeléctricos para mantenerlas limpias y evitar falsas alarmas en el sistema .

 

 

Anuncios

Que es CheapDuino


 cheapduino.PNG

CheapDuino es una  placa  compatible con Arduino  de un tamaño muy reducido pero no hace honor actualmente a su origen (cheap , es decir barato ) pues  si bien el precio es aceptable (1/5 precio del Arduino UNO R3)   una de sus mejores puntos es su reducido espacio  proporcionando un procesador de  relativo bajo costo para  estudiantes y los aficionados al desarrollo profesional adecuado para  proyecto personalizados de bricolaje, taller, regalos para amigos, E-Textiles y uso educativo.

Pretendía esta placa ser una opción para aquellos estudiantes de países del segundo o tercer mundo que no pueden pagar el precio del Arduino oficial( entre 25 a 30€) ,  intentando abrir una puerta al mundo físico (unos 10€ por placa), pero   no debemos olvidar que existen clones de Arduino de un precio similar  o incluso mas bajo, así que su gran bazas es su  potencia en tamaño compacto pues  tiene una dimensión de solo 2 cm x 2 cm..

La placa tiene  integrado con un microcontrolador ATmega8 y Arduino NG.  Se  puede  programar directamente con Arduino IDE a través del programador FTDI o el adaptador de serie USB.3

(Cuando conecte el cable de programación fpc al programador DFRobot FPC y al dispositivo CheapDuino, por favor, el lado azul hacia arriba).

A nivel de hardware el procesador tiene 3 pines digitales pwm, 3 pines analógicos e interfaz de fuente de alimentación con almohadillas hexagonales alrededor de la placa, lo que hace que sea muy fácil de soldar para los principiantes.

Por supuesto, la interfaz I2C y el puerto serie también están disponibles para extender los dispositivos periféricos de 2 cables directamente. La adopción del conector micro FPC ahorra espacio adicional en comparación con la interfaz USB Arduino normal.

CheapDuino1.png

Especificaciones

  • Voltaje de funcionamiento: 3 ~ 5 voltios
  • Fuente de alimentación recomendada: 5v
  • Microctonroller: Atmel AVR ATmega8
  • gestor de arranque (opción de placa en Arduino IDE): Arduino NG / w ATmega8
  • 3 pines digitales, 3 pines analógicos con almohadillas hexagonales fáciles de soldar
  • Integra 3 pines pwm, interfaz I2C e interfaz UART
  • Adecuado para talleres, uso educativo y proyectos personalizados de bricolaje
  • Controlador compatible con Arduino de bajo costo
  • Diseñado para los estudiantes y DIYers
  • Dimensiones: 2cm x 2cm x 0.2cm

 

 

 

CheapDuino se puede comprar  en la página dee DFRobot o también en Amazon

 

Como sustituir una mirilla normal por una digital


Las puertas con mirilla convencionales   de tipo óptico no ofrecen ninguna privacidad al usuario, porque desde el exterior es posible ver dislumbrar  actividad o presencial ,  por ejemplo cuando se enciende la luz   o  bien se  se acerca una persona a mirar por el

Se   puede  pues  mejora la seguridad del hogar con una mirilla digital que  ofrece una visión amplia y clara  mejorando nuestra privacidad  siendo especialmente  útil para niños, personas mayores o con alguna discapacidad.

mirilla

Con las mirillas digitales electrónicas se garantiza la seguridad, ya que se trata de cámaras mirilla y no hay visión desde el exterior  siendo ademas mucho mas cómoda   y sencilla la visualización  pues basta pulsar un botón para poder visualizar lo que esta ocurriendo al otro lado de la puerta  sobre la propia cámara.

Normalmente las mirillas electrónicas son muy fáciles de usar: basta con presionar el botón para ver la imagen exterior durante unos segundos, ofreciendo una gran visibilidad desde cualquier ángulo, incluso con poca luz exterior.

Algunos aspectos a tener en cuenta a la hora de valorar una mirilla digital son, el tamaño del display, la resolución de la minicámara ,el ángulo de visión que cubre y su sensibilidad a la luz ya que se desenvolverá en un entorno oscuro. Otros extras son el sensor de movimiento, el timbre inalámbrico, grabación de vídeo y/o fotografías,etc .

Otras consideraciones pueden ser el color de la mirilla que encaje por ejemplo con el color del pomo  o los adornos  que lleve al puerta, pues al margen de las consideraciones estéticas   tenga en cuenta  que lo que buscamos es que pase  lo mas desapercibida posible  para no delatar su naturaleza

Asimismo al elegir un modelo , aunque suelen llevar diferentes conos roscados para diferentes espesores , debe comprobar que se adapte al grosor de la puerta donde será instalada.

Reemplazar la mirilla antigua por una nueva  einstalarla en una puerta sin mirilla es una tarea sencilla como vamos    a ver pues solo se necesita un destornillador de estrella, una moneda y por supuesto la nueva mirilla .

 

Un modelo con buena relación calidad-precio (unos 35€) y que pasara desapercibido su visor en una puerta clásica  es el modelo VI.TEL. E0426 40 , apto   para marcos de ancho de 38 a 110 mm con  orificio standard (de 14 a 22 mm).

Esta unidad cuenta con pantalla LCD 2,6″, encendido táctil,alimentación 2 pilas LR06 AA y   su angulo de Visión es de 105 °C

Los pasos  para instalar  la mirilla son muy sencillos:

Lo primero que tenemos que hacer es quitar la antigua para lo cual nos bastara el dorso de una moneda.

IMG_20180111_162821[1]

 

Ahora elegiremos el tubo roscado en función del grosor  de la puerta

IMG_20180111_162858[1].jpg

Colocaremos la cámara  con la flechita hacia arriba pero todavía no elimine el adhesivo

IMG_20180111_162910[1].jpg

 

Tendremos que liberar   el soporte del cuerpo de la pantalla con ayuda de un destornillador de estrella pues ambos van unidos

 

IMG_20180111_162838[1]

Ahora queda roscar por el otro lado el tubo teniendo en cuenta que debe colocar el soporte  metálico autoadhesiva por el interior y con el rotulo Up hacia arriba

Tampoco esta mal pegar dos tiras autoahesivas extra  por los extremos para mejorar la posición de la pantalla:

IMG_20180111_162813[1].jpg

 

Ahora tendremos que conectar el extremo del cable de la cámara con la pantalla metiendo un poco en el interior  del tubo para que no haya tanto cable que pueda doblarse al colocar sobre el la pantalla.

IMG_20180111_162940[1].jpg

Fijaremos la pantalla en la parte de la lengueta superior del soporte

IMG_20180111_163111[1].jpg

No debemos olvidar poner dos pilas AAA  respetando la polaridad de estas:

IMG_20180111_163023[1].jpg

Ya solo queda  atornillar la pantalla a  la base con un tornillo philips

IMG_20180111_163331[1].jpg

Por ultimo   leiminaremos  el protector de la pantalla

IMG_20180111_163715[1].jpg

Asimismo eliminaremos   también el protector de la mirilla

 

IMG_20180111_163842[1].jpg

 

La instalación como hemos visto es muy sencilla, pues se ajusta al hueco universal de cualquier rejilla o mirilla de puerta convencional y funciona con 4 pilas AA, que permiten unas 2000 visualizaciones, en la pantalla LCD .

Automatización con Alexa y Raspberry Pi


Usando una  Raspberry Pi   y un placa de relés  se puede realizar  un dispositivo de automatización del hogar  gracias a Alexa , !eso si  , si domina el ingles!.
En este breve post   vamos a ver  cómo poder controlar múltiples dispositivos conectados a la Raspberry Pi vía comandos de voz  en ingles, de tal modo que como veremos, podamos ontrolar todos  los pines GPIO para controlar los dispositivos conectados al GPIO  mediante relés u otros circuitos de control  y con ello encender o apagar cualquier dispositivo eléctrico conectado a estos,  simplemente dando las ordenes vocales  a Alexa.

Como vemos, pues  solo se necesita una Raspberry Pi 3 con una SD, una placa de Reles y  por  supuesto un altavoz inteligente  con Alexa para  automatizar cualquier función que deseemos gracias al reconocimiento automático de voz  de Alexa.

En el esquema   siguiente podemos ver como solo se usa  un solo pin de e/s  digital :  el GPIO 4   para controlar un   relé , pero este esquema ,si se requiere,  se puede ampliar hasta el máximo de los 24  terminales de e/s de los que dispone  una Raspberry Pi.

Es de destacar  que ademas el cable de datos,  incluso la alimentación del relé se obtiene de los 5V DC de la propia Raspbery Pi, por lo que para la  conexión de un circuito de un rele  sólo se necesitan 3 cables para  comandar la placa (un  cable para el control y los dos de la alimentación DC 5v).

 

esquema.PNG

Los pasos para instalar el  software  que permitirá  interactuar con  Alexa  en la Raspberry Pi 3 son los siguientes :

  1. Descargue “RASPBIAN STRETCH WITH DESKTOP” y descomprima  el fichero “2017-04-10-raspbian-jessie.zip” https://www.raspberrypi.org/downloads/raspbian/
  2. Descargue el programa “win32diskimager-1.0.0-install.exe” de la siguiente URL https://sourceforge.net/projects/win32diskimager/files/latest/download
  3. Instalar “win32diskimager-1.0.0-install.exe”
  4. Conecte la tarjeta mini-sd a su ordenador. Desde el explorador de windows, haga clic derecho en la letra de su unidad de tarjeta SD y haga clic en el menú de formato. En la ventana de formato, seleccione “FAT” en la lista “Sistema de archivos” y haga clic en iniciar. Espere a que la tarea se complete.                                                             texto alternativo
  5. Inicie el programa “win32diskimager”. Seleccione el archivo de imagen “2017-04-10-raspbian-jessie.img” y la letra de su unidad de tarjeta SD y haga clic en “Escribir” (Espere a que el programa termine de escribir la imagen RASPBIAN en la tarjeta SD)                                                                                                texto alternativo
  6. Una vez que se completa la escritura de la imagen, copie “ssh” (el archivo ssh está vacío) y “wpa_supplicant.conf” a la raíz de la tarjeta sd. Abra “wpa_supplicant.conf” en el editor de texto y actualice ssid (wi-fi name) y contraseña a los valores de su red Wifi.
  7. Inserte la tarjeta SD en Raspberry Pi 3 ,conecte la alimentación  y espere  a que arranque   durante unos 10 segundos
  8. En Windows vaya a ejecutar y escriba “cmd” y escriba arp -a en el símbolo del sistema. Busque la “Dirección física” que comienza con b8-27 * y tome nota de la dirección de Internet. Esta es su dirección IP Raspberry Pi3 Wi-Fi en su red. Este resultado también se puede obtener con otras herramientas como  WireShark (pc)  o Fing (android), siempre que ambos equipos este  conectados a la misma red. La dirección MAC generalmente comienza desde b- así que una vez que encuentre la dirección MAC, puede buscar la dirección IP en la columna  Internet Address y esta es su dirección IP. Tenga en cuenta esta dirección IP porque necesitará esto para conectar su sesión  SSH y  también para conectarse por el VNC                   texto alternativo
  9. Descargue “Putty.exe” de la siguiente URL https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
  10. Ejecute “Putty.exe” y escriba la dirección IP en el campo de nombre de host y haga clic en el botón de inicio y haga clic en Sí para abrir una ventana emergente. En la línea de comando del putty, escriba como Login “pi”  y para la contraseña ingrese “raspberry” y presione enter. Debería ver el  prompt  “pi @ raspberrypi: ~ $”.                             texto alternativo
  11. Escriba “sudo raspi-config” y vaya a “Opciones de interfaz” y habilite VNC. Reinicie pi3 escribiendo este comando “sudo reboot“. Perderá la conexión ssh.
  12. (Opcional) Puede descargar e instalar el cliente de VNC en su pc https://www.realvnc.com/download/vnc/windows/ . Conecte VNC a Respberry Pi3 usando la dirección IP. Inicie sesión con el nombre de usuario “pi” y la contraseña “raspberry“.Debería ver el escritorio de la Raspberry Pi 3.           texto alternativo
  13. Inicie la sesión de Pi ssh con putty a o localmente a través de VNC y escriba los dos comandos a continuación desde  el  símbolo del sistema de Pi para actualizarlo: sudo apt-get update” y “sudo apt-get upgrade” (Esto llevará un tiempo)
  14. Descargue este proyecto github como archivo zip con el siguiente comando “wget https://github.com/nassiramalik/IOT-Pi3-Alexa-Automation/archive/master.zip “
  15. Descomprima el archivo zip descargado con el comando “unzip master.zip” y escriba el comando “cd IOT-Pi3-Alexa-Automation-master” una vez que haya terminado de descomprimir
  16. (Opcional) Ejecute el comando  “sudo pip install virtualenv”  para instalar virtualenv en Pi
  17. (Opcional) Ejecute  el comando “virtualenv ipaa-env” para crear un entorno virtual para su proyecto
  18. (Opcional) Ejecute  el comando “. Ipaa-env / bin / activate” para activar el entorno virtual de su proyecto
  19. Ahora ejecute el comando “sudo python3 RPi_name_port_gpio.py” para ejecutar el programa Pi IOT  que controla un relé asociado al GPIO4 .   También puede usar el comando  ” “sudo  python 3RPi_name_port_gpio_8_Relays.py” para controlar hasta 8 dispositivos o invertir la polaridad  en caso de que necesite algunas de esas   funcionalidades. Como puede adivinar  este es el archivo que ejecutará para iniciar el programa en su Raspberry Pi  iniciando un servidor  así que presiona enter  el programa se inicia en  Raspberry Pi y se  quedara esperando a Alexa para darle comandos al código Python.
  20. En el código se ha escrito el nombre del dispositivo como “office” (oficina)  , pero puede cambiarlo por  lo que quiera, simplemente puede entrar  y cambiar este texto de la oficina al  nombre que desea dar a este dispositivo y Alexa
  21. Ya  puede empezar  a probar  ALexa  de  modo  que puede darle  un comando de voz a Alexa para descubrir dispositivos “Alexa discover devices” (Alexa descubre dispositivos), por lo que buscará en su red y descubrirá su Raspberry Pi 3 como un dispositivo IOT.
  22. Dele un comando de voz a Alexa “Turn on the office” (Enciende la oficina), deberá escuchar un sonido de clic de rele y encenderá cualquier carga que tenga coenctada a este
  23. Dele un comando de voz a Alexa “Turn on the office”  (Apagar la oficina), debería escuchar un sonido de clic de relevo y la carga conectada al rele dejara de estar alimentada

Alexa  siempre necesitara   descubrir los  nuevos dispositivos de  la red , por lo que para que empiece  el  descubrimiento  de dispositivos IOT que  hay en su red interna   para ello debe  presionar el botón para  su descubrimiento  en la botonera del altavoz o  también dele un comando de voz a Alexa para descubrir dispositivos “Alexa discover devices” (Alexa descubre dispositivos) lo cual enviara una difusión para descubrir dispositivos en nuestra red y en la Raspberry pi debería estar respondiendo.

Es obvio que  cualquier entrada analógica ( como por ejemplo temperatura ,detección de humedad,luminosidad, ect) también seria interesante poder ser soportada    pero eso  lo dejaremos  para  futuras actualizaciones   de este interesante proyecto

En el vídeo siguiente nos explican nuevamente los pasos ya comentados:

 

GitHub Project: https://github.com/nassir-malik/IOT-P…

 

Muy pronto las casas impresas y autosostenibles serán una realidad


Construir una casa del modo tradicional puede llevar mucho tiempo y ademas es un proceso bastante costoso  de  modo que algunos constructores de casas desde hace ya algún tiempo han optado por automatizar parte de la construcción.

Una nueva empresa ucraniana de construcción de viviendas llamada PassivDom utiliza un robot de impresión 3D que puede imprimir partes para casas pequeñas,  pudiendo la máquina imprimir las paredes, el techo y el piso del modelo PassivDom de 38 metros cuadrados en aproximadamente ocho horas. Las ventanas, puertas,fontanería y sistemas eléctricos son agregados por un trabajador humano.

Cuando se completa, las casas son autónomas y móviles, lo que significa que no necesitan conectarse a sistemas eléctricos o incluso de  saneamiento externos:la energía solar se almacena en una batería conectada a las casas, y el agua se recoge y filtra de la humedad del aire (o puede verter agua en el sistema). Además las casas también cuentan con sistemas de alcantarillado independientes.

Desde su lanzamiento en la primavera de 2017, ha recibido más de 8,000 pedidos anticipados en los Estados Unidos para sus hogares, que comienzan en $ 64,000(unos 57.000€)  . Los primeros 100 serán entregados en enero de 2018.

 

El modelo más pequeño de PassivDom mide 38  metros cuadrados y oscila entre unos 57.000€ y unos 87.000€,

 

 

casa1.PNG

Esta casa  tiene sala de estar estudio, cocina, un baño siendo aconsejable para 2 personas  . Sus  dimensiones son :  H x A x L: 3.81mx 3.98 mx 9.63 m  y un peso de hasta 9,000 kg.

La capacidad de salida de 3.3kW y una capacidad de almacenamiento de 22kWh .Los  tanques de agua dulce son de hasta  1120L y el tanque de aguas grises / 450L

El modelo de 72  metros cuadrados  tiene un mayor coste  desde unos 87.000€ hasta unos s 130000€ siendo ideal  para una familia

 

casa2.PNG

Sus  medidas son H x A x L: 3.81mx 7.96 mx 9.63 m con un peso de hasta 35,270 lbs / 16,000 kg.  La capacidad de salida de 5.0kW y una capacidad de almacenamiento de 33kWh. Los  tanques de agua dulce son de hasta  1120L y el tanque de aguas grises 450L ( como el en el modelo anterior) 

Esta  casa cuando entras por la puerta principal e un gran espacio abierto con una pequeña cocina y ventanas de piso a techo.  Este modelo no incluye un dormitorio separado, lo que significa que los residentes necesitan un sofá cama. Un baño pequeño se encuentra cerca de la cocina.

Ambas modelos cuenta  con

  • cocina: microondas, nevera, lavavajillas, cafetera
  • baño: inodoro, ducha, lavadora / secadora, lavabo.
  • habitación: sofá cama, mesa, sillas, armario de cocina, almacenamiento, armario

PassivDom también puede crear modelos personalizados. Los modelos premium vienen con muebles, una cocina, un baño, sistemas de ingeniería, un suministro de energía, un tanque de agua y un sistema de alcantarillado.

Algo muy destacado es que las casas también ofrecen la posibilidad de vivir fuera de la red  dando las  oportunidades de vivir en la naturaleza lejos de la civilización, pero tener condiciones cómodas de una casa tradicional

Esta tecnología nos permite vivir en el bosque, en las montañas o en la costa, lejos de las personas y la infraestructura.

Estos son los sistemas de ingeniería  de los que se nutren;

  • Control del clima: bomba de calor, calefacción por suelo radiante, aire acondicionado, ventanas de baja emisión que absorben los rayos infrarrojos (pendiente de patente)

  • Sistema de calidad del aire: filtración HEPA, sistema antibacteriano, sensores de CO2 y humedad y control, recuperación.

  • Energía: sistema solar híbrido fuera de la red con almacenamiento de batería. opcional se puede conectar a redes eléctricas regulares.

  • El agua: opcional puede equiparse con un sistema aire-agua fuera de la red (condensación de agua a partir de la humedad del aire).

  • Alcantarillado: opcional puede ser equipado con filtro de aguas grises y sistemas sépticos autónomos.

Para hacer un PassivDom en casa, el equipo traza el plan para la impresora 3D en sus fábricas en Ucrania y California. Capa por capa, el robot de siete ejes imprime el techo, el piso y las paredes de 20 centímetros de grosor, que están hechas de fibras de carbono, poliuretano, resinas, fibras de basalto y fibra de vidrio.

planocasa.PNG

Una imagen esquemática de un marco de casa PassivDom.

Luego se agregan puertas, ventanas, electrodomésticos, un sistema de alarma, paneles solares y sistemas sépticos, eléctricos, de curación y de enfriamiento.

 

Dependiendo del modelo, todo el proceso puede tomar menos de 24 horas. El diseño y la producción de casas más grandes con más especificaciones y acabados, como el que se muestra a continuación, pueden demorar hasta un mes. Si una casa está prefabricada, se puede enviar al día siguiente.

En el siguiente vídeo podemos ver el interior  de una de las viviendas que proponen:

 

 

PassivDom no es la única empresa que utiliza la impresión 3D para construir viviendas. La empresa de viviendas con sede en San Francisco Apis Cor , Dus Architects en Amsterdam, así como Branch Technology de Chattanooga, Tennessee, dicen que pueden construir casas en cuestión de días o semanas.

La startup cree que la impresión 3D es una forma más económica y eficiente de construir casas que puede vender a un precio (relativamente) asequible. “Más de 100 millones de personas no tienen un techo sobre sus cabezas”, dijo Sorokina. “Es necesario construir casas más asequibles”.

Cerradura RFID conArduino


RFID o identificación por radiofrecuencia (del inglés Radio Frequency Identification) es un sistema de almacenamiento y recuperación de datos remoto que usa  transpondedores RFID con el  propósito de transmitir la identidad de un ente  mediante ondas de radio. Las tecnologías RFID se agrupan dentro de las denominadas Auto ID (automatic identification, o identificación automática).

Las etiquetas RFID  son  dispositivos pequeños, similares a una pegatina que contienen antenas para permitirles recibir y responder a peticiones por radiofrecuencia desde un emisor-receptor RFID.

Una de las grandes ventajas de esta tecnología   es que las etiquetas   son pasivas ,no necesitando por  tanto  alimentación eléctrica   así como tampoco  requieren visión directa entre emisor y receptor.

En el post de  hoy  vamos    a ver como se implementa  establecer un pestillo de puerta que puede abrirse mediante una tarjeta  RFID  programando  una lista de las tarjetas ‘claves’ aceptables que podrían  abrir  la puerta durante un período determinado de tiempo.

Este es proyecto es  sencillo  pero requiere que alterar la  jamba de la puerta lo cual requiere mucha pericia   pero como podemos  en el siguiente vídeo  el resultado  es muy espectacular.

 

 Electrónica necesaria

Estas son las partes recomendadas para este proyecto. Puede usar otro relé de variante, Arduino, o etiqueta RFID compatibles, pero se recomienda el escudo RFIDuino para que el código que veremos funcione sin problemas.

 

Note que usando un solenoide de cierre de puerta recta necesita energía para abrir la puerta. Si pierde energía, usted se eficazmente bloqueará hacia fuera y no se puede abrir la puerta hasta que la energía se devuelve al sistema pero si usa una  placa electrónica , todavía puede utilizar su clave normal para abrir la puerta en el caso de un apagón.

Obtener sus datos de etiqueta RFID

  1. Conecte su RFIDuino como se muestra en la imagen teniendo en cuenta que el escudo RFdui9no deberá colocarlo encima de su Arduino en la posición exacta en que coinciden ambas placas .De la placa no olvide que ira la antena  RFID  al exterior y  por su puesto su Arduino ira conectado  por usb a su pc para poer  instalarle el firmware
  2. Abra su tablero. Usted puede encontrar este bosquejo bajo RFIDuino_helloworld
    File>Examples>RFIDuino>RFIDuino_helloworld
  3. Usted necesitará asegurarse de que el código se ajusta para el hardware del RFIduino.
    v1.2 escudos (2 pin antena, ‘REV 1.2’ impreso en el tablero) se necesita el siguiente código escudos v1.1 (antena de 4 pines, ningún número de versión impresa en la placa) tendrá el siguiente código

    RFIDuino myRFIDuino(1.2);     //initialize an RFIDuino object for hardware version 1.2
    RFIDuino myRFIDuino(1.1);     //initialize an RFIDuino object for hardware version 1.1

    Ambas líneas de código están disponibles en el dibujo, simplemente quite el comentario de que no necesita.RFIDuino_helloworld

    Si tiene aún dudas sobre qué hardware está usando, vea esta página

  4. Conecte un cable micro del USB de su ordenador  a su Geekduino
  5. Cargue  RFIDuino_helloworld3  en su tarjeta usando el botón de carga en el IDE de Arduino.
  6. Una vez cargado, puede dejar la placa conectada al ordenador  pues  necesita esta conexión para alimentar el tablero y para comunicarse con la computadora
  7. Abra al Monitor serie.
    Tools -> Serial Monitor

    El serial monitor debe ajustarse a los valores predeterminados (‘Fin a No Line’, 9600 baudios)

  8. Pase una etiqueta por la antena de RFIDuino. La luz verde se iluminará y el zumbador hará un ruido.
  9. El Serial Monitor mostrará 5 números. Estos números representan el ID de la etiqueta.
  10. Copie abajo estos números para uso futuro. Puede ser útil escribir el ID en una nota adhesiva y se adhiere a la etiqueta. Nota: se necesita el ID por al menos una etiqueta para el siguiente paso.

 Cableado y programación

  1. Conecte sus componentes como se muestra en le imagen  de arriba  donde como  se puede apreciar se ha añadido una placa de rele  en cuya salida conectaremos un solenoide que alimentaremos con una tensión exterior  y el alimentador  dedicado para suministrar energía  a la placa   Arduino y el Escudo .
  2. Abierta sobre su tablero. Usted puede encontrar este bosquejo bajo RFIDuino_demo3_lockbox_multi
    File>Examples>RFIDuino>RFIDuino_demo3_lockbox_multi
  3. Usted necesitará asegurarse de que el código se ajusta para el hardware del RFIduino.
    v1.2 escudos (2 pin antena, ‘REV 1.2’ impreso en el tablero) se necesita el siguiente código escudos v1.1 (antena de 4 pines, ningún número de versión impresa en la placa) tendrá el siguiente código

    RFIDuino myRFIDuino(1.2);     //initialize an RFIDuino object for hardware version 1.2
    RFIDuino myRFIDuino(1.1);     //initialize an RFIDuino object for hardware version 1.1

    Ambas líneas de código están disponibles en el dibujo, simplemente quite el comentario de que no necesita.RFIDuino_demo3_lockbox_multi

     

  4. Modifique el código para el número de tarjetas que desee por línea edición 58. Por ejemplo, si tienes tres tarjetas, utilice el código
    #define   NUMBER_OF_CARDS 3     //total numer of key cards that the system will respond to.
  5. También necesitará modificar el bosquejo para incluir los identificadores de las etiquetas que desea incluir. Estos identificadores pueden encontrarse usando el bosquejo. Encontrar el bloque de código a partir de en línea 62 – se parece a esto. Ahora inserte el ID para sus etiquetas. Si tenemos tres etiquetas clave, nuestro código podría ser algo así como Hello World
    byte keyTag[NUMBER_OF_CARDS][5] ={
    {0,0,0,0,0},  //Tag 1 //commenting each tag with a description can help you keep track of them
    {0,0,0,0,0},  //Tag 2
    {0,0,0,0,0}, //Tag 3
    {0,0,0,0,0},//Tag 4
    };
    byte keyTag[NUMBER_OF_CARDS][5] ={
    {77,0,44,22,242},  //Tag 1 //commenting each tag with a description can help you keep track of them
    {200,1,4,98,236},  //Tag 2
    {23,64,4,25,1}, //Tag 3
    };
  6. Conecte un cable micro del USB de su ordenador  a su Geekduino
  7. Cargar en su tarjeta usando el int del botón de subir el IDE de Arduino. RFIDuino_demo3_lockbox_multi
  8. Una vez cargado, desconecte el cable USB del ordenador…
  9. Ninguna de las etiquetas ‘clave’ pase por la antena de RFIDuino. La luz verde se iluminará y el zumbador tocar tres notas diferentes. Además, el solenoide se dispara.
  10. Pase cualquier etiqueta que no es la etiqueta de ‘clave’ a través de la antena de RFIDuino. La luz roja se iluminará y el zumbador tocar tres notas monótonos. El solenoide no reaccionará.

 Montaje final

 Una vez que este seguro que lo tiene programado y el seguro libera cuando usted pase la correcta etiqueta de RFID, ya puede montarlo en el marco de una  puerta. En el video  de hecho podemos ver en una puerta de marco de metal con ventanas de cristal, por lo que es mas sencillo instalar  el lector de RFID tras el cristal.
También se  puede montar la antena en una caja resistente a la intemperie para la accesibilidad y mantener el Arduino y otros aparatos electrónicos en el interior por seguridad.

Hay instrucciones con la placa electrónica de apertura que puede ayudar en el montaje  Se recomienda mantener la placa tan al ras como puedas a la pared se monta en y tener cuidado al pasar los cables a través de una pared.

Fuente : instructables.com

 

Servidor para Netduino+


NeonMika.Webserver es un servidor web preconfigurado  para Netduino+  yNetduino 2+   fácil de extender de modo que con un código mínimo (o incluso nulo), puede obtener excelentes resultados controlando todos  los puertos de  su Netduino +, accediendo y cargando archivos, creando servicios web ¡y algunas cosas  más!

El código  fuente esta disponible aun en codeplex en  :https://neonmikawebserver.codeplex.com/documentation  aunque hay  una version para Netduino 3+ en  Github .  A pesar de que el foro  de Netduino se ha mudado al sitio widernesslab.co  se mantiene  información  de NeonMika.Webserver  en el antiguo  foro de Netduino ( http://forums.netduino.com/index.php?/topic/2889-neonmikawebserver/)  asi que tiene más preguntas o desea  mas explicaciones  sobre el código le recomiendo que se dirija a ese sitio.

Si usa el esquema de la cafetera conectada  del que hablábamos  en un post anterior     únicamente puede   usar el pin digital  D2  como salida  y al que  conectaremos  una economica placa de un relé   compatible  con Arduino (5V)

 

Como se puede apreciar en el esquema del circuito , este no puede ser mas simple pues solo hay que alimentar el circuito del rele con la tensión  de 5V procedente de la placa Netduino, conectar el pin de datos  D2 a la entrada IN de la placa del  relé  y finalmente conectar la carga ( en este caso un cafetera)  a los contactos de salida del relé

 

Gracias  a neomikaserver podremos controlar fácilmente la cafetera   de una manera muy facil  y rapida pero ademas este servidor destaca por la siguientes  funcionalidades:

  • Acceso a la tarjeta microSD
  • Control de todos  lso puertos GPIO
  • Lectura de todos los puertos GPIO
  • Control   de  su Netduino+  usando métodos existentes como setPWM o setDigitalPinState
  • Permite agregar sus propios métodos similares al servicio web para que pueda expandir NeonMika.Webserver a sus propias necesidades para cada proyecto.

Hay dos directorios de interés para usted:

  • Framework :contiene el código de la biblioteca para un nuevo proyecto usando NeonMika.Webserver. Consulte esta carpeta si desea agregar NeonMika.Webserver a un proyecto existente.
  • Executeable:  contiene un pequeño proyecto creado usando NeonMika.Webserver. Consulte este si desea obtener una primera experiencia con el servidor. ¡Puede ejecutarlo sin escribir ninguna línea de código!

Para probar NeonMika.Webserver y tener algún código de muestra, simplemente siga estos pasos:

  • Simplemente descargue el código y vaya a “Executeables”.
  • Implemente el proyecto en su Netduino Plus. Debería comenzar a funcionar.
  • Este proyecto de ejemplo que utiliza NeonMika.Webserver tiene el siguiente método xml agregado al servidor web en tiempo de ejecución: netduinoplus / wave … Conecte los LEDs al Pin 0,1,4,5,8,9 y verá que su LED se enciende uno después el otro.

 

Setup

Como puede ver, solo necesita llamar al constructor para iniciar NeonMika.Webserver.

Server WebServer = new Server(PinManagement.OnboardLED, 80, false, "192.168.0.200", "255.255.255.0", "192.168.0.1", "NETDUINOPLUS");

Los parámetros necesarios son  autoexplicativos:

  • El puerto 
  • DHCP encendido / apagado
  • Dirección IP
  • Máscara de subred
  • Gateway
  • Nombre de red

¡No necesita nada más para ejecutarlo!

Métodos sopurtados?

Aquí hay una lista con todos los métodos web precodificados que puede usar en su navegador o en cualquier otra aplicación para comunicarse con su Netduino:

  • echo (devuelve el valor enviado) ,    ejemplo   netduinoplus / echo? value = [a-Z] , por ejemplo http://192.168.0.2/echo?value=markus devolveria “markus”
  • switchDigitalPin (Cambia el pin seleccionado de verdadero a falso y vis-a-vis) ,ejemplo : -> netduinoplus / switchDigitalPin? pin = [0-13]  es decir  por ejemplo para encender la cafetera seria http://192.168.0.2/setDigitalPin?pin=2&state=true y para apagarla http://192.168.0.2/setDigitalPin?pin=2&state=flase
  • setDigitalPin (Establece el pin digital seleccionado al estado seleccionado), ejemplo -> netduinoplus / setDigitalPin? pin = [0-13] & estado = [verdadero | falso]
  • pwm (establece el PWM del pin para el período y duración enviados, ejemplo -> netduinoplus / pwm? pin = [5 | 6 | 9 | 10] & period = [int] & duration = [int]
  • getAnalogPinValue (Devuelve el valor del pin analógico seleccionado),ejemplo-> netduinoplus / getAnalogPinValue? pin = [0-5]
  • getDigitalPinState (Devuelve el estado de su pin seleccionado (on / off)),ejemplo -> netduinoplus / getDigitalPinState? pin = [0-13]
  • getAllAnalogPinValues ​​(Devuelve el valor de cada pin analógico), ejemplo-> netduinoplus / getAllAnalogPinValues
  • getDigitalPinState (Devuelve el estado de cada pin digital).ejemplo-> netduinoplus / getAllDigitalPinStates
  • getAllPWMValues ​​(Devuelve los valores para todos los puertos PWM), ejemplo-> netduinoplus / getAllPWMValues
  • fileUpload (Carga un archivo en la ruta de la tarjeta SD mediante POST. Debe escribir los datos de archivo (bytes) en el cuerpo POST),ejemplo  -> netduinoplus / upload? path = [a-Z]
  • Respuesta de archivo y directorio: Simplemente escriba netduinoplus / [pathtomyfile] y podrá ver / descargar su archivo. Si la ruta dada es un directorio, se devolverá una vista de directorio

 

Más para fines de prueba, pero también como parte de NeonMika.Webserver:

  • xmlResponselist (le da una lista de todos los métodos XML) , ejemplo -> netduinoplus / xmlResponselist
  • jsonResponselist (Te da una lista de todos los métodos JSON),ejemplo -> netduinoplus / jsonResponselist
  • multipleXML (Ejemplo sobre cómo usar XML anidado), ejemplo -> netduinoplus / multixml

Algunos  ejemplos de uso

Como expandirlo con servicios XML

WebServer.AddResponse(new XMLResponse("wave", new XMLResponseMethod(WebserverXMLMethods.Wave)));

No se ve tan complicado? Eso porque no es complicado.

Este es un ejemplo de cómo escribir un XMLResponse

private void Echo(Request e,Hashtable results)
{
  if(e.Request.GetArguments.Contains("value") == true)
    results.Add("Echo",e.Request.GetArguments["value"]);
  else
    results.Add("ERROR", "No 'value'-parameter transmitted toserver");
}

Todas las XMLResponses deben tener este formato:

  • Valor de retorno:vacío
  • Parámetro: Solicitud (con esto puede acceder al parámetro escrito en la URL)
    Hashtable (aquí usted agrega la respuesta)
  • Si necesita XML apilado, eche un vistazo al método MultiXML en Server.cs

 

Cómo escribir una respuesta JSON:

 

private void ResponseListJSON(Request e, JsonArray j)
{
   JsonObject o;
   foreach(Object k in _Responses.Keys)
   {
     o = newJsonObject();
     o.Add("methodURL", k);
     o.Add("methodName", ((Response)_Responses[k]).Name);
     j.Add(o);
   }
}

Server setup:

Server WebServer = new Server(PinManagement.OnboardLED,80,false,"192.168.0.200","255.255.255.0","192.168.0.2","NETDUINOPLUS"); 
WebServer.AddResponse(newXMLResponse("echo", new XMLResponseMethod(Echo))); 
WebServer.AddResponse(newJSONResponse("jsonResponselist", new JSONResponseMethod(ResponseListJSON)));

 

Cómo acceder a los últimos datos POST:

PostFileReader post = new PostFileReader ();

byte [] postData = post.Read (bufferSize);

 

Mostrar el directorio de archivos:

http://192.168.0.2/SD

 

Archivo de acceso:

http://192.168.0.2/SD/folder/file.txt