Como reparar una bateria de portatil que no carga


Es frecuente que tras un largo periodo de inactividad  de un ordenador  portatil , quizás  mas prolongado de lo habitual,  desgraciadamente   la batería interna se niegue a  cargar.

Lo normal es que intentemos reanimarla  en  numerosos  intentos de cargas profundas,   teniendo  para ello  el  equipo  conectado al cargador  durante un periodo largo esperando que reaccione . En  ocasiones, desgraciadamente, esos intentos terminan siendo infructuosos obligándonos  finalmente a  reemplazar toda la batería ( es decir  el pack de celdas con su controlador BMS )   por uno nuevo.

Conseguir una batería nueva es  evidente  la  solución más rápida , pero  esto aparte  de tener un coste   monetario   y ambiental elevado, no siempre  es fácil , así que descartado   que el cargador  este  defectuoso ,  vamos a ver dos métodos para  intentar recuperar esas baterías.

 

MÉTODO CARGA  ALTA

A  veces  hay soluciones  sencillas que no involucran  demasiado coste   como puede ser  el caso de intentar solucionar el problema  de la carga  de una batería de un miniordenador o un ordenador portatil que por falta de uso ya no carga la batería interna y al que le pretendemos poner nuevamente en marcha.

 Lo cierto es que es que es relativamente frecuente  este tipo de averías que se presentan cuando por ejemplo estamos unos meses sin utilizar nuestro ordenador portatil  de modo que cuando intentamos arrancarlo no carga la batería llegando incluso a no reconocerla o ni siquiera poder arrancar  . 

De forma resumida  el problema , se debe   a que en vacío se van descargando las celdas internas del  pack de batería  hasta un punto en que el controlador BMS interno de carga de las celdas, cuando baja la tensión un cierto valor bloquea  también una posible carga  de aquella rama de carga , y dado que todos los packs de baterías están compuestos por celdas  normalmente 18650   asociadas  en serie  y paralelo para dar un determinado voltaje  y capacidad, dado que la  electrónica interna del  pack puede impedir la  carga (es  decir el controlador BMS),  una vez que se descargue más de lo normal,  ya  el proceso parece irreversible . Por ejemplo,  en el vídeo de mas abajo   podemos ver una  batería de 10.8 volts  que no  carga   y que por tanto vamos a  necesitar a proceder a  destapar para intentar repararla.

Desmontar un pack de baterías no es una tarea  sencilla  al carecer casi siempre de  ranuras  para separar los cuerpos  ya que normalmente van termo-selladas ambas partes. 

En caso de  que tenga alguna ranura por los laterales  podemos  ir
introduciendo  un destornillador plano  para evitar dañar la  electronica  y vamos  desplazándonos  para intentar separar ambos cuerpos  .

En muchos casos la  etiqueta tapa  de forma deliberada  el acceso así  que la debemos  desprender dependiendo del modelo de pack de baterías pues cada pack  más o menos se abre prácticamente de la misma manera. Intentamos pues  retirar esta  etiqueta con cuidado (  porque una vez reparada la volveremos a volver a pegar de nuevo  )  y deberíamos   proceder  con el destornillador  plano dándole poco a poco  abriendo el pack 

Hay personas que optan por utilizar un cuchillo un poco caliente  o incluso una mini-herramienta  para   ir abriendo despacio las dos partes del pack estas  ya  que debemos hacerlo con cuidado de no  romper la electronica o las conexiones internas .

Una vez que hayamos abierto el pack  veremos que  internamente hay  una pequeña placa electrónica, llamado controlador BMS,   que facilita la  carga de cada   rama de  celdas  impidiendo la carga en tres casos  muy concretos:

      • Cuando supere  cierto valor de temperatura  de la rama.
      • Cuando supere  el valor de tensión nominal.  
      • Cuando baje de un determinado valor  de tensión.

Vamos a proceder a INTENTAR   reparar  el conjunto  con una fuente variable ajustada   a 12v ( o si no se dispone de este de  cargador de 12 y de 500 o 1000 mA) . La tensión debe ser de 12V en este caso  dado que la tensión nominal de  este pack es de 10.8V  y para  cargar la tensión debe superar un par de  voltios  la tensión nominal.

Obviamente   deberemos observar con cuidado extremo  la polaridad  de los hilos que vamos    a usar para intentar reanimar el pack (en el cargador  el hilo que está marcado  con blanco  o  es  de color rojo es el  positivo de nuestro cargador y el otro  el negativo ).

En el pack de baterías   asimismo deberemos identificar  con un polímetro los extremos de la  batería  ( normalmente serán los extremos cercanos a ambos costados ).

Entonces teniendo claro  la  polaridad del pack de batería   y  de  la tensión de carga exterior  vamos  a intentar reanimar la  batería  aplicando tensión   durante   unos  5 segundos , haciendo una pausa,  volvemos a contar  1 2 3 4 5  ,etc , asi en total  4 veces 5 segundos  con 1 ó 2 segundos de por medio.

Con este método  le estamos dando una carga inicial a nuestro pack de batería  a modo e  pulsos eléctricos  , lo cual normalmente  deberíamos  poder  recuperarla.

 

En el siguiente video podemos ver el proceso en total

 

REEMPLAZO DE CELDAS

Lamentablemente  si el método anterior no ha servido es fácil de que una o varias celdas  estén  agotadas, lo cual por desgracia es una de la averías mas típicas. 

Normalmente  los pack de baterías de ordenadores portátiles se  componen de varias conjuntos de baterías, siendo lo normal tres o a lo sumo  cuatro para dar tensiones finales entre 10 y 16V

Teniendo abierto el pack   debemos identificar los puntos de unión de las baterías a la placa de carga ( normalmente tres o cuatro).

Con un polímetro comprobaremos las tensiones en dichos puntos  de forma consecutiva  ( el valor  debería   estar rondando los 2V dependiendo de marca  y modelo )

En este ejemplo vemos que la tensión en cada rama  es 2.9V , lo cual es un valor correcto

Este valor de 2.9 V  debería repetirse con cierta tolerancia en el resto de ramas. Lamentablemente puede que una o varias ramas no alcance este valor , como es en el ejemplo  que no lleva a los milivoltios , lo cual es un signo  clásico de avería en cortocircuito   y que por tanto deberíamos desechar

 
Identificada la rama debe riamos desoldar las baterías , pero  como normalmente va soldadas  con maquinas de soldadura por puntos  habrá que romper estas soldaduras de forma mecánica  por ejemplo con unos alicates de pinza 
 
 
Bien soltadas las celdas defectuosas podemos intentar hacerles una carga profunda a  estas por si se pudiesen salvar , pero en caso de no lograrlo nos tocara  reemplazarlas por otras nuevas de capacidad parecida  ,las cuales podemos soldar de forma convencional  limpiando muy bien las superficies por ejemplo limando  y aplicando pasta de soldar.
 
 
Una vez recompuesto el pack , ensamblaremos todo usando cinta de buena calidad   e intentaremos  cerrar el conjunto
 
La batería  ya debería estar completamente operativa !Enhorabuena acaba de arreglar su ordenador portatil!

Fuentes de alimentación sin transformador ( parte 1 de 2)


El uso de un transformador en fuentes de alimentación de CC tradicionalmente ha sido una solución  bastante común porque son muchas las ventajas que conseguimos  con  él( especialmente  en lo que se refiere al aislamiento ) , pero sin embargo, una gran desventaja de usar un transformador es que  este no se permite  que la unidad sea compacta    añadiendo bastante peso y coste  al dispositivo que lo use ,por ello las  ventajas de usar un circuito de fuente de alimentación sin transformador  se centran en que  se reduce dramáticamente el coste  , tamaño  y peso  siendo ademas  una solución  muy efectiva para aplicaciones que requieren baja potencia para su funcionamiento,  como por ejemplo aplicaciones que requieren corriente por debajo de 100 mA.

 

 

En efecto,  incluso si el requisito actual  de consumo  para su aplicación de circuito es bajo, tradicionalmente teníamos que incluir un transformador pesado y voluminoso haciendo las cosas realmente engorrosas y desordenadas, por lo que en este post vamos a intentar buscar otras soluciones  que intentan prescindir de este caro y voluminoso componente , mas en linea con los nuevos tiempos. 

Como su nombre lo define, un circuito de fuente de alimentación sin transformador,  se aleja  del concepto clásico  de las fuentes de alimentación tradicionales  que poco  a poco  van  reservándose  para  propósitos mas  específicos   donde   básicamente suele haber un voluminoso  transformador  , un rectificador   y un circuito estabilizador ,  quitando  el  transformador(  o por lo menos uno de potencia) .

Con este nuevo enfoque   también es posible proporcionar corriente continua desde  la red de CA de alta tensión   con las ventajas  en reducción   tanto de coste  y de dimensiones  , pero  conllevando  también los   inconvenientes   en relación a  posibles peligros de contactos  de AT  ya que el circuito quedara  expuesto directamente  a la red de ca.

El secreto  de  este concepto   no es otro que  el uso de condensadores de alto voltaje para bajar la corriente de CA de red al nivel inferior requerido , lo cual  puede ser adecuado para el circuito electrónico conectado a la carga. La especificaciones de voltaje de este condensador se selecciona de tal manera que su clasificación de voltaje pico RMS es mucho mayor que el pico de la tensión de red de CA con el fin de garantizar el funcionamiento seguro del condensador.  Este condensador se aplica en serie con una de las entradas de red, preferiblemente la línea de fase de la CA.

Cuando la red AC entra en este condensador, dependiendo del valor del condensador, la reactancia del condensador entra en acción y restringe la corriente de CA de la red de exceder el nivel dado, según lo especificado por el valor del condensador.   

La reactancia capacitiva se representa por  y su valor viene dado por la fórmula:

Donde  es  la  reactancia capacitiva en ohmios., es la capacidad eléctrica en faradios, = Frecuencia en hercios y  = Velocidad angular.

 

Sin embargo, aunque la corriente está restringida la tensión no lo es, por lo tanto, si se mide la salida rectificada de una fuente de alimentación sin transformador, encontrará que la tensión es igual al valor máximo de la red de CA ( alrededor de 310  voltios)  lo cual  podría ser alarmante para cualquier nuevo aficionado,pero dado que la corriente puede ser suficientemente reducidas  por el condensador, este alto voltaje pico podría ser fácilmente abordado y estabilizado mediante el uso de un diodo zener en la salida del rectificador de puente como  vamos  a ver  mas adelante.

Por cierto , no olvidad que la potencia del diodo zener debe seleccionarse adecuadamente de acuerdo con el nivel de corriente permitido del condensador.

La serigrafia  de los condensadores

Dada la importancia del condensador , vamos a  ver como entender al serigrafia de los condensadores  CERÁMICOS y poliester usados tipicamdnte para este tipo de aplicaciones

Los condensadores cerámicos de 10 picofaradios a 82 picofaradios vienen representados con dos cifras, por tanto no tienen problema para diferenciar su capacidad.

Para los valores comprendidos entre 1 y 82, los fabricantes suelen utilizar el punto, es decir, suelen escribir 1.2 – 1.5 – 1.8 o bien situar entre los dos números la letra “p” de picofaradios, es decir, 1p2 – 1p5 – 1p8 que se interpreta como 1 picofaradio y 2 decimas, 1 picofaradio y 5 decimas, etc…

Las dificultades comienzan a partir de los 100 picofaradios, ya que los fabricantes utilizas dispares identificaciones.

  • El primer sistema es el japonés: Las dos primeras cifras indican los dos primeros números de capacidad. El tercer número, al igual que las resistencias, indican el número de ceros que hay que agregar a los dos primeros.Por ejemplo:

100pF   se  muestra como 101 , 120pF  se muestra como 121  o  150 pifofaradios se muestran como  151.

1000pF  se muestra como 102, 1200   se muestra como 122 o  1500 picofaradios se muestran como 152,…

  • Otro sistema es utilizar los nanofaradios: en el caso se 1000 – 1200 – 1800 – 2200 pf se marcan 0´001 – 0´0015 – 0´0018 – 0´0022. Como no siempre hay sitio en las carcasas de los condensadores para tanto número, se elimina el primer cero y se deja el punto, .001 – .0015 – .0018 – .0022.

 

En cambio los condensadores de poliester usados para capacidades mucho mayores que los cerámicos ,además de ir identificado como un sistema que ya hemos visto, pueden marcarse con otro sistema que utiliza la letra griega “µ”. Así pues, un condensador de 100.000 picofaradios, lo podemos encontrar marcado indistintamente como 10nf – .01 – µ10.

En la practica la letra µ sustituye al “0”, por tanto µ01 equivale a 0.01 microfaradios. Entonces, si encontramos condensadores marcados con µ1 – µ47 -µ82, tendremos que leerlo como 0.1µ – 0.47µ -0.82 microfaradios.

También en los condensadores de poliéster, al valor de la capacidad, le siguen otras siglas o números que pudieran despistar. Por ejemplo 1k, se puede interpretar como 1 kilo, es decir, 1000pf, ya que la letra “K” se considera el equivalente a 1000, mientras que su capacidad es en realidad 1 microfaradio.

La sigla .1M50 se puede interpretar erróneamente como 1.5 microfaradios porque la letra “M” se considera equivalente a microfaradios, o bien en presencia del punto, 150.000 picofaradios, mientras que en realidad su capacidad es de 100.000 picofaradios.

Las letras M, K o J presentes tras el valor de la capacidad, indican la tolerancia:

  • M = tolerancia del 20%
  • K = tolerancia del 10%
  • J = tolerancia del 5 %

Tras estas letras, aparecen las cifras que indican la tensión de trabajo.Por ejemplo: .15M50 significa que el condensador tiene una capacidad de 150.000 picofaradios, que su tolerancia es M = 20% y su tensión máxima de trabajo son 50 voltios.

 

 

 

 

El circuito  

A pesar de que vemos ciertas ventajas en este enfoque  de fuente de alimentación sin trafo , también  hay algunas desventajas de un circuito de fuente de alimentación sin transformador:

  • En primer lugar, el circuito no puede producir salidas de alta corriente, pero eso no hará un problema para la mayoría de las aplicaciones .
  • Otro inconveniente que ciertamente necesita cierta consideración es que el concepto no aísla el circuito de las potencialidades peligrosas de la red de CA. Este inconveniente puede tener graves impacto para los diseños que tienen salidas terminadas o partes metálicas de metal, pero no importará para las unidades que tienen todo cubierto en una carcasa no conductora.

Por lo tanto,  debemos trabajar con este circuito con mucho cuidado para evitar cualquier contacto  con toda  la parte eléctrica pues , el circuito anterior permite que las sobre-tensiones de tensión puedan entrar a través de él, lo  que puede causar graves daños al circuito accionado y al propio circuito de suministro. Sin embargo, en el diseño de circuito de fuente de alimentación simple sin transformador propuesto este inconveniente se ha abordado razonablemente mediante la introducción de diferentes tipos de etapas de estabilización después del rectificador de puente  gracias a un diodo zenner  y un condensador electrolítico a la salida dc del puente  diodos.

En el esquema  se utiliza un condensador metalizado de alto voltaje (C1)   que protege de  sobre-tensiones instantáneas de alto voltaje  el circuito  de  utilización,  siendo el  resto del circuito  nada más que  aun típica  configuraciones de puente simple para convertir la tensión de CA escalonada a CC.

Veamos pues la solución usada mas típicamente :

 

El circuito mostrado en el diagrama anterior es un diseño clásico que se puede utilizar como una fuente de alimentación de 12 voltios DC para la mayoría de los circuitos electrónicos.

El funcionamiento de esta fuente de alimentación sin transformación se puede entender con los siguientes puntos:

  1. Cuando la entrada de red de CA está presente, el condensador C1 bloquea la entrada de la corriente de red y la restringe a un nivel inferior según lo determinado por el valor de reactancia combinada de C1  en paralelo   con R1=1Mohmio  y C1=1 microfaradio / 400V AC   .   Con estos valores  la corriente que podría circular sera de  más o menos alrededor de 50mA. Sin embargo, la tensión no está restringida, y por lo tanto la tensión de  220V completa pueda  estar en la entrada pudiendo alcanzar la etapa posterior del rectificador del puente de diodos ( de ahi  el peligro de este tipo de fuentes)  
  2. El rectificador de puente rectifica este 220V C a un más alto 310V DC, debido a la conversión RMS al pico de la forma de onda AC.
  3. Esta tensión de  310V DC se reduce instantáneamente a una tensión de bajo nivel por la siguiente etapa de diodo zener, lo que lo deriva al valor zener. Si se utiliza un zener de 12V, esto se convertirá en 12V y así sucesivamente.
  4. C2 finalmente filtra el 12V DC con ondas, en un relativamente limpio 12V DC.

 

Usando  lo siguientes valores    en el  esquema anterior Podemos obtener una tensión DC de 12V  y como máximo unos 100mA:

  • R1=1Mohmio
  • C1=105 /400   PPC   donde 105=  10 00000 pf o lo que es  lo mismo 1.000.000pF , es decir 1microF. 
  • R2=50ohmios 1Watt
  • Z1= diodo zener de 12v 1W
  • C2=10mF /250V

 

 

Un ejemplo practico

El circuito anterior de fuente de alimentación capacitiva o sin transformador podría utilizarse como un circuito de lámpara LED para iluminar circuitos LED menores de forma segura, como pequeñas tiras o luces de cadena LED.  Por ejemplo para una  tira de  65 a 68 LED de 3 Voltios en serie aproximadamente a una distancia de vamos a decir 20 cm  y  esas tiras unidas para hacer una tira mayor  dando un total de 390 – 408  ledsen la tira  final.

El circuito del controlador que se muestra a continuación es adecuado para conducir cualquier cadena de bombilla LED que tenga menos de 100 LED (para entrada de 220V), cada LED clasificado en 20mA, LED de 3.3V de 5 mm:

Aquí el condensador de entrada 0.33uF/400V decide la cantidad de corriente suministrada a la cadena LED. En este ejemplo será alrededor de 17mA que es casi correcto para la cadena LED seleccionada.

Si se utiliza un solo controlador para un mayor número de cadenas LED 60/70 similares en paralelo, entonces simplemente el valor del condensador mencionado podría aumentarse proporcionalmente para mantener una iluminación óptima en los LED.

Por lo tanto, para 2 cadenas en paralelo, el valor requerido sería 0.68uF/400V, para 3 cadenas podría reemplazarlo con un 1uF/400V. De forma similar para 4 cadenas, esto tendría que actualizarse a 1.33uF/400V, y así sucesivamente.

Importante: Aunque no he mostrado una resistencia limitadora en el diseño, sería una buena idea incluir una resistencia de 33 ohmios y 2 vatios en serie con cada cadena LED para mayor seguridad. Esto se puede insertar en cualquier lugar de la serie con las cadenas individuales.

 

 

Otro ejemplo real

 

En este otro caso vamos  a  ver una bombilla led comercial  cuyo esquema se ha obtenido por ingeniería inversa

Una vez mas    tenemos como pieza clave  a la entrada  de  AC  un condensador de poliester  ( en este caso de 225pf    , 400V  y 5% de tolerancia   con  una resistencia de 603 ohmios en paralelo antes del puente de  diodos

En este caso al  tener perfectamente delimitado el consumo de 10 leds en serie  , sabemos  que aproximadamente  al ser de 1.2V la salida en el puente de diodos deberia rondar los 12V DC y como se puede ver no es preciso  un diodo zenner a la salida del puente

 

Como truco ,por cierto   esta  bombilla si queremos alimentarla con la batería de un coche  de 12V ,  por ejemplo   bastaría conectar  dos hilos de la  batería de 12V  directamente  a la salida del puente , es decir   justo en los dos polos del condensador electrolítico  respetando lógicamente  la polaridad .

 

ADVERTENCIA: AMBOS CIRCUITOS MENCIONADOS EN ESTE ARTICULO NO SON AISLADOS DE  LA TENSIÓN DE AC  POR LO TANTO TODAS LAS SECCIONES EN EL CIRCUITO SON EXTREMADAMENTE PELIGROSAS PARA TOCARLAS CUANDO SE CONECTAN AL SUMINISTRO ELÉCTRICO…

 

 

 

Cómo construir un banco de energía con supercondensadores.


Recientemente se ha introducido en el mercado los “supercondensadores” o lo que es lo mismo condensadores de gran capacidad pero que mantienen prácticamente el mismo factor de forma que los condensadores electrolíticos que estamos acostumbrados a usar en electronica . 

Un aspecto muy diferenciador  de esta nueva tecnología  es que gracias a esta se puede  almacenar energía sin reacciones químicas , lo cual permite que los súpercondensadores se carguen y descarguen mucho más rápido que las baterías y debido a ello  no sufren el desgaste causado por las reacciones químicas, también durando mucho más tiempo (como sabemos a diferencia de los condensadores ordinarios, las baterías almacenan energía en una reacción química, y debido a esto, los iones se insertan realmente en la estructura atómica de un electrodo : a diferencia de un condensador, los iones simplemente “se adhieren”.)

Normalmente si  descargamos nuestra batería del coche a menudo e intentamos arrancar nuestro coche una vez más ,esto  causará más daño a la batería del coche y eventualmente  no cargará de nuevo , hasta que llegue un tiempo rodando otra vez. Sin embargo esto no es cierto para los super-condensadores: por ejemplo un condensador tradicional del tamaño de una batería de célula 18650  , tiene una capacidad de aproximadamente 20 microfaradios, pero si tomamos un supercondensador  de tamaño similar, este  puede llegar a tener una capacidad de 300 Farads lo que  significa que para la misma tensión, el supercondensador  podría en teoría almacenar hasta 15 millones de veces más energía.

 A pesar  del gran avance ,sin embargo no todo son ventajas en los condensadores pues un condensador típico de 20 microfaradios sería capaz de manejar hasta 300 voltios, mientras que un ultracondensador solo puede llegar  a soportar  2,7 voltios, lo cual significa que  si se usa un voltaje más alto, el electrolito dentro del supercondensador comienza a descomponerse  y podría por tanto llegar a destruirse: por este motivo en realidad un super-condensador tiene la capacidad de almacenar alrededor de 1.500 veces la energía de un condensador de tamaño similar.

Por todo esto los supercondensadores  aunque  el campo de aplicación es muy grande : alimentación de emergencia ideal para CMOS, RAM, VCR, radio, televisión, teléfono, instrumentos inteligentes, datos de conducción, tres ICs, relojes electrónicos, linternas LED, dispositivos inteligentes, motores de juguetes, pantalla DC, USV industrial, válvula magnética, IC, reflectores LED, etc.    deberíamos  tenemos  tener en cuenta algunas consideraciones ya comentadas antes de proceder a  usarlos.

Preparación de un supercondensador

Como hemos ya comentado los supercondensadores deben  ser cargados SIEMPRE con circuitos de carga balanceadas pues sin estos corremos el riesgo de destruirlos .No obstante si piensa que son complejos no es así puesto que  estos, circuitos son asequibles de bajo costo  , sencillos ( en realidad hablamos de  un simple circuito de conmutación que no deja pasar la tensión de carga al condensador por encima del umbral )  y  son  muy fáciles de instalar pues van encima de cada condensador ya que están diseñadas con la misma forma para colocar estos justo encima y dar continuidad eléctrica ( y carga ) al conjunto

Por ejemplo si conectamos 5 supercondensadores en serie a 12v  el  voltaje no se dividirá por igual entre los diferentes terminales de los condensadores (2.2V),lo cual ya no está dando una pista de sus limitaciones especialmente a la hora de cargarlos puesto que en caso de asociación serie ,  hasta que cada supercondensador esté completamente cargado,  el voltaje en los extremos de cada condensador subirá y bajará casi como en vumetro de leds precisamente :es precisamente esta la razón  por la que  debemos usar un circuito de protección que proteja los condensadores labor que realizan las placas balanceadoras las cuales mantiene el voltaje entre los condensadores entre 2.7V o menos , es decir los mantiene en  la zona segura de funcionamiento segura cortando la tensión de carga cuando se supera ese valor protegiendo así de este modo al supercondensador

Estas placas por tanto nos descargan de un  trabajo tedioso  pues para cargar un simple condensador de 2.7V 500F   con 2.4 v de forma segura sin usar una placa balanceadora deberíamos conectar un voltímetro y un amperímetro simultáneamente durante unos 30 minutos para llegar casi a los 2V con una intensidad de unos 0.19Amp controlando en cada  momento que no se supere  el umbral . Una vez cargado aunque baje la tensión estos se comportan manteniendo la corriente casi invariable

 

Vamos a ver como calcular la capacidad  resultante de la asociación mas tipica de 5 supercondensadores  

  • En el caso de dos condensadores serie sabemos que esta es la capacidad resultante  es  1/c= 1/c1+ 1/c2

Por tanto la capacidad resultante será : 1/Cfinal= 1/500+ 1/500  =>  Cfinal =250F  

Asimismo  las tensión final es el sumatorio de las parciales:V=V1+v2

Es decir  V= 2.7 +2.7 =5.4V                                                                                                                                                                                                                          

  • En el caso de  tres  condensadores serie sabemos que esta es la capacidad resultante  es

      1/c=1/c1+1/c2+1/c3    lo que da  Cfinal=  166.67F

        Asimismo  las tensión final es el sumatorio de las parciales:    3x 2.7V 500F =8.1v                                                                                                                                                                                                                                                                                      

  • En el caso de cuatro condensadores serie  1/c=1/c1+1/c2+1/c3 +1/c4

Por tanto la capacidad resultante será Cfinal=125F

Asimismo  las tensión final es el sumatorio de las parciales:4 x 2.7V 500F =10.8V                                                                                                                                                                                         

  • Finalmente en el caso de cinco condensadores serie 1/c=1/c1+1/c2+1/c3 +1/c4+1/c5

Por tanto la capacidad resultante será Cfinal=100F

Asimismo  las tensión final es el sumatorio de las parciales  5* 2.7V 500F =13.5V , que es justo el valor que queremos llegar        

 

 

 

 

 

Calculo final

En el calculo anterior de  5 supercondensadores serie  obtuvimos  una tensión útil de 13.5V d3l conjunto   pero con una capacidad final  muy mermada de 100F  así que para aumentarla  si tomamos dos agrupaciones de 5  condensadores en serie  en  paralelo la  capacidad aumentará manteniéndose la tensión final;

 

 

La  capacidad  de este conjunto  aumenta justo el doble tal y como nos dicen los cálculos

          1/cfinal= 1/c1+1/c2+1/c3 +1/c4+1/c5 + 1/c6+1/c7+1/c8 +1/c9+1/c10  =>

         1/cfinal= 1/500+1/500+1/500 +1/500+1/500 + 1/500+1/500+1/500 +1/500+1/500 =>

          cfinal=200F  

Asimismo  las tensión final es el sumatorio de las parciales de una agrupación al estar ambas en paralelo

Es decir  V= 10 x 2.7V = 13.5V

En resumen    tenemos  con ambas agrupaciones  un supercondensador equivalente   de 3.5V 200F

 

Como C=As/V ( AS=Amperios por segundo) , entonces AS=C+V,

 AS= 200F x 13.5V =2700 Amp/seg   

Vemos   que para nuestra agrupación  serie y paralelo de 10 supercondensadores  obtenemos pues  una capacidad en AS  de 2700 Amp/seg

 

Por otro lado como la capacidad de un acumlador normalmente se mide en  unidades  de tiempo (AH= Amperios hora)  como AH =AS/3600s

C (en Amphora) =2700 (enAmp/seg)   /3600= 0.75Ah

Vemos   que para nuestra agrupación de 10 supercondensadores  una capacidad en AH de 0.75AH  que sería la capacidad de esta agrupación , lo cual  nos hace ver en números  que con estas agrupaciones siguiendo estas fórmulas ya comentadas  necesitamos bastantes elementos (  por ejemplo  para obtener un powerbank de 15AH necesitaríamos  unos 200 supercondensadores de 2.7V 500nf)

Una vez hecho los cálculos  llega el momento de construir el  banco de supercondensadores , para  lo cual lo primero es soldar los condensadores a las placas de  protección respetando escrupulosamente la  polaridad  .

Ya montados los módulos de condensador con las placas toca interconectar estos   para obtener  los 0.75AH    . Debemos   tener en cuenta ,dada la corriente que debe pasar por estos cables  que deberemos hacer   la interconexión   con cables  de cobre   de cierto espesor . En este sentido como un cable de 1.1mm soporta  unos 99 Amp en alterna  lo ideal es usar varios cable juntos para que no haya problemas   de calentamiento de estos

Este es el resultado final del montaje

 

 

Medición  de corriente  y tensión de carga

La mejor manera de monitorear la carga de  un acumulador o una  la agrupación de supercondensadores es usar  un medidor multifuncional de panel , pero !atención !  , porque este debe ser especial  para  corriente continua, lo cual será claramente evidente cuando  sea necesario un shut  que deberemos conectar en serie con la carga  (en nuestro caso el banco de supercondensadores)

Normalmente en estos medidores  el shunt se conecta  en  el polo negativo en serie con la carga   en el que precisamente  en ambos extremos  conectaremos  los hilos de medición  siguiendo el esquema siguiente 

Este tipo de multímetros  DC 4 en 1  suelen tener  una precisión de medición de grado 1.0, combinando  la medición de voltaje, corriente, potencia y energía en un combo, súper compacto y liviano que puede ser portátil y fácil de usar.   También  suelen  tener una  función de alarma mostrando el voltaje parpadeando  la luz de fondo  simultáneamente si el voltaje va más allá del umbral de alarma   que se puede establecer si es necesario( el rango va desde   6 a los 90v ).

Además estos instrumentos almacenan automáticamente los datos de  la última prueba de modo que  cuando se  apagan  el valor energético se puede restablecer por una pulsación corta el botón de función en segundos.

En  concreto este medidor, puede medir voltios, amperios, vatios y energía individualmente contando con un shunt de 100 A / 75 mV, adecuada para mediciones de gran alcance . Cuenta  con una pantalla Digital Súper Grande de  51x30mm de  LCD azul para mostrar la tensión, corriente, potencia y la energía.  Con este medidor, puede medir voltaje 6.5V – 100V DC, amperios 0.0A – 100A y vatios 0.0w – 10Kw.

 

 

Si tiene dudas sobre su uso en este video podemos ver el medidor   en funcionamiento  usando precisamente  est  para monitorizar la carga de nuestro conjunto de 10 supercondensadores

 

Conclusión 

Realmente ya hemos visto como montar  los supercondensadores  para fabricar  un banco de energía de supercondensadores  para uso doméstico utilizando  placas de protección  para ensamblar los condensadores   de 2.7V 500F  montados en una combinación mixta de serie y en paralelo de forma segura.

El valor total de la capacidad de los  10 supercaps resultante de es  de 13.5V ,como hemos calculado es de 200F  que traducido a Ampx hora es de  0.75AH .siendo e tiempo de carga promedio para este paquete de unos 8 minutos  utilizando un  cargador lento  comercial  tradicional  de  batería del automóvil.

No nos cansaremos de repetir que las placas de carga son imprescindibles  porque  protegen los condensadores de daños por sobretensión.

 

Finalmente  en este video podemos ver el montaje de este conjunto   y su utilización practica