Cómo construir un banco de energía con supercondensadores.


Recientemente se ha introducido en el mercado los “supercondensadores” o lo que es lo mismo condensadores de gran capacidad pero que mantienen prácticamente el mismo factor de forma que los condensadores electrolíticos que estamos acostumbrados a usar en electronica . 

Un aspecto muy diferenciador  de esta nueva tecnología  es que gracias a esta se puede  almacenar energía sin reacciones químicas , lo cual permite que los súpercondensadores se carguen y descarguen mucho más rápido que las baterías y debido a ello  no sufren el desgaste causado por las reacciones químicas, también durando mucho más tiempo (como sabemos a diferencia de los condensadores ordinarios, las baterías almacenan energía en una reacción química, y debido a esto, los iones se insertan realmente en la estructura atómica de un electrodo : a diferencia de un condensador, los iones simplemente “se adhieren”.)

Normalmente si  descargamos nuestra batería del coche a menudo e intentamos arrancar nuestro coche una vez más ,esto  causará más daño a la batería del coche y eventualmente  no cargará de nuevo , hasta que llegue un tiempo rodando otra vez. Sin embargo esto no es cierto para los super-condensadores: por ejemplo un condensador tradicional del tamaño de una batería de célula 18650  , tiene una capacidad de aproximadamente 20 microfaradios, pero si tomamos un supercondensador  de tamaño similar, este  puede llegar a tener una capacidad de 300 Farads lo que  significa que para la misma tensión, el supercondensador  podría en teoría almacenar hasta 15 millones de veces más energía.

 A pesar  del gran avance ,sin embargo no todo son ventajas en los condensadores pues un condensador típico de 20 microfaradios sería capaz de manejar hasta 300 voltios, mientras que un ultracondensador solo puede llegar  a soportar  2,7 voltios, lo cual significa que  si se usa un voltaje más alto, el electrolito dentro del supercondensador comienza a descomponerse  y podría por tanto llegar a destruirse: por este motivo en realidad un super-condensador tiene la capacidad de almacenar alrededor de 1.500 veces la energía de un condensador de tamaño similar.

Por todo esto los supercondensadores  aunque  el campo de aplicación es muy grande : alimentación de emergencia ideal para CMOS, RAM, VCR, radio, televisión, teléfono, instrumentos inteligentes, datos de conducción, tres ICs, relojes electrónicos, linternas LED, dispositivos inteligentes, motores de juguetes, pantalla DC, USV industrial, válvula magnética, IC, reflectores LED, etc.    deberíamos  tenemos  tener en cuenta algunas consideraciones ya comentadas antes de proceder a  usarlos.

Preparación de un supercondensador

Como hemos ya comentado los supercondensadores deben  ser cargados SIEMPRE con circuitos de carga balanceadas pues sin estos corremos el riesgo de destruirlos .No obstante si piensa que son complejos no es así puesto que  estos, circuitos son asequibles de bajo costo  , sencillos ( en realidad hablamos de  un simple circuito de conmutación que no deja pasar la tensión de carga al condensador por encima del umbral )  y  son  muy fáciles de instalar pues van encima de cada condensador ya que están diseñadas con la misma forma para colocar estos justo encima y dar continuidad eléctrica ( y carga ) al conjunto

Por ejemplo si conectamos 5 supercondensadores en serie a 12v  el  voltaje no se dividirá por igual entre los diferentes terminales de los condensadores (2.2V),lo cual ya no está dando una pista de sus limitaciones especialmente a la hora de cargarlos puesto que en caso de asociación serie ,  hasta que cada supercondensador esté completamente cargado,  el voltaje en los extremos de cada condensador subirá y bajará casi como en vumetro de leds precisamente :es precisamente esta la razón  por la que  debemos usar un circuito de protección que proteja los condensadores labor que realizan las placas balanceadoras las cuales mantiene el voltaje entre los condensadores entre 2.7V o menos , es decir los mantiene en  la zona segura de funcionamiento segura cortando la tensión de carga cuando se supera ese valor protegiendo así de este modo al supercondensador

Estas placas por tanto nos descargan de un  trabajo tedioso  pues para cargar un simple condensador de 2.7V 500F   con 2.4 v de forma segura sin usar una placa balanceadora deberíamos conectar un voltímetro y un amperímetro simultáneamente durante unos 30 minutos para llegar casi a los 2V con una intensidad de unos 0.19Amp controlando en cada  momento que no se supere  el umbral . Una vez cargado aunque baje la tensión estos se comportan manteniendo la corriente casi invariable

 

Vamos a ver como calcular la capacidad  resultante de la asociación mas tipica de 5 supercondensadores  

  • En el caso de dos condensadores serie sabemos que esta es la capacidad resultante  es  1/c= 1/c1+ 1/c2

Por tanto la capacidad resultante será : 1/Cfinal= 1/500+ 1/500  =>  Cfinal =250F  

Asimismo  las tensión final es el sumatorio de las parciales:V=V1+v2

Es decir  V= 2.7 +2.7 =5.4V                                                                                                                                                                                                                          

  • En el caso de  tres  condensadores serie sabemos que esta es la capacidad resultante  es

      1/c=1/c1+1/c2+1/c3    lo que da  Cfinal=  166.67F

        Asimismo  las tensión final es el sumatorio de las parciales:    3x 2.7V 500F =8.1v                                                                                                                                                                                                                                                                                      

  • En el caso de cuatro condensadores serie  1/c=1/c1+1/c2+1/c3 +1/c4

Por tanto la capacidad resultante será Cfinal=125F

Asimismo  las tensión final es el sumatorio de las parciales:4 x 2.7V 500F =10.8V                                                                                                                                                                                         

  • Finalmente en el caso de cinco condensadores serie 1/c=1/c1+1/c2+1/c3 +1/c4+1/c5

Por tanto la capacidad resultante será Cfinal=100F

Asimismo  las tensión final es el sumatorio de las parciales  5* 2.7V 500F =13.5V , que es justo el valor que queremos llegar        

 

 

 

 

 

Calculo final

En el calculo anterior de  5 supercondensadores serie  obtuvimos  una tensión útil de 13.5V d3l conjunto   pero con una capacidad final  muy mermada de 100F  así que para aumentarla  si tomamos dos agrupaciones de 5  condensadores en serie  en  paralelo la  capacidad aumentará manteniéndose la tensión final;

 

 

La  capacidad  de este conjunto  aumenta justo el doble tal y como nos dicen los cálculos

          1/cfinal= 1/c1+1/c2+1/c3 +1/c4+1/c5 + 1/c6+1/c7+1/c8 +1/c9+1/c10  =>

         1/cfinal= 1/500+1/500+1/500 +1/500+1/500 + 1/500+1/500+1/500 +1/500+1/500 =>

          cfinal=200F  

Asimismo  las tensión final es el sumatorio de las parciales de una agrupación al estar ambas en paralelo

Es decir  V= 10 x 2.7V = 13.5V

En resumen    tenemos  con ambas agrupaciones  un supercondensador equivalente   de 3.5V 200F

 

Como C=As/V ( AS=Amperios por segundo) , entonces AS=C+V,

 AS= 200F x 13.5V =2700 Amp/seg   

Vemos   que para nuestra agrupación  serie y paralelo de 10 supercondensadores  obtenemos pues  una capacidad en AS  de 2700 Amp/seg

 

Por otro lado como la capacidad de un acumlador normalmente se mide en  unidades  de tiempo (AH= Amperios hora)  como AH =AS/3600s

C (en Amphora) =2700 (enAmp/seg)   /3600= 0.75Ah

Vemos   que para nuestra agrupación de 10 supercondensadores  una capacidad en AH de 0.75AH  que sería la capacidad de esta agrupación , lo cual  nos hace ver en números  que con estas agrupaciones siguiendo estas fórmulas ya comentadas  necesitamos bastantes elementos (  por ejemplo  para obtener un powerbank de 15AH necesitaríamos  unos 200 supercondensadores de 2.7V 500nf)

Una vez hecho los cálculos  llega el momento de construir el  banco de supercondensadores , para  lo cual lo primero es soldar los condensadores a las placas de  protección respetando escrupulosamente la  polaridad  .

Ya montados los módulos de condensador con las placas toca interconectar estos   para obtener  los 0.75AH    . Debemos   tener en cuenta ,dada la corriente que debe pasar por estos cables  que deberemos hacer   la interconexión   con cables  de cobre   de cierto espesor . En este sentido como un cable de 1.1mm soporta  unos 99 Amp en alterna  lo ideal es usar varios cable juntos para que no haya problemas   de calentamiento de estos

Este es el resultado final del montaje

 

 

Medición  de corriente  y tensión de carga

La mejor manera de monitorear la carga de  un acumulador o una  la agrupación de supercondensadores es usar  un medidor multifuncional de panel , pero !atención !  , porque este debe ser especial  para  corriente continua, lo cual será claramente evidente cuando  sea necesario un shut  que deberemos conectar en serie con la carga  (en nuestro caso el banco de supercondensadores)

Normalmente en estos medidores  el shunt se conecta  en  el polo negativo en serie con la carga   en el que precisamente  en ambos extremos  conectaremos  los hilos de medición  siguiendo el esquema siguiente 

Este tipo de multímetros  DC 4 en 1  suelen tener  una precisión de medición de grado 1.0, combinando  la medición de voltaje, corriente, potencia y energía en un combo, súper compacto y liviano que puede ser portátil y fácil de usar.   También  suelen  tener una  función de alarma mostrando el voltaje parpadeando  la luz de fondo  simultáneamente si el voltaje va más allá del umbral de alarma   que se puede establecer si es necesario( el rango va desde   6 a los 90v ).

Además estos instrumentos almacenan automáticamente los datos de  la última prueba de modo que  cuando se  apagan  el valor energético se puede restablecer por una pulsación corta el botón de función en segundos.

En  concreto este medidor, puede medir voltios, amperios, vatios y energía individualmente contando con un shunt de 100 A / 75 mV, adecuada para mediciones de gran alcance . Cuenta  con una pantalla Digital Súper Grande de  51x30mm de  LCD azul para mostrar la tensión, corriente, potencia y la energía.  Con este medidor, puede medir voltaje 6.5V – 100V DC, amperios 0.0A – 100A y vatios 0.0w – 10Kw.

 

 

Si tiene dudas sobre su uso en este video podemos ver el medidor   en funcionamiento  usando precisamente  est  para monitorizar la carga de nuestro conjunto de 10 supercondensadores

 

Conclusión 

Realmente ya hemos visto como montar  los supercondensadores  para fabricar  un banco de energía de supercondensadores  para uso doméstico utilizando  placas de protección  para ensamblar los condensadores   de 2.7V 500F  montados en una combinación mixta de serie y en paralelo de forma segura.

El valor total de la capacidad de los  10 supercaps resultante de es  de 13.5V ,como hemos calculado es de 200F  que traducido a Ampx hora es de  0.75AH .siendo e tiempo de carga promedio para este paquete de unos 8 minutos  utilizando un  cargador lento  comercial  tradicional  de  batería del automóvil.

No nos cansaremos de repetir que las placas de carga son imprescindibles  porque  protegen los condensadores de daños por sobretensión.

 

Finalmente  en este video podemos ver el montaje de este conjunto   y su utilización practica

 

 

 

Sencillo soldador de puntos


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues está muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ). Además  hay tambien un motivo obvio : si no contamos con un  horno microondas¿  vamos a tener que comprar un transformador de microondas  ( nuevo o no)   y que tendremos que desmontar?

 

 

Bien  en un  post  anterior vimos como una alternativa  a  los soldadores de punto basados en transformadores  de microondas era  usar supercondensadores  , pero   son caros  y dificiles de conseguir , así que es bueno explorar otras alternativas como  pueden ser las  baterias de automovil ( nueva  o usada ) como fuente de energía

Como parte de un proyecto de dotar de un nueva  batería  de litio  a un precio razonable   basada  en celdas 18650  para una bicicleta de montaña eléctrica  el autor de este proyecto (Rory ) necesitaba una gran batería de litio  que encajasen  en su presupuesto según sus  especificaciones:

  • Barato: solo se planea si es a bajo  coste
  • Confiable : deberia  poder ofrecer  más de 500 pares de soldaduras por puntos para hacer
  • Fácil y rápido de hacer -:idealmente usando piezas que se pueda  disponer r
  • Relativamente seguro: No hay altos voltajes presentes

Rory necesitaba ser capaz de soldar la tira de níquel a los terminales celulares 18650 para fabricar   su soldador ocasional  .   Los soldadores  18650  de punto están ampliamente disponibles en la red y probablemente valga la pena la inversión si usted tiene la demanda para ello. Sin embargo, como Rory sólo planeaba construir una batería, realizó su propio soldador de puntos  sin tener que adquirir uno comercial.

Para situarnos ,una búsqueda rápida de YouTube nos ofrece  el canal de darkkevind  donde demuestra su soldador basado  en  una batería de coche estándar conectada a un solenoide motor de arranque de moto. El solenoide se activa mediante un pulsador que cambia la potencia a dos electrodos de soldadura hechos de clavos de cobre. Su diseño es funcional  pero como todo en este mundo  se puede mejorar para  hacer un sistema más confiable  como el que vamos a ver en las líneas siguiente con el diseño de Rory.

 

 

Soldador con bateria de 12V 

El diseño de Rory  cuenta con un solenoide de arranque DELCO 130493  como  interruptor   de potencia para conectar  momentáneamente las bornas de la batería a las puntas de soldadura .Como el lector puede adivinar  en realidad   para este proyecto en realidad   puede usar   cualquier solenoide de motor de arranque de 12V  ( incluso aunque sea para motocicleta) .

En este modelo en concreto es  muy interesante   el diseño de los terminales que pueden  ser vinculados muy bien a una abrazadera de terminal directamente a la batería y además el soporte también permite montar el gabinete de electrónica junto a este  .

Como puede apreciarse en la imagen los terminales laterales  son los de interruptor del relé, es decir las conexiones de potencia que conmutará el solenoide  .Obviamente do las  conexiones centrales  son las de la bobina del solenoide ( de ahí su menor dimensión) 

 

Como se puede apreciar los pernos de terminales solenoide de 8 mm se sujetan muy bien en los terminales de la batería y la bobina solenoide está entre el perno pequeño en el soporte derecho y el soporte de montaje

En el  montaje del Rory el  solenoide es controlado por un circuito de temporizador construido alrededor del multivibrador monoestable dual de precisión  CD14538BE  de Texas Instrument que funciona en modo “no refrigerable”. 

Como rory no ha compartido la configuración del circuito  vemos   abajo  un multivibrador monoestable usando IC CD4538. Es un IC multivibrador monoestable/aestable de precisión libre de activación falsa. Esto se puede utilizar para varias aplicaciones en las que se requiere un ciclo de sincronización preciso.  CD4538 es el IC multivibrador monoestable/estable de precisión que está libre de activación falsa y es más fiable que el popular temporizador IC 555.

Aquí el IC se conecta como temporizador monoestable de corta duración usando el r1 y el C1 como componentes de sincronización. Con los valores dados, la salida de IC1 permanece baja durante tres minutos. Cambiando el valor de C1 o R1 se pueden obtener varios intervalos de tiempo, que  son los valores   que deberemos ajustar para unos 20ms   ( idealmente 10 y 110 ms a través de un potenciómetro) .

A diferencia de 555 IC en el modo monoestable, aquí en CD4530, la salida de IC se vuelve alta en el encendido y se vuelve baja cuando el pin 5 del gatillo consigue un pulso de transición bajo a alto. Cuando se presiona S1, el pulso de alta marcha activa el IC y su salida baja. Esto impulsa la carga a través del transistor PNP T1. La carga puede ser un LED, zumbador, etc.  Lógicamente para cargas más grandes ( como es en este ejemplo) no basta un simple transistor de pequeña  potencia( como en el esquem  de abajo)  pues la bobina solenoide deberia ser  accionada con un transistor de potencia  como por ejemplo  un mosfet FQP30N06L. 

En la solución final basada en el circuito anterior  y que el autor no ha compartido , además   usa algunos  componentes  pasivos adicionales para eliminar el rebote de un interruptor de pie básico . La bobina solenoide es accionada por un mosfet FQP30N06L  ( con su correspondiente diodo en paralelo)  . Además  el temporizador es ajustable entre 10 y 110 ms a través de un potenciómetro estando el circuito  alimentado por una batería separada de 9V aunque podría ser alimentado por la propia  batería del coche con el desacoplamiento adecuado.

De todos modos aunque no sepamos los valores exactos del esquema  del monoestable  que uso Roru ,    este montaje   se puede comprar ya montado  y probado  (buscar 12v DC Delay Relay Timer) por unos 6€  , lo  cual es importante no sustituye  al delco puesto qeu lso contactos del rele   de este tipo de circuitos  no supera 10A con 220V en ac (2200w) , claramente insuficiente para la corriente de soldadura que sera a 12V pero en CC  

A pesar de la conmutación lenta del solenoide, los contactos permanecerán cerrados durante la misma duración que la corriente que se suministró a la bobina. En este caso  el solenoide tarda alrededor de 5 ms para cerrarse, pero el diodo a través de la bobina mantiene el campo magnético activo, permitiendo   enviar  pulsos precisos en el ajuste mínimo de 10 ms del temporizador

Todo esto está montado en una carcasa de aluminio fundido a presión. Tenga en cuenta que la bobina solenoide está conectada entre el terminal de tornillo ‘S’ y el soporte de montaje. El terminal ‘I’ es el contacto NC del solenoide, no una conexión de bobina…

Otros aspectos interesantes constructivos  es  que los electrodos se fabrican utilizando clavos de cobre soldados a longitudes cortas de cable trenzado de 8 awg. Las uñas de cobre se pueden afilar rápidamente utilizando un archivo, por lo tanto, no requieren que sean reemplazables. Unas pocas capas de termorretráctil proporcionan aislamiento térmico y eléctrico.

 

 

Como en las primeras pruebas se hicieron con una batería nueva y la resistencia interna es muy baja, el  resultado fueron  pulsos de corriente muy altos que destruyen las tiras de níquel si el pulso superaba los 20 ms ,  Rory  experimentó con una “resistencia limitante de corriente” formada por una longitud de alambre de relleno de soldadura TIG de 1,6 mm lo cual le  permitia ejecutar pulsos de soldadura de corriente más baja y así encontró que el resultado era una soldadura mucho más fuerte con  un pulso de corriente más corto (  usó un conductor con una longitud aproximada de 50 cm).

Como después del primer pulso la resistencia estaba muy caliente, aumentando la resistencia lo que  hizo que el rendimiento no fuese fiable en las siguientes soldaduras   la solución fue sumergir el cable en agua  mediante un buen vaso de plástico Ikea ( con una base muy gruesa y algunos pernos M8 que aseguraron todo juntos y mantuvieron el agua dentro).

 

 

 

Cabe señalar algunos puntos interesantes de este montaje:

  • Un pulso de alrededor de 40ms produce las mejores soldaduras con esta  configuración. Arrancar la tira de níquel de la 18650 dejaría la parte soldada todavía unida a la batería rasgando el níquel circundante.
  • La batería del coche debe estar conectada a un cargador durante el uso si se hace una gran cantidad de soldaduras. De lo contrario, el voltaje caerá, causando corriente de soldadura poco fiable. Puede usarse  un cargador de corriente constante 5A que se puede dejar conectado durante la soldadura aunque aunque un cargador de 2A más o menos estaría bien.
  • Se requiere una presión uniforme firme en cada electrodo para hacer que cada soldadura por puntos sea de igual resistencia. Los electrodos de soldadura se calientan mucho lo cual debe tener en cuenta para no quemarse .
  • A medida que el agua que enfría la resistencia se calienta hacia su punto de ebullición, no puede eliminar el calor tan rápidamente de la resistencia debido al efecto Leidenfrost (donde las burbujas de vapor aíslan el alambre). Esto permite que la resistencia funcione más caliente, lo que reduce la corriente de soldadura. Suba  el temporizador de pulso a 50mS en este punto. El agua podría ser reemplazada, o un recipiente más grande utilizado para contener el agua de refrigeración.
  • Relativamente el proyecto es  seguro ,aunque es recomendable usar gafas de seguridad debido a las chispas  ocasionales. Guantes también sería una buena idea, así como trabajar fuera lejos de cualquier cosa inflamable.

 

 

Fuente original en  hackaday.io 

Medidor de Consumo Eléctrico CHINT + ESP8266 y Matrix Led MAX7912


En esta post  volveremos a un tema recurrente en este blog: la medición del consumo eléctrico de forma invasiva en un ambiente doméstico ,pero esta vez  usaremos  el  medidor CHINT DDS666,lo que técnicamente es un medidor residencial o residencial tradicional  pero con  una salida óptica  (también llamada   salida de pulsos)-

Precisamente por esa característica  de salida óptica, dado que en el mercado existe una amplia variedad de dispositivos con este tipo de salida   , esta propuesta que vamos a ver es perfectamente viable  también para  todo tipo de contadores con salida de pulso, como la mayoría de los contadores modernos  para uso personal  que se comercializan para fijar en carril DIN en el cuadro de distribución de c.a. cuya velocidad de flash de salida de prueba es de  500 impulsos por kWh ( es decir cada impulso corresponde a un 2W/H)

Lógicamente dado que la relación de pulsos/kwh  es diferente  según el contador , tendremos que ajustar el código de nuestro  programa para que el resultado sea exacto , pero insistimos: como esta relación es conocida  no es demasiado complejo ajustar   el código para el contador que elijamos

Advertencia: Se recomienda precaución ya que este tipos de proyectos implican riesgo eléctrico o electrocución ya que se utiliza un  equipo conectado de 220VCA -120 VCA por los que  se requieren conocimientos básicos  de electricidad , por favor esté documentado previamente en este sentido.

Conviene recordar que por seguridad cuando trabaje en cuadros de baja tensión siempre trabaje cortando la alimentación general y asegúrese después con un polímetro o un busca-polos que efectivamente no hay tensión c.a.

Obviamente si no se tiene experiencia en cableados de baja tensión o no esta seguro de la instalación , le  recomendamos encarecidamente  que este tipo de trabajos lo realice un instalador  o un electricista pues  manejar por error tensiones de ca puede ser peligroso  .

 

El circuito

 

El viejo modelo CHINT DSS66 permite la medición de energía activa o potencia activa en instalaciones domésticas. Es  un registrador ciclométrico, registrando medidas siempre positivas que evitan pérdidas fraudulentas de conexiones. Como se trata de un medidor invasivo que se requiere para abrir nuestro circuito eléctrico, se capturan los pulsos generados, Genera 3200 imp / kWh, que nos permitirá medir la potencia y el consumo de energía. El medidor tiene un optoacoplador para aislar la salida de pulso para realizar la medición. 

 Algunos medidores tienen una salida de pulso asociada con el consumo eléctrico, en el caso de este medidor específico, cada vez que se enciende el diodo led frontal, envía un pulso que activa un optoacoplador para la salida de pulsos terminales (11 +) (12 -) y el medidor integrado realiza la medición e integración de kilovatios / hora y enviando pulsos según el consumo siendo la relación de  este medidor  de 3200 imp “impulsos” / kwh,.

Este medidor tiene 2 características:

  • Es invasivo, es decir el circuito debe abrirse para colocar en serie el medidor entre la fuente y la carga
  • No tiene un protocolo de comunicación en serie, siendo la relación de salida de pulsos de 3200imp / kwh.

Gracias a la ayuda de un microcontrolador “Arduino, ESP8266 o ESP32”  podemos medir los watios consumidos. La elección precisamente de un  ESP8266 12E   o Arduino Nano Clone   , de hecho dependerá de si necesitamos enviar los datos  o no a un servidor en la nube  o simplemente queremos mostrar la información en un display 

Como contábamos al   principio de este post el modelo  DSS66 es algo anticuado por lo que es perfectamente viable usar   de contadores con salida de pulso de carril DIN , como la mayoría  que se comercializan para fijar en el cuadro de distribución de c.a. cuya velocidad de flash de salida de prueba es de  500 impulsos por kWh ( es decir cada impulso corresponde a un 2W/H)

 

 

Durante las primeras pruebas  se conectaron el GPIO directamente al medidor,dado que el medidor de mentón tiene su propio optoacoplador, pero por alguna razón cada vez que se genera un pulso, el módulo ESP8266 grababa 2 pulsos, algo que no sucedió con Arduino .

La solución para el problema es  aislar la salida del watímetro mediante la adición de un optoacoplador 4n25 y una fuente de alimentación de 5v :de esta manera sólo llegaría un pulso y ademas por seguridad se aislan los circuitos .

Para las primeras  pruebas   se propone usar un  ESP8266 y/o arduino y solo  haremos la medición de Active Power, por ejemplo  utilizando una  bombilla de 45W, para tener una carga fija que represente un “hogar”.

 

Lista de componentes

 

 

Código IDE de Arduino

 

El código para el módulo ESP8266 por ahora no tiene ninguna rutina de comunicación de envio  hacia  el Cloud, así que por el momento visualizaremos la potencia con un Matrix led x4 MAX7912 pero se puede usar un display de 7 segmentos  o  simplemente la salida serie

El medidor solo tiene una salida de pulso,por lo que  para realizar el cálculo del consumo eléctrico, capturamos a través de una interrupción en el GPIO 5 (D1), técnicamente utilizando el factor apropiado del medidor 3200imp / kWh = 3.2, se calcula la potencia activa instantánea.

Una diferencia horaria entre pulsos y basada en 1 hora = 3600 s. potencia = (3600000000.0 / (pulseTime – lastTime)) / 3.2

Este cálculo se realiza en la interrupción, solo cada vez que se registra un nuevo pulso.

Inicialmente, gracias a OpenEnegyMonitor, por la documentación, el cálculo se tomó de una de las versiones anteriores de su página

 

Este es el codigo usado para probar la funcionlidad 


#include <SPI.h>
#include <bitBangedSPI.h>
#include <MAX7219_Dot_Matrix.h>
const byte chips = 4;

unsigned long lastMoved = 0;
unsigned long MOVE_INTERVAL = 20; // mS
int messageOffset;
int counters=0;


// 12 chips (módulos de pantalla), SPI de hardware con carga en D10


MAX7219_Dot_Matrix display (chips, 2); // Chips / LOAD

char message [64] = “mensaje  a mostrar inicial ….“;
char myCharMessage[64];
String Message;

// Número de pulsos, utilizados para medir la energía.
long pulseCount = 0;


// Se usa para medir la potencia.
unsigned long pulseTime,lastTime,diffTime;
long timeout_reset=0;


//power and energy
double power elapsedkWh,watts;

// Número de pulsos por wh – encontrado o configurado en el medidor.

//1000 pulsos/kwh = 1 pulso por wh 3200 imp = 3.2

float ppwh = 3.2     ; 

int First_pulse = 0;
///***********************************************************************************


const byte interruptPin = 5; /// pin 5 D1


#include <Ticker.h>
Ticker flipper;


void flip() /// displayed
{

//bucle para almacenar en un array el mensaje de bienvenida

for (int i=0;i<64;i++)
{
message[i] = myCharMessage[i];
}
updateDisplay ();

}

 

 

Y este es el cuerpo del programa_

void setup ()
{
pinMode(interruptPin, INPUT_PULLUP);    //define el pin como entrada binaria
attachInterrupt(digitalPinToInterrupt(interruptPin), onPulse, FALLING);
Serial.begin(115200);
display.begin ();
} // end of setup


//
void onPulse()
{
if(First_pulse<2){ First_pulse++; }

else {
/// se usa para medir el tiempo entre pulsos.
lastTime = pulseTime;
pulseTime = micros();

//Contador de pulsos
pulseCount++;

//Calculo de la potencia
power_ = (3600000000.0 / (pulseTime – lastTime))/ppwh;

if (power_ < 1000) {
watts= power_;
Serial.print(“watts = “);
Serial.print(watts,4);
Serial.println(“W”);
}
}
}

 

 

void updateDisplay ()
{
display.sendSmooth (message, messageOffset);
// la próxima vez muestra un píxel en adelante

if (messageOffset++ >= (int) (strlen (message) * 8))
messageOffset = – chips * 8;
} // end of updateDisplay

void loop ()
{

// DEBUG SERIAL
 Serial.print(“watts = “);
 Serial.println(watts,4);

////las cadenas se deben cargar a la variable (Message) para que se visualicen en la matriz

//Message =”Power “+String(watts)+” W :)”;
Message =String(watts)+”W”;

//sacamos por consola la potencia
Serial.println(Message);

int L_Message = Message.length(); ///length String
String(Message).toCharArray(myCharMessage, L_Message+1);

/// String to char array  y scroll
flipper.attach(0.1, flip);

// restardo


delay(100);


} //fin del bucle

 

 

 

En el siguiente video  podemos ver el circuito en acción:

 

 

 

 

Mas informacion en  https://www.instructables.com/id/Electric-Consumption-Meter-CHINT-ESP8266-Matrix-Le/

Problemas con eje z en impresoras 3D tipo Prusa


La Geeetech prusa i3 Pro W es unos de los modelos de impresora 3d  caseras  mas conocidas del mercado ( la version «w», se diferencia de las otras por su marco de madera de 6 mm, para dar a la impresora, mas estabilidad a la hora de trabajar con ella ). 

El precio de la impresora 3D Geeetech prusa i3 Pro W, es de lo mas económico que se pueden encontrar online ( en Amazon por unos 149€) , en parte motivado porque viene  en kit ,lo que implica horas de montaje, y luego hay que calibrarla, lo cual quizás nos pueda  desanimar bastante pues  puede llevarnos unas 6 horas como mínimo y  ademas debemos añadir tiempo extra del proceso de calibración.

En el caso de la Geetech Prusa i3 W el manual viene bastante bien explicado , lo cual podemos ( y debemos complementar con el  canal de youtube donde técnicos del propio fabricante  explican paso a paso como montarla en una serie de 20 vídeos muy completos, que sin duda nos  ayudaran en el montaje). 

Antes de  profundizar en los problemas de ajustes de esta impresora, lo primero es asegurarnos de  que hemos montado correctamente  la impresora  asegurándonos  que todos los tornillos  y tuercas están afianzados  y no existe holgura ni ninguna parte suelta   que nos pueda malograr el funcionamiento   del conjunto , así que no es mala idea repasar los 20 pasos que nos propone el fabricante por si hemos omitido algo

 

En el primer vídeo vemos vemos el montajes de uno de  las  barras con sus rodamientos para el eje Y (como podrá adivinar tenemos que hacer lo mismo para la segunda barra)

Es importante la colocación de las dos barras sobre el soporte  y que este perfectamente paralelas ambas tablillas, por lo que debería  tratar de mantener paralelas las varillas de rosca y las cuatro piezas de madera paralelas. El eje Y debe ser un rectángulo, es decir, las varillas en ambos lados deben ser paralelas, por lo que es la placa frontal y trasera. De lo contrario, causará obstrucción para el cinturón más tarde. Puede usar un calibrador digital para medir.

 

En el siguiente vídeo podemos ver paso a paso el montaje de este conjunto de  las cuatro  varillas con junto el ensamblaje del motor del eje y:

    En este paso veremos como montar la pieza horizontal   de grandes dimensiones  donde descansara la cama caliente  que ademas  estará dotada de movilidad.

En realidad este paso es muy sencillo  y lo veremos de forma muy parecido en otros pasos similares del montaje

Y ahora  toca  colocar todas al piezas anteriores junto a la plataforma que albergara la cama caliente

 

En este paso  nos centraremos en los interruptores de fin de carrera ( en esta impresora son 3) .  Internamente los usados en esta impresora   contiene  interruptores normalmente abiertos (NA), de modo que  al actuar sobre ellos  en la palanquilla abrirán el circuito al que estén conectados

En este  video simplemente se monta el tope final en la placa de soporte trasera del eje Y , con un tornillo M2.5 x 16mm, arandela M2.5 y tuerca hexagonal M2.5.

 

En  esta nueva fase simplemente se trata de montar el esqueleto de la impresora

 

Para alojar los dos motores   del eje  z, los cuales  van a trabajar en paralelo,   en este paso  vamos a dotar a la estructura anterior de dos pequeños soportes donde irán los otros dos motores :

Ahora  para mantener la placa  refrigerada  ,fije el ventilador en la parte posterior izquierda del bastidor con 4 tornillos M3 x 20, arandela M3 y tuercas M3. Tenga cuidado con la dirección del ventilador pues el lado con la etiqueta debería ir  hacia afuera.

Por cierto, el ventilador suministrado hace machismo ruido, por lo que perfectamente es recomendable reemplazarlo por uno similar de otro fabricante cuyo modelo sea menos ruidoso ( por ejemplo sirven los usados para refrigerar las Raspberry Pi que suelen ser de las mismas medidas  y mucho menos ruidosos)

En este paso se trata de montar por fin la estructura que soportara  la cama caliente  al resto de estructura de la impresora

En este paso se trata de montar el interruptor de fin de carrera del eje z ( es decir el eje profundidad  o altura), el cual por cierto es uno de los pocos ajustes que podremos hacer gracias a un tornillo de ajuste 

Ahora toca montar lso dos motores  que se moverán al unisono para mover el eje  Z

Ahora se trata  ahora de añadir a los   motores un acoplador o husillo para poder después conectarle un eje  en forma de varilla roscada

Los pasos a seguir son los siguientes:

  •  Fijar los dos acoplamientos en ambos del eje del motor.Tenga en cuenta:La apertura de ambos extremos, uno es de 5 mm, otro es de 8 mm, conectar el orificio de 5 mm. al eje del motor.
  • Atornille firmemente el tornillo de la pieza de 5 mm en la parte superior del lado plano del eje del motor; puede ver el límite en el interior del acoplamiento.
  • Haga lo mismo con el acoplamiento del eje del motor derecho de acuerdo con los pasos anteriores.

 

 

 

Ahora toca montar el tope final y el gatillo de tope

Montaje del extremo intermedio del eje X

 Montaje del carro del extrusor

Ahora se trata de acoplar el resto de ejes X y Z al cuerpo de la Impresora. 

Aqui vemos el montaje  del soporte superior del eje Z

Ahora toca  añadir la correa dentada del eje X

Ya entramos en la parte sencilla de montar el panel de control con el LCD y el lector de tarjetas SD  ,el cual por cierto  se puede colocar aparte  gracias a la longitud de los dos cables de cinta si así lo  desea

Una de las ultimas partes es  colocar la cama caliente ,la  cual nos deberíamos asegurar qeu quede completamente horizontal aunque posteriormente se hará  un ajuste mas exhaustivo

La fuente de 12V  se coloca en un lateral , siendo lo único complejo no equivocarnos en las conexiones , porque si nos equivocamos  si que podemos malograr la impresora, así que tenga un cuidado muy especial en este punto

 

Por ultimo  toca fijar la placa de control con todas sus conexiones:

 

 

Observe que en la placa  lleva 4 zócalos para  los   drivers de los controladores de los motores paso  a paso, los  cuales suelen venir ajustados de fabrica .
 
Normalmente los drivers vienen preajustados de fabrica , asi que no es necesario realizar este paso, tanto es que de hecho no deberíamos andar tocando el potenciómetro que tiene el driver del eje Z así sin más ya que hay que hacerlo mientras se mide el voltaje de referencia del driver o mejor, la intensidad que manda al motor. Si se va a girar acerlo con un destornillador no conductor porque se  puede destruir  el driver.
 
En caso de tener problemas podríamos probar  los drivers uno a uno por separado la intensidad que demanda, la cual  debería tener un valor de 0,2A para cada motor, recordando que el driver del eje Z debe de tener 0,4A ya que lleva conectados dos motores en paralelo y sumando la intensidad que demanda la resistencia interna de nuestra placa, esta suele estar entre los 0,04A y 0,1A, 
En caso   de no estar ajustados dichos drivers ,si tuviésemos problemas para regular la intensidad que pasan por los drivers, localizamos un pequeño tornillo en la placa, se trata de un potenciómetro que podemos regular a mayor o menor resistencia.
 

Para saber como conectar el driver a la ramps, debemos fijarnos en la placa donde pone la configuración del bobinado que debemos conectar del motor paso a paso.
Si no conocemos los cables del motor que corresponden a cada bobina del motor podemos comprobar con el polímetro continuidad entre los extremos de los 4 conectores que tiene, también con un Led conectado entre dos de los cuatro cables y girando el eje del motor cuando se encienda tenemos localizados los pares de bobinas.
 
 Una vez tenemos localizadas las dos bobinas del motor bipolar paso a paso conectamos el motor a la ramps donde se une a las patillas correspondiente del driver:
 

 

 
 
 
En resumen ,mas abajo vemos  el conexionado  completo de  este modelo .  En el esquema general no se conecta los fines de carrera Xmax, Ymax y Zmax pues este modelo no cuenta con ellos
Tampoco se conecta el segundo extrusor  y toda la electrónica relacionada ( motor del extrusor , termistor   y calentador)
Y por ultimo tenemos un ventilador fijo ( el de refrigeración de la placa) y uno controlado por pulsos para el primer extrusor

esqeumanew.png

 

 

 

Una vez concluido el montaje, antes de intentar la primera impresión, es vital que la impresora esté correctamente calibrada. Si se salta o se apresura este paso, esto puede producir frustración   y probablemente ademas  podrá  tener errores en las impresiones más tarde, así que  es importante tomarse el tiempo para asegurarse de que la máquina está correctamente configurada.

Como el proceso de montaje es bastante largo como se puede apreciar en los vídeos anteriores , debemos ser muy ordenados y meticulosos  a la hora de ensamblar las diferentes piezas, pues el esfuerzo debería compensar el resultado ya que  una vez terminado es una impresora 3d que funciona muy bien.  

El Software suministrado por Geetech  es el EasyPrint , el cual  esta diseñado para impresoras  de Geetch ,pero por supuesto , una vez ajustada la impresora, puede usarse  el famoso programa  Cura de Ultimaker

Para el ajuste de la impresora y primeras  pruebas de   la Geeetech prusa i3 Pro W , lo idea es usar es el  prograna  EasyPint  pues no va a permitir hacer los primeros ajustes  de los motores de lso tres ejes x,y , z  de un modo muy cómodo  como vamos a  ver mas adelante

Cada impresora lógicamente tiene  su propio procedimiento de calibración pero hay una lista de puntos clave que deben ser abordados:

  • El marco es estable y correctamente alineado.
  • Las varillas están correctamente alineadas
  • Las correas  están tensas.
  • La rueda motriz gira suavemente
  • La cama esta nivelada con relación a la trayectoria de la extrusora.
  • El filamento rueda libremente desde el carrete, sin causar demasiada tensión en el extrusor.
  • La corriente para motores paso a paso se ajusta al nivel correcto.
  • Los cables están correctamente conectados
  • Los acoplamientos y las poleas se fijan firmemente
  • Los ajustes del firmware son correctos incluyendo: velocidades de movimiento del eje y aceleración; control de temperatura; topes finales; direcciones del motor.
  • La extrusora se calibra en el firmware con los pasos correctos por mm de filamento.El punto respecto a la velocidad de paso de la extrusora es vital. No puede esperar que la máquina producirá con precisión una cantidad fija de filamento cuando se le indique que lo haga. Demasiado resultará en gotas y otras imperfecciones en la impresión, muy poco resultará en lagunas y la mala adherencia entre capas.

 

EsasyPrint

 

EasyPrint 3D es el software de impresión 3D  oficial  para configurar   y tambien para usar  la Prusa I3 W  Este programa es muy  fácil de usar y esta desarrollado por GEEETECH  siendo es capaz de convertir un modelo 3D digital en instrucciones de impresión para su impresora 3D gracias a que incluye el modulos de slicing junto con el propio control de la impresora.

Se  puede descargar desde el sitio oficial  http://www.geeetech.com/forum/viewforum.php?f=43

Estos son los parámetros específicos para la impresora la Prusa I3 W  :

printer.PNG

Ademas  estos son  los parámetros recomendados para la impresión 3d con este modelo

parameters.PNG

 

Esta es la configuración recomendada por el fabricante pera el  material en el caso de usar PLA ( el cual es que mejores resultados da con esta impresora):

 

material

 

Programa Ultimaker Cura

Al ser  la Prusa I3 W  una impresora con código libre es posible usar otros programas diferentes tanto para el slicing como a la  propia impresión  3D ,  diferentes del recomendado  por el fabricante (EasyPrint ) como por ejemplo el  famoso sw de cura, el cual es un programa más elaborado y con idioma español

Puede parece descabellado usar otro sw, pero  es fácil percibir con la practica que el sw oficial EasyPrint es lamentablemente  un producto en proceso de depuración lo cual normalmente se traduce en muchas piezas mal impresas o  que tenemos desechar  por interrupciones o cuelgues de propio programa ( aunque ha mejorado bastante en su  ultima version este .

Este  programa es ligeramente mas complejo que usar  el EasyPrint 3D , ahora bien una vez configurado su manejo es también muy sencillo  (y todo el interfaz esta traducido  en Español a diferencia del EasyPrint3d que esta en chino y en ingles únicamente)

El cura necesita configurarse para este modelo de impresora ya que aparece la Prusa I3  pero no la Prusa I3 W,, por lo que debemos  cambiar algunos ajustes  que vamos a describir

En primer lugar , si disponemos de un equipo con W10 64 bits  con al menos dos núcleos , descargaremos  el sw de Cura desde su sitio oficial https://ultimaker.com/en/products/ultimaker-cura-software

Para poder realizar la descarga nos piden unas pocas preguntas en ingles  pero al responderlas , en  pocos segundos estaremos descargando el sw

Una vez instalado el sw , ejecutaremos este  y nos  iremos a la sección de los ajustes

Estos son los ajustes de la impresora Prusa I3 W,:

 

ajustes2.PNG

Y estos son los del extrusor:

 

ajusters3.PNG

 

Usar el programa Cura puede ser una buena idea sobre para las impresiones   problemáticas  gracias a los soportes ya  que no están implementados en el  EsayPrint y son decisivos a  la hora de  imprimir piezas con muchos voladizos o huecas   .Ademas   la posibilidad de girar las  piezas para acomodarlas en  la cama caliente  y con ello mejorar la sustentación  en un determinado plano   puede ser determinante  a la hora de lograr una pieza bien impresa. Personalmente  he impreso piezas que solo lo he logrado llevarlas  con éxito cuando las he girado en una determinada posición, labor que es fácilmente realizable con el programa Cura.

No obstante  solo una puntualización : no desistale el easyprint  aunque le funcione el Cura, ya que aun este programa nos puede  ser muy útil    para re-calibrar la impresora ,forzar el calentamiento del fusor para eliminar  atasques en la boquilla, cambiar de filamento  y un largo etcétera, tal y como  vamos a ver a continuación.

 

 

Primeros  Ajustes con  EasyPrint 3D

Es relativamente  habitual que en el momento de hacer las primeras pruebas con los modelos tipo Prusa, cuando intentamos mover el eje Z ( el eje  que mueve en altura la boquilla de impresión )   con  el programa de control  EasyPrint de Geetech  para comprobar su correcto funcionamiento  y linealidad , se queden ambos motores “como bloqueados generando vibraciones    y ruidos muy intensos    que desde luego no son un buen presagio de un buen funcionamiento    y que  nos deben hacernos percatar de que debemos hacer algunos ajustes

Para ajustar correctamente la impresora 3d  ,por tanto, lo recomendable es usar el programas EasyPrint 3D , que es el software de impresión 3D diseñado para los productos Geeetech

Estos son los pasos para su primera configuración :

  • Instalar EasyPrint 3D  si   aun no lo ha instalado .Puede desacargarlo de : http://www.geeetech.net/firmware/EasyPrint.msi
  • Una vez finalizada la instalación, encuentre el icono EasyPrint 3D. Haga doble clic en él para iniciar el software.easyprint1
  •  A continuación, puede elegir el idioma inglés en Config –> Language.( lamentablemente solo  esta disponible en idioma ingles o Chino)
  • Haga clic en el menú Printer (Impresora) y, a continuación, seleccione el puerto COM correspondiente. El puerto COM se refiere al puerto que se puede utilizar para conectar la impresora y su ordenador   que es  USB que aparece en el administrador de dispositivos.En caso de que no pueda encontrar el puerto COM, asegúrese de que el interruptor de encendido de la impresora está encendido y el cable USB está bien conectado con el ordenador.
  • Haga clic en el menú Impresora  y, a continuación, seleccione el tipo de impresora adecuado: Pro W.
  • Hacer clic en el botón Conectar  situado en la parte superior derecha. Se puede observar el estado en tiempo real de la impresora en la parte inferior de la interfaz de software.
  • Antes de continuar actualizar tanto  la ultima version del EasyPrint  desde el menú de  Help–>Software Upgrador como el propio  firmware de la impresora en el menú de Help–> Firmware Upgrador

 

Prueba de movimiento de ejes  X e Y con EasyPrint 3d 

Actualizado  todo  el software ,  ahora  ya nos podemos ir al menú de Control   del programa     donde comprobaremos  el correcto funcionamiento de los ejex X e Y ,pulsando respectivamente sobre  los botones X+  y X-  así como Y+ e Y- .

Algunos problemas que nos podemos encontrar:

    • Si no reacciona en alguno de los  dos  ejes X o Y  , esto puede ser síntoma de estar mal conectados los motores correspondientes  a  la  placa principal ,  por lo que antes de continuar debería revisar  su correcta conexión.                          esqeumanew.png
    • Si no se  parasen alguno de  los dos motores puede ser  sinónimo de mala conexión  de los finales de carrera de los ejex X o Y , por lo que es vital  estén bien conectados estos . Si duda usted  incluso puede probarlos con un polímetro su correcto funcionamiento: al accionar la palanquilla de  cada switch debería oírse un “click”  y por supuesto cerrar el circuito  ( recuerde que las conexiones correctas son las de los extremos  ignorando el centro como se ve en la imagen inferior )                                                                                                                                              findecarrera.PNG
    • Si el movimiento en algunos de los ejes  es irregular, debe  asegurase de que las correas  para ambos ejes  están tensadas  y correctamente colocadas 

 

AJUSTES EJE Z

 Este es  uno de lso ejes que mas problemas puede dar  precisamente por  la falta de alinealidad   de las varillas verticales  con sus dos respectivos motores que deben moverse en perfecta sincronía

Para ajustar este eje  nos iremos al menú de Control    del Easy Print    para comprobar  el correcto funcionamiento deL EJEX  Z pulsando respectivamente sobre  los botones Z+  y Z-  .

 

Algunos problemas que nos podemos encontrar:

    • Si no reacciona en alguno de los ejes puede ser síntoma de estar mal conectados los motores correspondientes  a  cada eje por lo que antes de continuar debería revisar  su correcta conexión    , asegurándonos sobre todo que los dos motores están  en configuración paralela                                                                                                                                     esqeumanew.png
    • Si no se  paran los motores puede ser  sinónimo de mala conexión  del  final de carrera de los eje z, por lo que es vital que este bien conectado . Si duda, incluso puede probarlos con un polímetro su correcto funcionamiento 
    • En caso de ruidos  ,movimientos imprecisos , falta de fueza , desalinealidad entre las varillas  y en general movimiento deficiente del eje z, ese desfase  es debido a que uno de los motores está perdiendo pasos respecto al derecho por lo que debería comprobar si el giro del husillo izquierdo va más duro que el derecho.Si es así es posible que no tenga bien alineado el eje Z, por lo que debe tomar como referencia una parte fija de la máquina (el chasis) y medir en cada extremo ( lógicamente deberían medir exactamente igual en ambos lados) .                                                                                                                                                                       Si aprecia una diferencia,por muy pequeña  que sea  se puede corregir rotando el motor del eje Z que corresponda con la mano (motores apagados) hasta que consiga que el eje X esté completamente horizontal.                                       
    • En caso de persistir las vibraciones, deberíamos desmontar  los husillos ( la pieza que une el eje de cada motor con la varilla  roscada)  pues probablemente esta muy por encima del eje del motor impidiendo transmitir toda la potencia a la varilla. Una buena idea para volver a ajustar precisamente los husillo es colocar una galga ( por ejemplo una llave allen pequeña)   entre el husillo  y el bastidor  de  modo   que esa distancia sea exactamente en los dos motores y luego asegurar  que la muesca del motor esta justo debajo del tornillo  pequeño  alen y luego apretar todos los demas   .                                                                                                        Una vez ajustados los husillos como  posible que no tenga bien alineado el eje Z debe volver a tomar como referencia una parte fija de la máquina (el chasis) y medir en cada extremo ( lógicamente deberían medir exactamente igual en ambos lados) .                                                                                                                                                                                                                            Si aprecia una diferencia, se puede corregir rotando el motor del eje Z que corresponda con la mano (motores apagados) hasta que consiga que el eje X esté completamente horizontal.                                       
    • Si todo lo  anterior falla y seguimos teniendo vibraciones  pruebe a desconectar las varillas y mueva los motores en solitario: así puede analizar mejor el movimiento y el sentido de giro ( incluso  también podría probar también a intercambiar la conexión en la ramps).;                                                    
  •  

 

 

RESUMEN

Lo primero al abrir la caja te das cuenta lo bien que lo tiene todo pensado Geeetech para esta impresora. Se trata de un Kit de montaje donde montas la impresora absolutamente desde 0, con todas las piezas por separado, la infinidad de tornillos, la placa, cables, partes metálicas, herramientas y un largo etcétera. Todo embolsado y con un número en cada bolsa con una lista donde dice de que se trata cada número, una cosa muy buena sobretodo por los tornillos al haber tantas medidas diferentes. A la hora de montarla, yo con cierta experiencia tardé unas 4 horas aprox.. lo mejor de todo es seguir el vídeo que tienen en Youtube ya que lo hacen paso a paso, te dicen que tornillos usar y demás.. 

Sorprende mucho que pese a sera una DIY tiene cosas muy muy buenas, como unos tensores de correas, un ajustador para el tope de Z, una placa GT 2560 con drivers intercambiables para poder montar unos 2208 y hacerla silenciosa, unas piezas para la cama y el carro para agarrar la correa bien y sin necesidad de bridas. Todo eso son mejoras que por ejemplo que una A8 no tiene y es de agradecer, ya que  facilita mucho la vida a la hora de montarla.

Lo del marco de madera del modelo analizado (Geeetech prusa i3 Pro W)no es ningún problema porque realmente el resultado es bastante   robusto .Ahora bien, el montaje no es  tan trivial como cuenta  el fabricante . Afortunadamente con los vídeos y el manual del propio  fabricante se puede solucionar bien, aunque hay que andar  con mucho cuidado  por el tema de la construcción simétrica ( nada que no se pueda arreglar desarmando y poner al otro lado). 
La instalación eléctrica, lleva su rato, pero se consigue.   
No debemos olvidar   la instalación de driver, software y demás… que no tiene nada que ver con “instalar y darle a imprimir”
 
Y una vez con todo listo esta,  el tema de los primeros ajustes  , tema que es especialmente importante si queremos obtener resultados aceptables, por lo que en este post hemos querido centrarnos en posibles problemas de ruidos o mal funcionamiento  y como corregirlos.
 
Resumidamente pues este tipo de  impresora tipo Prusa , son  bastante compactas, se montan sin demasiada complicidad y con un buen ajuste del eje X (que esté calibrado) y otro buen ajuste de la cama, son fáciles ponerlas a imprimir. Ademas desde la pantalla además vemos que tiene un Firmware personalizado donde podemos tocar diferentes opciones como aceleraciones, jerk y demás, que son cosas avanzadas pero que se agradecen cuando vayamos aprendiendo.
 
! Esperamos  que con estas ideas  amigo lector   hayamos intentado   ayudar algo en caso de que se  haya  encontrado con este tipo de problemas  y este post le  haya resultado  útil !  
 
 
 
 

Algunos recursos adicionales 

Sencilla alarma basada en un foco con detector de proximidad


Hoy en día hay soluciones muy económicas  debido a su gran escala comercial  que son   susceptibles de ser mejoradas para complementar con notoriedad  sus prestaciones y  !sin coste alguno!.En el ejemplo de hoy actualizado a un modelo mas moderno del fabricante Meikee vamos  a  ver como de hecho una modesta  lámpara con sensor de movimiento para uso en exteriores  ideal (almacén, garaje, clóset, etc …,con un bajo consumo de sólo 10 vatios ( aunque existen  de muchas  potencias  más elevadas ) ,y  900 lúmenes de luz  garantizados   puede usarse   además de su cometido principal de encenderse  cuando el sensor detecta movimiento  en el exterior , que  también envíe   una alarma hacia el interior, para  que tengamos constancia  si no nos  hemos percatados por la activación de la luminaria   de que puede que haya personas , animales o cosas merodeando por el exterior  .

En esta simple  modificación  pues mantendremos el  diseño moderno y compacto de la luminaria ,  ya que vamos a hacer una sencilla modificación   que apenas ocupa más espacio ( únicamente necesitaremos  añadir una regleta )  y que además no inhabilita su protección  impermeable (IP66), una característica fundamental para aquellos que desean montar esta luminaria en el exterior.

Respecto al interior de  la luminaria , esta se aleja de las convencionales halógenas al   incorporar uno de los últimos 30 chips súper brillantes de LED  que reemplazan a los  anteriores, ofreciendo una iluminación más brillante (900 LM, blanco frío de 6000 Kelvin ) ,  con un gran ahorro en la factura de la luz y una gran durabilidad (los LED tienen una vida media de 50000 horas).

El foco del fabricante Meikee   integra un sensor PIR   y la electronica necesaria para activar la luminaria  , la cual por cierto va integrada en el propio receptor del PIR(es decir en la cajita  mas pequeña que alberga el propio sensor)

En este modelo , se puede ajustar la iluminación utilizando los 3 botones de configuración de la parte de atrás del propio modulo del PIR 

Los ajuste son los siguientes:

  • HORA ;sirve  para establecer la duración de la iluminación (6-360 s);
  • SENS; sirve para ajustar el rango de detección (1-12m);
  • LUX :ajuste la foto-sensibilidad (día y noche)

 

Aparte de ajustar  el valor  SENS   a la distancia que precisemos , un ajuste especialmente interesante es el ajuste LUX pues no puede permitir que el foco  ( y  por tanto la alarma ) no se active de día ,pudiéndose accionar automáticamente solo de noche  , que es cuando la mayoría de las ocasiones los dueños de lo ajeno merodean por los exteriores de los inmuebles

Con la doble función de iluminación sorpresiva ( que el producto  ya lo contempla ) y la alarma sonora ( que vamos añadir tanto interior como exterior ) la idea   que se  busca con esta mejora es   una  detección anticipada que localizar los intentos de intrusión y antes de que el intruso haya conseguido entrar : así, decidimos antes a los intrusos y, ademas  tenemos un señal audible de que ha sucedido , señal que por cierto podemos contemplar con otros sistemas como cámaras, alarmas remotas , etc.

Bien veamos la mejora  de este foco con sensor que podemos comprar por unos 15€

 

 

La idea  de este post  es mejorar  un asequible  foco del fabricante  Meikee  para poder usarlo para activar otras cargas ( no solo la de la propia luminaria) , para lo cual tendremos que abrirlo con cuidad  para capturar la señal de salida y devolverlo al exterior . Desgraciadamente  manipulaciones del producto nos  hará  perdera la garantia , pero por el precio que tiene creemos merece la pena puesto que nos puede ser muy útil desde el interior  saber si se ha activado el foco  o por ejemplo para enviar a una central de alarma

Hackeando el foco

 

Antes de desmontar el foco,  probaremos el foco dado que cualquier cambio de esta en su configuración nos hará perder la garantía, asi que  es nuestra última oportunidad para  probar de que funciona perfectamente este.

Una vez  comprobado su funcionamiento , si estamos decididos a mejorar el foco, desmontamos  los 4 tornillos de la parte posterior ( puede que esten bastante duros para asegurar la estanqueidad).

 

 

Ahora quitaremos los dos tornillos del reflector , sacaremos con cuidado el cristal protector  y luego accederemos  a la electronica , con mucho cuidado de no tocar los leds SMD  

En otros  modelos  haay dos bloques  ,   diferentes : el chip compuesto por leds  SMD  ( en el centro )    y el convertidor ac/dc para este ( a la derecha), pero en este modelo del  fabricante  Meikee  van integrados la matriz de leds  y el propio convertidor en una unica placa alimentandose todo el conjunto con la tension de la red de ca

 

 

 

En la imagen   se observan claramente  tres conexiones que van al módulo PIR : 

  • Cable marrón; uno de los polos de la red para dar alimentación permanente al módulo PIR
  • Cable azul : otro de los polos de la red  para dar alimentación permanente al módulo PIR
  • Cable rojo ; el cable de detección del PIR   que permite alimentar a la placa   

 

Hemos visto que nuestro objetivo es cable rojo  de salida del módulo de  PIR   que permite alimentar a la placa  leds  de la luminaria  que  nos permite obtener la salida del relé interno del modulo PIR ,así que intentaremos capturar este hilo  para lo cual descubriremos el protector plástico del empalme 

 

 

Es muy poco ortodoxo , pero como no queremos que el módulo pierda la estanqueidad , y normalmente  para luces exteriores las instalación no suelen contar con este tipo  de  cableado, utilizaremos el cable amarillo de masa del cable de salida pus  más adelante si nos interesase podriamos exteriormente fijarle un tornillo al chasis y volverlo a conectar

 

 

 

Ahora solo nos queda  usar una ficha de empalme  o bien directamente retorcer ambos cables (es decir el cable amarillo de la manguera exterior con  el cable rojo procedente de la salida del modulo PIR h)

 

 

Ahora ya cerraremos con cuidado la luminaria  : primero el reflector  y luego la junta de estanqueidad  , el cristal  y finalmente la tapa . Ahora ya podemos conectar la c. a.  al extremo de la manguera del foco  , pero con la  importante diferencia que en el  cable amarillo ya no conectaremos la masa  sino por ejemplo un zumbador o  un testigo  que  alojaremos  en el interior de la vivienda para tener constancia  visual    o sonora   de que el foco luz se ha encendido por movimiento de objetos extraños próximos al PIR

 

 

 Por cierto ,si se pregunta  donde conectar el otro extremo del zumbador o luz auxiliar este irá conectado al cable marrón de la manguera .Asimismo , como se puede apreciar ,se complementa con un interruptor para anular el zumbador en caso de que sea demasiado molesto  .

Tambien se recomienda usar otro interruptor a la entrada de ca si este va estar conectado permanentemente a la red de ca, aunque podemos prescindir de este  con el ajuste de noche pues  podemos permitir que solo se active por la noche.

 

 

Hay muchas opciones de uso para esta salida de CA , el cual por cierto no debemos cargar con mucha potencia pues corremos el riesgo de estropear los contactos del relé interno del modulo PIR

Algunos ejemplos de lo que podemos hacer con esta salida “extra”;

  • Un  relé  de potencia con bobinado de  220v de CA para conectar cargas mayores
  • Un segundo relé de 220V pero para utilizar los contactos para alarmas
  • Un  zumbador de 220V ( los hay por 2€ en Amazon)
  • Un timbre convencional
  • etc

Bueno ,como hemos visto   quizás sean una idea un tanto atrevida , que no todo el mundo esté dispuesto a realizar,  pero desde luego !la posibilidad está ahí   ! y eso sin casi ningún coste adicional !¿se le ocurre  alguna mejora adicional ? si es así no dude en compartirla con toda la comunidad ..!!GRACIAS!!

 

Por cierto este es el link de acceso directo del citado foco con detector de presencia

 

 

Como reparar su contador digital


Desde que cambió la normativa que regulaba el uso de un  limitador  de la potencia contratada aislado de la caja general  de distribución de ca  hoy es posible tener un espacio  libre para  nuestras necesidades . 

Ciertamente   gracias a los contadores inteligentes  con tele-gestión que van instalado  normalmente centralizados en una parte de edificio aparte que integran ademas  la habilidad de interrumpir el suministro la potencia desde estos en función de la potencia contratada , en muchos casos  y  en muchas viviendas ha quedado libre el hueco  que podemos  usar para instalar un sencillo contador+

El panel digital ,como se observa en la imagen    encaja en la parte del hueco dejado por el antiguo magnetotérmico , aunque según el tipo de caja habrá que rebajar algo mas el hueco  con una lima para que encaje perfectamente en el hueco ,   y como se puede  apreciar ,es bastante llamativo visualmente gracias  a su luz de fondo azulada  mostrando en tiempo real   las siguientes medidas:

  • Tensión en voltios de la red de suministro ca
  • Intensidad en amperios del
  • Potencia instantánea consumida en Watios
  • Acumulado de  energía consumida wn Kw/h

 

Este sencillo panel  es muy económico (unos 9€)  y nos va ayudar muchísimo a concienciarnos de nuestro consumo energético pues ofrece la lectura en tiempo real (tensión, corriente, potencia activa, potencia) 

Ademas cuenta con una función de alarma de sobrecarga cuyo  umbral de alarma se puede preseleccionar para avisarnos si nos pasamos de potencia, siguiendo la siguiente operativa:

  • Pulse el botón, cuando la pantalla LCD muestre “SET CLr” después del botón de liberación, ajuste el valor en el informe de estado de energía;
  • El área de potencia muestra el valor actual de la alarma de alimentación y el dígito más bajo comienza a parpadear, entonces puede presionar el botón del +1 digital, cuando no haya operación de tecla más de tres segundos, cambia automáticamente por ajuste digital corto como encima;
  • Después de la configuración, presione el botón más de cinco segundos para guardar y salir automáticamente, el alcance del umbral de potencia activa establecido para el 0.0 ~ 22.0kW

Una ventaja de este panel es que no necesita  fuente  de alimentación externa al llevarla integrada  en esta , lo  que significa en la practica  que únicamente habrá que alimentarla con 220 V c.a. , pero como vamos a ver , a la larga también  es si talón de aquiles porque básicamente la alimentación se hace con un filtro RC con un  condensador serie de 1mf 250V.

Si  tiene  ya  montado este instrumento   y empieza    apagarse o dar lecturas  en primer lugar debe saber que el control de luz de fondo se puede ajustarse presionando brevemente el botón para encender o apagar la luz de fondo,de modo que quedara almacenado  el estado de retroiluminación de almacenamiento automático.

Si falla dando lecturas extrañas ,puede proceder a hacer un  reseteo de las lecturas:

  • Pulse el botón de encendido durante 5 segundos hasta que la pantalla digital parpadee, luego suelte el botón;
  • Si  pulsar el botón, los datos de consumo se borran y se borran para dejar de parpadear;
  • Si pulsa el botón durante 5 segundos hasta que no parpadee, los datos de carga no se borran y la salida se borra.

Si   a  pesar de los pasos  anteriores  el panel  fluctua deberemos revisar el filtro RC de alimentación  al circuito para los cual  :

  • Cortamos la alimentación general ( normalmente desde el mangenetotermico de entrada de la red)
  • Desmonamos la tapa del ict  
  • Quitamos   la alimentación del  panel  directamente  de 220V , eso si , !con mucho cuidado de   asegurarnos  donde van los hilos para  no equivocarnos  al restituirlos (no confundir  donde  se conectan los hilos del  toroide!  (en la foto de bajo se ve claramente los bornes de alimentación  donde serian los dos inferiores)                                                                          
  • Mantenemos  los cables del  circuito  a medir  por el interior del toroide y simplemente desconectamos los dos cables de salida del toroide 
  • Volvemos  a tener el panel   aislado  . Ahora  quitaremos la tapa posterior  y los 4 tornillos que fijan la placa a la caja

  • Ahora  si fluctúa  la lectura del panel  probablemente el condensador  de tamaño considerable  de la entrada se haya estropeado , por lo que deberíamos probar a cambiarlo por uno nuevo ( el de este modelo es de un 1 microFaradio 250V)                                                                             
  • Volveremos a colocar la placa  sobre la caja con los 4 tornillos , según el tipo de condensador que pongamos ( como en la foto ) quizás no podamos poner la tapa de la caja 
  • Ahora antes de colocarlo en la caja original del ICT  deberíamos probarlo conectándolo solo con un cable de alimentación de ca  ( cuidado  nuevamente con las conexiones)                            
  • Si aun persiste la fluctuación    debemos revisar   también la resistencia bobinada de potencia que hay al lado del condensador de alimentación
  • Una vez  funcione , lo  volveremos  a  colocar en la tapa del ict, pondremos las conexiones  eléctricas  teniendo  especial  cuidado  con no confundirlos los hilos del toroide  con los de alimentación
  • Restituimos el suministro de ca
  • Ajustaremos los parámetros de luz

Conviene recordar que por seguridad cuando trabaje en cuadros de baja tensión siempre trabaje cortando la alimentación general y asegúrese después con un polímetro o un busca-polos que efectivamente no hay tensión c.a.

Obviamente si no se tiene experiencia en cableados de baja tensión o no esta seguro de la instalación , le  recomendamos encarecidamente  que este tipo de trabajos lo realice un instalador  o un electricista pues  manejar por error tensiones de ca puede ser peligroso  .

Construya una alarma de proximidad a partir de un económico foco


 

En efecto  hoy en día hay soluciones muy económicas  debido a su gran escala comercial  que son   susceptibles de ser mejoradas para complementar con notoriedad  sus prestaciones y lo mas interesante !sin coste alguno!.

En el ejemplo de hoy  vamos  a  ver como de hecho una modesta  lámpara con sensor de movimiento para uso en exteriores  ideal (almacén, garaje, clóset, etc …,con un bajo consumo de sólo 10 vatios ( aunque existen  de muchas  potencias  más elevadas ) ,y  900 lúmenes de luz  garantizados   puede usarse   además de su cometido principal de encenderse  cuando el sensor detecta movimiento  en el exterior , que  también envíe   una alarma hacia el interior, para  que tengamos constancia  si no nos  hemos percatados por la activación de la luminara   de que puede que haya personas , animales o cosas merodeando por el exterior   .

Además  hay un aspecto interesante, en esta simple  modificación  pues mantendremos el  diseño moderno y compacto de la luminaria ,  ya que vamos a hacer una sencilla modificación   que apenas ocupa más espacio ( únicamente necesitaremos  añadir una regleta )  y que además no inhabilita su protección  impermeable (IP66), una característica fundamental para aquellos que desean montar esta luminaria en el exterior.

Respecto al interior de  la luminaria , esta se aleja de las convencionales halógenas al   incorporar uno de los últimos 30 chips súper brillantes de LED  que reemplazan a los  anteriores, ofreciendo una iluminación más brillante (900 LM, blanco frío de 6000 Kelvin ) ,  con un gran ahorro en la factura de la luz y una gran durabilidad (los LED tienen una vida media de 50000 horas).

El foco integra un sensor PIR   y la electronica necesaria para activar la luminaria  , la cual por cierto va integrada en el propio receptor del PIR

En est emodelos , se puede ajustar la iluminación utilizando los 3 botones de configuración de la parte de atrás del propio modulo del PIR 

Los ajuste son los siguientes:

  • HORA ;sirve  para establecer la duración de la iluminación (6-360 s);
  • SENS; sirve para ajustar el rango de detección (1-12m);
  • LUX :ajuste la fotosensibilidad (día y noche)

 

Aparte de ajustar  el sensor de movimiento ajustable hasta 10 metros, un ajuste especialmente interesante es el ajuste LUX pues no puede permitir que el foco  ( y  por tanto la alarma ) no se active de día ,pudiéndose accionar automáticamente solo de noche  , que es cuando la mayoría de las ocasiones los dueños de lo ajeno merodean por los exteriores de los inmuebles

Con la doble función de iluminación sorpresiva ( que el producto  ya lo contempla ) y la alarma sonora ( que vamos añadir tanto interior como exterior ) la idea   que se  busca con esta mejora es   una  detección anticipada que localizar los intentos de intrusión y antes de que el intruso haya conseguido entrar : así, decidimos antes a los intrusos y, ademas  tenemos un señal audible de que ha sucedido , señal que por cierto podemos contemplar con otros sistemas como camaras, alarmas remotas , etc

Bien veamos la mejora  de este foco con sensor que podemos comprar por unos 15€

 

 

La idea  de este post  es mejorar  un asequible  foco del fabricante  CLY  para poder usarlo para activar otras cargas ( no solo la de la propia luminaria) , para lo cual tendremos que abrirlo con cuidad  para capturar la señal de salida y devolverlo al exterior . Desgraciadamente  manipulaciones del producto nos  hará  perderas la garantia , pero por el precio que tiene creemos merece la pena puesto que nos puede ser muy útil desde el interur  saber si se ha activado el foco  o por ejemplo para enviar a una central de alarma

 

Empieza la acción: Paso a paso

Empezaremos  antes de desmontar el producto  probando la luminaria pues cualquier cambio de esta en su configuración nos hará perder la garantia, asi que  es nuestra última oportunidad para  probar de que funciona perfectamente este.

Bien si funciona ok , desmontamos  los 4 tornillos de la parte posterior  y sacaremos con cuidado el cristal protector  y luego con cuidado de no toca los leds  los otros dos tornillos  del reflector 

Como se observa en la imagen de más abajo  hay dos bloques  ,   diferentes : el chip compuesto por leds( en el centro )    y el convertidor ac/dc para este ( a la derecha)

Además  se observan claramente  tres conexiones que van al módulo PIR : 

  • Cable marrón; uno de los polos de la red para dar alimentación permanente al módulo PIR
  • Cable azul : otro de los polos de la red  para dar alimentación permanente al módulo PIR
  • Cable rojo ; el cable de detección del PIR   que permite alimentar al convertidor ac/dc 

 

Hemos visto que nuestro objetivo es cable rojo  de salida del módulo de  PIR   que permite alimentar al convertidor ac/dc de la luminaria , y que por tanto nos permite obtener la salida del rele interno del modulo PIR ,así que intentaremos capturar este hilo  para lo cual descubriremos el protector plástico del empalme 

 

Es muy poco ortodoxo , pero como no queremos que el módulo pierda la estanqueidad , y normalmente  para luces exteriores las instalación no suelen contar con este cableado, utilizaremos el cable amarillo de masa del cable de salida ( más adelante si nos interesa podemos exteriormente fijarle un tornillo al chasis y volverlo a conectar)

 

 

 

Ahora solo nos queda  usar una ficha de empalme para conectar el cable amarillo de la manguera exterior con  en emplame rojo-blanco procedente de la salida del modulo PIR hacia el convertidor ac/dc

 

 

 

Ahora ya cerraremos con cuidado la luminaria  : primero el reflector  y luego la junta de estanqueidad  , el cristal  y finalmente la tapa . Ahora ya podemos conectar la c. a.  al extremo de la manguera del foco  , pero con la  importante diferencia que en el  cable amarillo ya no conectaremos la masa  sino por ejemplo un zumbador o  un testigo  que  alojaremos  en el interior de la vivienda para tener constancia  visual    o sonora   de que el foco luz se ha encendido por movimiento de objetos extraños próximos al PIR . Por cierto si se pregunta  donde conectar el otro extremos del zumbador o luz auxiliar este irá conectado al cable marrón de la manguera .

En el esquema anterior, como se puede apreciar ,se complementa con un interruptor para anular el zumbador en caso de que sea demasiado molesto  .Asimismo se recomienda otro interruptor a la entrada de ca si este va estar conectado permanentemente  a la red de ca.

 

 

Hay muchas opciones de uso para esta salida de CA , el cual por cierto no debemos cargar con mucha potencia pues corremos el riesgo de estropear lso contactos del relé interno del modulo PIR

Algunos ejemplos de lo que podemos hacer con esta salida “extra”;

  • Un  relé  de potencia con bobinado de  220v de CA para conectar cargas mayores
  • Un segundo relé de 220V pero para utilizar los contactos para alarmas
  • Un  zumbador de 220V ( los hay por 2€ en Amazon)
  • Un timbre convencional
  • etc

Bueno ,como hemos visto   quizás sean una idea un tanto atrevida , que no todo el mundo esté dispuesto a realizar,  pero desde luego !la posibilidad está ahí   ! y eso sin casi ningún coste adicional !¿se le ocurre  alguna mejora adicional ? si es así no dude en compartirla con toda la comunidad ..!!GRACIAS!!

 

NOTA;Como hemos recibido consultas , en este nueva imagen creemos que se describe mejor la modificación que pasa por soltar el cable amarillo de masa y unirlo con una regleta o un empalme con la conexión marcada como salida del relé