Calculo de un radiador para calefacción (parte 2)


Como vimos en un post anterior, existen múltiples factores a tener en cuenta a la hora de dimensionar los radiadores  que vamos a  instalar o reemplazar  en una vivienda siendo lógicamente  una de las variables mas decisiva el volumen  de cada estancia a calentar, pues como es lógico, necesitaremos más potencia en habitaciones mas salas o  con techos altos que salas pequeñas  o con techos mas  bajos.

Resumidamente  estos son algunos condicionantes que nos determinaran  el tamaño de los radiadores  :

  • La orientación de la vivienda  pues  todos sabemos que la orientación sur dado que tienen mayor entrada de luz solar durante el día. necesita menos energía para calentar
  • La zona climática donde se encuentra la vivienda. Abajo podemos ver un mapa de España donde queda patente las zonas mas cálidas  ( zona A) donde necesitaremos usar menos energía  para calefactor las estancias  y las zonas mas frías (zonas E)Mapa de zonas climáticas en España
  • El aislamiento de la vivienda es también crucial pues con un mal aislamiento o deficiente se  se disipa mucho calor y  nunca conseguiremos tener una temperatura estable en la vivienda.
  • Otro de los detalles no menos importantes en el momento de calcular la calefacción es la altura de la vivienda  pues no es lo mismo aclimatar una planta alta que soporta  la cubierta  y por ende las inclemencias del tiempo ( lluvia, nieve, etc. )  que una planta baja o una entreplanta
  • Por último también es importante del número de   habitaciones  cuyas paredes dan a alguna fachada   estando relacionado   directamente  con el nivel de calorías /m2 necesarias (cuantas más habitaciones haya expuestas a una fachada menos protección contra los agentes adversos.)

 

Antes de empezar los cálculos , lo primero que queremos indicar, es  que no se calcula los elementos de radiador por metro cuadrado  pues ese numero  solo esta relacionado con la potencia necesaria para calefactor una estancia  así como por el propio radiador y no por la  superficie en si misma   , pues precisamente hemos visto  que la potencia   necesaria  (   que se obtendrá  por varios elementos ) e esta relacionada por el aislamiento, altura, etc  y no por la  superficie en si misma.

Otro aspecto   que tenemos que evitar es  instalar radiadores de aluminio mayores de 12 elementos pues  en algunos casos, el radiador no se calienta totalmente, o al tener en una estancia un foco de calor tan elevado puede hacer que haya grandes diferencia de temperatura entre un lado y otro de la estancia.Precisamente  para evitar ese inconveniente una alternativa es instalar radiadores verticales, sus elementos son más altos que estos radiadores de aluminio, y por tanto los Watios por elemento son mayores. Es decir, con el mismo número de elementos tendrán más calor.

 

 

Calculo simplificado

Para calcular la potencia necesaria en cada estancia, primero identificaremos la vivienda a calcular la calefacción según todas las variables nombradas anteriormente en la siguiente tabla  donde se relaciona  el nivel de aislamiento, el numero de fachadas,al altura a la que esta la vivienda   y por ultimo la  zona . 

Para España según el mapa  que tenemos mas arriba   esta es la tabla para obtener el coeficiente

 

Según el nivel de aislamiento, el numero de fachadas,al altura a la que esta la vivienda   y por ultimo la  zona  obtendremos ese coeficiente  C que como vemos varia entre 67 y 155)   y que nos intenta englobar  todas las posibles perdidas de las diferentes estancias  de la vivienda

Para  saber los Watios necesarias por metro cuadrado para un estancia  multiplicamos los metros por el coeficiente  para conocer las necesidades de cada estancia.

 Potencia necesaria (W)=Factor de corrección x    M² de la estancia 

 

Una vez sabemos la potencia que necesitamos para cada estancia, debemos acceder a la ficha técnica del tipo de radiador que queremos instalar para saber el número de elementos necesarios para conseguir la temperatura óptima en la estancia.

     número de elementos necesarios=Potencia necesaria (W)/ emisión térmica del radiador

 

Por ejemplo, si nos vamos a uno de los fabricante mas conocidos Ferolli , uno de los más vendidos y que mejor rendimiento da en todo tipo de viviendas,si tomamos como referencia el   Modelo Europa   si accedemos   a su ficha técnica podemos ver que emisión térmica del radiador a 50º (ΔT = 50º) es de 119,8W por elemento

 

Con el valor obtenido   de la potencia necesaria por cada  estancia obtenido en  el primer paso , si la  dividiremos   por la potencia de cada elemento de radiador  , es decir  la emisión térmica del radiador a 50º (ΔT = 50º),  obtendremos el número aproximado de elementos necesarios para cada estancia

.

 

Si consideramos  que el factor  es demasiado alcista el de considerar como referencia  la emisión térmica del radiador a 50º (ΔT = 50º)   dado que el fabricante también nos ofrece otro  dato podemos considerar como coeficiente de corrección   la emisión térmica del radiador a 60º(ΔT = 60º) lo cual si duda nos dará  un radiador de  menores dimensiones

 

Por ejemplo si necesitamos  calentar una estancia con una potencia de 862 W  y elegimos el  modelo Europa  tenemos la siguientes casuisticas:

  • Si consideramos la  emisión térmica del radiador a 50º (ΔT = 50º) que  es de 119,8W   la ecuación nos quedara con 862 W / 119,8 W = 7.25. Y este resultado siempre lo redondeamos hacia arriba, así que nos quedará un radiador Europa de 8 elementos para calentar esta estancia.
  • Si consideramos la  emisión térmica del radiador a 60º (ΔT = 60º) que  es de 119,8W   la ecuación nos quedara con 862 W / 152,3 W = 5.6. Y este resultado siempre lo redondeamos hacia arriba, así que nos quedará un radiador Europa de 6 elementos para calentar esta estancia, es decir justo el  radiador de referencia de esta  marca de 6 elementos  , que es por cierto el mas usual  en dormitorios o estudios de un tamaño medio.

 

 

Regulación de los radiadores 

Dentro de los accesorios existen  múltiples  opciones interesantes e para reducir  consumo al máximo mediante el control del calor, como son las válvulas termostáticas y los cabezales electrónicos.

En este  sentido para controlar el uso de los radiadores y la caldera,  los termostatos o cronotermostatos( son programables) y hay varias opciones: con cable, por radiofrecuencia, wifi.   Entre estas opciones destacan los cronotermostato Wifi con el que se puede controlar nuestra sistema de calefacción desde el móvil o tablet.

Si busca algo económico, de sencillo manejo y con un funcionamiento fiable,  un modelos  a  tener en cuenta es el modelo eQ-3 141227C1 CC-RT-M-TFC  pues  pude permite un ajuste exacto de la temperatura y la regulación de la temperatura ambiente. Es fácil de instalar sin drenar agua, la necesidad de herramientas especiales o intervenir en el sistema de calefacción  pues se enrosca directamente  sobre la llave manual.

Ee apto para la mayoría de los fabricantes de válvulas populares como Heimeier, MNG, Honeywell Braukmann, Oventrop, Schlösser, Comap, Valf Sanayii, Idmar, Jaga, Junkers, Pegler, R.B.M., Watts (no incluye adaptador para Danfoss RA, RAV y RAVL).

Ademas esta listo listo para su uso gracias a la programación predefinida, protección de función con protección de los niños y bloqueo de funcionamiento y no necesita alimentación exterior ( se alimenta con dos pilas AAA).

 

Anuncios

Calculo de un radiador para calefacción


En el momento de planificar el confort de una vivienda, es conveniente calcular la calefacción para así poder tener en cuenta el tipo de caldera, la potencia de esta, el numero de radiadores y el número de elementos de cada radiador para que luego no ocurran sorpresas desagradables con la temperatura del hogar.

A la hora de elegir , cambiar o modificar un sistema de calefacción tanto central de agua caliente como eléctrico existen diferentes aproximaciones para hacer un cálculo aproximado de la potencia calorífica que se necesita para calentar cada habitación de nuestra vivienda siendo lo mas normal estimar el cálculo watios (W) pues es un dato que suelen ofrecer todos los fabricantes de radiadores

En caso de calefacción central lo primero, saber que caldera tenemos y que potencia calorífica nos puede proporcionar, ya que puede ser escasa. Y la caldera depende del tamaño de la instalación, pero con una de 28 kw deberíamos tener suficiente.

 

 

Contar con una buena instalación de calefacción es imprescindible para el confort de nuestro hogar durante el invierno. Por eso, es importante tener en cuenta las características de nuestra casa a la hora de escoger el sistema que más nos conviene.

  • Localidad donde se instalarán los radiadores
  • Tipo de vivienda ,Piso (entreplanta, ático o piso rodeado de pisos) y número de fachadas a la calle.
  • Orientación de la vivienda.
  • Metros cuadrados para cada habitación  y altura del techo.
  • Uso   que se le va a dar a esa habitación  ya que en pasillos podemos redondear a la baja, mientras que en salas de estar haríamos lo contrario.
  • Nivel de aislamiento de la vivienda.

Por todo ello para efectuar el cálculo de las necesidades caloríficas de una vivienda, deben determinarse las pérdidas de calor por transmisión en paredes, ventanas, suelo, techo, puertas y las pérdidas por infiltraciones de aire para cada uno de los locales que componen la vivienda.Además, deberá añadirse unos suplementos por orientación norte, intermitencia y por dos o más paredes al exterior.

 

Para facilitar y determinar, de un modo rápido y aproximado, la potencia calorífica de una vivienda, es importante tener en cuenta distintos factores, como son:

  • Factor A:Base en W/m². El factor varía en función del uso al que se destina la habitabilidad del local, del emplazamiento en el contexto del edificio y del régimen de calefacción que se utilice en la edificación. No es lo mismo vivir en un primer piso que en un quinto.
  • Factor B: Coeficiente corrector, se aplica en base a la temperatura de cálculo en el exterior del edificio a calcular.
  • Factor C: Factor que regula las necesidades a partir del tipo de construcción, basándonos en la antigüedad del edificio.

De esta forma, uno de los métodos más eficientes para calcular las necesidades térmicas de nuestro hogar, consiste en multiplicar la superficie del local (habitación) por estos tres factores, variables en función de las características y situación de la vivienda., es decir usando la formula

Potencia  necesaria  por m2=  A  x  B  x C x  superficie en m2 de la habitación

En la practica  estos  tres factores vienen dados por el fabricante de modo que según las tablas del fabricante del radiador establecemos el coeficiente (los vatios por metro cuadrado para esa vivienda en ese lugar) y solo tenemos que multiplicar los metros cuadrados (de cada estancia) por los vatios necesarios por metro cuadrado que nos indica la tabla del fabricante en función de las características de la vivienda.

 

Calcular calefacción en función de la superficie 

Para calcular la potencia de calefacción que necesitaremos por metros cuadrados (en W), plantearemos la siguiente fórmula de cálculo que será válida para estancias con una altura menor de 2,5 metros cuadrados:

Potencia requerida (W)= AxBxCxDx85

A = Espacio a calentar,Apunta en la fórmula los metros cuadrados de la estancia a calentar

B = Orientación.De la orientación de la vivienda depende que reciba una mayor o menor cantidad de luz solar. Una casa con orientación Sur siempre es más soleada y por tanto, está más caliente. Estos coeficientes son los los mas normales:

  • Norte: (VALOR = 1,12)
  • Sur: (VALOR = 0,92)
  • Este: (VALOR = 1)
  • Oeste: (VALOR = 1)
     

C = Aislamiento:El aislamiento es básico para determinar una mejor o peor eficiencia energética de un edificio. Una vivienda con carente de aislamiento sufrirá pérdidas de calefacción y por lo tanto de energía. A menor aislamiento, mayor consumo de calefacción. Sabido ésto, elije entre estas tres opciones:

  • Buen aislamiento: Ventanal doble y tabique doble (VALOR = 0,93)
  • Aislamiento sencillo: Ventanal sencillo y tabique doble o ventanal doble y tabique sencillo (VALOR = 1)
  • Sin aislamiento: Ventanal sencillo y tabique sencillo (VALOR = 1,10)

D = Zona climática,El Código Técnico de la Edificación establece en el DB H1 las zonas climáticas en las que se divide nuestro país identificándolas mediante una letra en la división de invierno y un número de verano. Como estamos realizando un cálculo de calefacción, nos referiremos a las zonas climáticas en invierno.Consulte en el mapa siguiente la zona climática en la que se encuentra su vivienda y aplique su valor a la fórmula.

Mapa de zonas climáticas en España
  • Zona A: (VALOR = 0,88)
  • Zona B: (VALOR = 0,95)
  • Zona C: (VALOR = 1,04)
  • Zona D: (VALOR = 1,12)
  • Zona E: (VALOR = 1,19)

Cálculo de radiadores por volumen

Su supera la altura de 2,5 m  cada habitación , para saber cuántos radiadores debemos instalar en una habitación, conviene realizar el cálculo por volumen en metros cúbicos ya que la altura es un aspecto muy importante a valorar.

Los pasos para conseguir el cálculo de radiadores por m3. 

  • Calcular volumen en metros cúbicos es el resultado de multiplicar al superficie en en metros cuadrados por la altura de cada estancia.
  • Calcular las kcal/h necesarias para calentar la habitación.La formula  para calcular los KW/h en función de la Kcal/h es  simplemente dividendo  kcal/h entre 860 obteniendo así los  kW/h de potencia necesaria. Según el tipo de habitación, utilizaremos distintos valores de cálculo:

dormitorios … m3 x 45 = kcal/h.

baño, sala estar, comedor … m3 x 50 = kcal/h.

pasillos, lavaderos … m3 x 40 = kcal/h.

 

  •  Calcular los elementos del radiador: las kcal/h o kW/h obtenidas habrá que dividirlas por la potencia calefactora de cada elemento del radiador y el resultado es la cantidad de elementos que serán necesarios en el radiador.

Por ejemplo para saber cuántos radiadores necesitaremos para calentar una casa de 75 m2, con una altura de 2,5 m,

  •  Calcular volumen en metros cubicos75 *2.5   nos da 187,5 m3
  • Calcular las kcal/h necesarias para calefactar la habitación  187,5 m3 x 40 = 7500 kcal/h / 860 = 8,7 kW/h 
  • Calcular los elementos del radiador:  Si tenemos un radiador de 1.000 W (1kW), sabemos que necesitaremos al menos 8 radiadores para calentar toda la vivienda. 

De todas formas, volvemos a recordar que estamos hablando de unos cálculos muy simples. Para que las potencias realmente se correspondan con las necesidades de una vivienda, el cálculo debe realizarse mediante la valoración de ubicación de vivienda, orientación, m2 de aberturas acristaladas, m2 de pared exterior, m2 suelo exterior o con vecinos, m2 techo con vecinos o exterior, coeficientes de transmisión, etc … algo que recomendamos pedir a un instalador profesional para que se realice un cálculo real y sobre todo eficiente de la calefacción que necesita su vivienda. 

 

 

Calculo online

En esta pagina se  puede calcular las necesidades caloríficas así como los elementos de calefacción necesarios de cualquier estancia.

Funcionamiento: 

  1.  Para insertar una nueva estancia, pulse sobre el botón ‘Añadir’
  2. Tenemos que seleccionar;Zona Climática,Aislamiento,uso de la Habitación,Orientación y  superficie  en metros cuadrado
  3. Después pulsar en el icono de ‘Guardar‘( el disquete)  para fijar los datos o ‘Borrar’ para eliminarlos.
  4. Obtendremos el valor delas Kcalorias  necesarias en función de las condiciones elegidas.Como en este programa nos da el resultado en Kcal  por lo que para pasarlos a Watios:

    kcal/h dividido entre 860 = kW/h de potencia necesaria.

  5. El programa  ademas suma el total de Kcal , lo cual nos puede ser interesante para calcular la potencia de la caldera en caso de un sistema centralizado
  6. También podemos saber de forma individualizada   el numero de elementos necesarios   por estancia para  un tipo de radiador del fabricante 



Los datos de cálculo son aproximados y están basados en condiciones medias de aislamiento y altura de 2,50 m y las  potencias radiadores certificadas a Delta t=50

 

Cómo encender las luces Hue desde Google Home sin comprar uno de los altavoces de Google


En efecto  los asistentes de voz han llegado para quedarse de modo que lo que hoy son capaces de hacer  probablemente sera superado muy rápidamente   con creces en un futuro muy cercano con nuevas posibilidades. Precisamente uno de los campos mas interesantes   dentro de  las posibilidades  que ofrece la IA   es el control  de  nuestros dispositivos   domésticos,  destacando con  voz propia el control de la iluminación eléctrica,  sencillamente porque aparte  de que esta estandarizado los tipos de luminarias,  el control  de estas es mucho mas sencillo  que el de cualquier  electrodoméstico en el que podamos pensar  (si bien  esto esta cambiando con equipos  eléctricos  cada vez mas conectados como lavadoras , equipos de aire acondicionado , calefacción , etc).

Dentro de la domótica orientada a la iluminación, destaca con voz propia el sistema Hue de Philips , pues en efecto mucho antes de que Lifx, IKEA, Sengled y el like llegaran a la escena, la compañía, que por cierto cambió su nombre de Philips Lighting a Signifity, ya estaba ofreciendo una serie de bombillas conectadas que podrían controlarse desde una aplicación en su teléfono inteligente (de hecho la primera bombilla que se encendió  fue en octubre de 2012).

A  pesar de  que esos antiguos rivales hoy en día ya ofrecen una  buena calidad, son fáciles de usar y   son alternativas genuinas, Hue sigue siendo el rey del peso pesado indiscutible en una división en constante expansión ,siendo por tanto para muchas personas,Philips Hue  el primer nombre en que piensan  al equipar sus casas inteligentes.

Sin embargo, una casa inteligente no  es tan simple como comprar  el  famoso   Philips Hue Hub   y  enroscar bombillas compatibles con el sistema  Hue , y de hecho no es necesariamente la cosa más fácil de lograr, pues existe una gran variedad de luminarias  Philips Hue para elegir, así como una plétora de accesorios y extras,   así como una gama aparentemente interminable de características y especificaciones-que puede ser muy  desalentadores para empezar,   pues ademas,  si queremos llegar aun mas lejos,  deberíamos  sincronizar  estos con  ecosistemas como Nest, Alexa, HomeKit ,  Google Assistant o últimamente Movistar Home con su famosa implementación de IA  con  “Aura”.

 

Configurar Philips Hue

Esencialmente, una configuración de Philips Hue (como en la mayoría de los otros sistemas de iluminación inteligentes) utiliza señales inalámbricas  Wi-Fi y ZigBee permitiendo  conectar hasta 50 dispositivos de iluminación inteligente  mediante una aplicación o un control remoto físico

Resumidamente   para conectar de luces inteligentes  basadas en el sitema Hue de Philips ,  solo necesitamos  conectar el Hub  a la red eléctrica  y a una toma ethernet, conectar  bombillas compatibles   y configurar todo el ecosistemas desde la app Hue  y usted será capaz de controlar su brillo, colores, el tiempo que permanecen encendidas o apagadas o   la forma en que reaccionan a otra tecnología inteligente.

De hecho, gracias a los gustos de Amazon Alexa y Google Assistant, y recientemente Movistar Home ,  es posible que incluso ya  no necesite usar  la aplicación Hue  en absoluto( excepto para la primera configuracion), pues la iluminación de su casa se controlará solo con la  voz., pero en todos los casos, no obstante ,para hacer  este control posible,  vamos a  necesitar un elemento    que haga de puente  entre la red  wifi  y red  Zigbee : el  Philips Hue Hub .

En efecto Philips Hue Hub integra el coordinador y el router Zigbee en un único dispositivo , permitiendo conectar hasta 50 bombillas Hue además de 10 accesorios para poder ampliarlo. Además  no solo este Hub admite bombillas Philips Hue  sino  otras marcas mas económicas  como Inn, Osram y hasta incluso las bombillas de Ikea

El puente de Philips Hue es pues la herramienta que permite la conexión y manejo de bombillas LED  compatibles con Zigbee  al ser  compatible con ZigBee 3,0, pero también al ser compatible con el protocolo estándar ZigBee Light Link   permite  que conectemos   bombillas que no tienen que ser necesariamente  Philips Hue  como tal, pues  hay  otros  productos y dispositivos compatibles con ZigBee Light Link que  funcionan con el puente Hue. De hecho , tal  y como ya comentamos en un post anterior , podemos usar otras  marcas como por ejemplo las  bombillas inteligentes de IKEA   o  otras  bombillas de la talla de GE y Osram

Una vez conectado el Hub  a la red eléctrica  y a una toma ethernet el Philips Hue Hub , necesitaremos instalar  la app  “Philips Hue ” disponible en Google  Play para  configurar tanto el Hub como las luminarias . Una vez  realizada esta configuración de una única vez   podremos programar y personalizar la iluminación de una  casa  permitiendo organizar fácilmente la iluminación por habitaciones,encender o apagar todas las luces de las habitaciones o cambiar el color o el brillo en todas las bombillas según su estado de ánimo o actividad  con independencia de la cantidad de la cantidad de  bombilla que hayamos instalado.

Configurar un puente Philips Hue

  • Enchufe el puente de Hue en una toma de corriente y conéctelo a su router a través del cable Ethernet.
  • Proceda una vez que las cuatro luces del puente se iluminen.
  • Vaya a Configuración > puentes de Hue > Añadir puente de Hue en la aplicación Philips Hue.
  • Siga las instrucciones de configuración.

Cconfigurar una bombilla Philips Hue

  • Primero, asegúrese de que el puente Philips Hue esté configurado.
  • Vaya a Configuración > configuración de luz > Añadir luz.
  • Pulse ‘ Buscar ‘ o agregue manualmente el número de serie que aparece en la bombilla.
  • Siga las instrucciones de configuración, desde cuyo punto puede nombrar su luz y ponerla en habitaciones.

Lo normal es que instalemos   las bombillas desde la aplicación “Philips Hue ” disponible en Google  Play  y controlemos  todas las luminarias   tanto  desde la propia aplicación  o desde un accesorio Hue, pero además ,   recientemente  se  ha implementado el control de esta mediante  la  inteligencia artificial de Movistar  (Aura)   en el famoso Movistar  Home , dispositivo que actualmente no solo permite el control de  las  luminarias conectadas al  Philips Hue Hub mediante  ordenes vocales  del tipo “ok Aura enciende las luces” o “Ok Aura apaga las luces” (así como elegir el color o la intensidad de la iluminación de forma táctil en la pantalla de tu Movistar Home), ademas    permite  tener el control  de las llamadas ( crucial para el caso de emergencias)   , buscar contenidos de Imagenio y proyectarlos en la TV, gestionar la conectividad con la voz , y un largo etcétera .

 

Movistar Home

Si tiene instaladas  las luces inteligentes (Phillips Hue) y cuenta con en el famoso Movistar  Home , en efecto podrá controlar el apagado y encendido de las luces del salón a través del comando de voz, “OK Aura, enciende las luces” u “OK Aura, apaga las luces”, así como elegir el color o la intensidad de la iluminación de forma táctil en la pantalla de su Movistar Home y todo ello  con tres sencillos pasos desde el propio Home:
  1.  Pulsando el botón del Hub de Hue , nos iremos en el Movistar Home  a Ajustes->Conectividad->Luces
  2.  Ahora una vez detectado el hub   debería aparecer  en este apartado en la pantalla de MH
  3. Lo siguiente es buscar las luces , así que nos volveremos  en el MH a Ajustes->Conectividad->Luces   y seleccionaremos las luces sobre las que actuar
 

 

Vinculación  de   Philips Hue a Google Home

Ademas  de la posibilidades comentadas  de control de la aplicación  , desde periféricos Hue o incluso desde MOVISTAR  HOME , es posible controlar las luces  con la voz desde cualquier smartphone o tableta de forma sencilla  haciendo prácticamente innecesario el desembolso  de un altavoz inteligente de Google   de paso nos ahorraremos un dinero que según  las especificaciones podría llegar hasta los 150€

Para  controlar las luces Hue desde la  app de  Google Home en primer lugar tendremos que asegurarnos que esta activada la conexión con el exterior de las luxes , por los que nos iremos en la app de Philips  Hue  a Ajustes->Controles–>Controla desde fuera de.., 

Si  no tenia activo esta opción , la app le llevara automáticamente a  la pagina de philips donde necesitara crear una cuenta para acceder al servicio ,  así como conceder los permisos necesarios para  el control externo de su sistema de iluminación , Una vez validado y terminado el proceso debería de ver   vera que esta opción  aparece como conectado

 

Configuración Google Home 

Ahora tenemos todo preparado para instalar  la aplicación Google Home ( por cierto tambien disponible para  Iphone)  , con la que  podremos configurar, gestionar y controlar un Google Home y Chromecast pero también directamente el sistema Hue de Philips  ( , además de miles de productos para casas conectadas, como luces, cámaras, termostatos y otros dispositivos, con esta a única aplicación).

Aparte de poder controlarlo por la voz ,esta aplicación tiene accesos directos para realizar las acciones más habituales, como poner música o atenuar las luces para ver una película ( todo ello se o controla  con un solo toque, para disfrutar de lo bueno sin tener que esperar).

 

Bien   lo primero  tenemos nuestro sistema configurado  desde la app de Hue , y tenemos habilitado el control desde fuera, pues lo siguiente sera instalar  la aplicación Google Home (la cual  por cierto también disponible para  Iphone)

 

Lo primero que tiene que hacer es una vez instalada es abrir la aplicación de Google Home.

En la primera instalación  nos preguntara si concedemos permisos de nuestra   ubicación  ,la cual podria ser útil para automatización del hogar

En cuanto hay concluido esta primera configuración, enseguida nos preguntara si deseamos buscar dispositivos compatibles de forma nativa  

Si no tiene un chromecast o un  Google Home no detectara nada , por lo que  enseguida vera la configuración de tu casa. Es en esta pantalla ( menú principal) donde deberá  pulsar en el botón Añadir(+)  que se en la parte superior de la pantalla, en la configuración de su casa

Ahora  una vez entre en las opciones de Añadir y gestionar, en el apartado Añadir a la casa  pulsaremos en Configurar Dispositivo que verá en primer lugar, y que sirve para vincular todo tipo de dispositivos compatibles con Google Assistant.

Una vez en esta pantalla de Configuración , pulse sobre la opción Configurar dispositivo vera dos opciones para vincular dos tipos de dispositivos: una  para dispositivos oficiales hechos para Google ( no es la nuestra ) y otra  opción de “Funciona con Google”   para dispositivos de terceros.

 

 

Seleccionando la opción de “funciona con Google” ,en  esta opción  aparece un sinfín de marcas y modelos  por lo que lo mas sencillo es buscarlo como “ph” pulsando en la lupa de la parte superior

Enseguida la aplicación de Google le llevará a la web de Philips Hue, donde va a tener que iniciar sesión con su cuenta que debió crear cuando en la aplicación Hue a través de la selección  Ajustes->Controles–>Controla desde fuera de..,.

Si no tuviese  esa cuenta de acceso a Philñips Hue desde el exterior,  primero tendrá que crearla para continuar , lo cual es aconsejable hacerlo desde la propia app de Philips en Ajustes->Controles–>Controla desde fuera de..,.. 

.

 

Una vez haya iniciado sesión, en la web se le informará de que Google está solicitando el acceso para supervisar sus bombillas, y le preguntarán si estás de acuerdo. De estar de acuerdo   puede pulsar en el botón para aceptarlo, y ya deberían aparecer toas  las luminarias que puede utilizar  desde esta  app  con la voz 

 

 

Por ejemplo puede probar a decirle “Ok Google, enciende las luces”, o “apaga las luces” o si lo desea pulsar directamente en los accesos directos  para apagar , encender o disminuir a aumentar la intensidad de forma selectiva alguna ( o todas )  las luminarias compatibles con el sistema Hue que tenga instaladas

 

 

Para terminar también puede utilizar comandos de voz mas complejos  como “pon las luces de color morado” o “baja la intensidad de las luces” o incluso dar ordenes de voz para que encienda o apague las luces a una hora  o  durante un determinado periodo ,con una cierta secuencia,etc  ..como ve las posibilidades son bastantes extensas  para poderlas en numerar desde aquí .

¿Amigo lector le parece interesante este sistema?

Como saber el consumo diario por horas sin ningún hw adicional


En este blog hemos hablado en numerosas ocasiones de sistemas para monitorizar el consumo energético  de una vivienda,  por ejemplo  usando un contador con salidas de pulsos  o directamente con un sencillo watimetro digital  de panel.

Desgraciadamente en ambos casos aunque el hw no es nada costoso  , según el tipo de  montaje, hay que soltar al meno uno de los  cables de la acometida  en caso del display hacer pasar por el cable la bobina y volverlo a colocar en su lugar ,  o bien conectar un watimetro de montaje din en derivación  con la salida del magenetotérmico general    

En resumen seria un esquema muy similar al siguiente tal y como hemos comentado en otros posts:

 

 

instalacion

En cualquier caso  , como podemos intuir , deberíamos extremar las medidas de seguridad  para evitar exposición a la c.a. , de modo  que si no tiene experiencia, es mejor recurrir a un profesional lo cual lamentablemente  hará aumentar nuestro  presupuesto .

Pero no se desanime , pues pensándolo mejor ¿Y si esta información ya estuviese disponible? Pues en efecto  dado que  en muchos países es ya  obligatorio el uso de contadores inteligentes , en la mayoría de los casos , aunque quizás no lo sepa ,   toda la información de consumo desglosada incluso  por horas  (o por días)  en efecto   ya esta disponible por parte de la mayoría de las distribuidoras  , teniendo únicamente que recurrir   al sitio  web del suministrador  para obtenerlo.

En este post vamos  a poner como  ejemplo la obtención de las lecturas en caso de que su  suministrador  sea  Endesa, pero en caso de que este no sea el suyo , el procedimiento esa muy similar 

Para obtener dicha información por tanto nos iremos a la web oficial de Endesa:  https://www.endesaclientes.com

Lógicamente deberíamos tener credenciales de acceso por lo que   si aun no se ha interesado  en acceder  a dicho sitio , debería  proceder antes a registrarse en la siguiente  url  para lo cual ademas de los datos personales necesitara una factura en papel  para  confirmar  que  es usted quien dice ser  

A continuación , nos validaremos con nuestras credenciales de usuario  y pwd  de Endesa 

 

area cliente

Al validarlos en este sitio nos manda directamente al apartado  “Tus  consumos”   ,  donde en caso de  tener varios contratos , tendremos que seleccionar cual de ellos  nos interesa pinchando en la flecha azul de la derecha del  contrato visualizado por defecto:

 

 

En este  primer ejemplo en el combo de vista  elegiremos  “Por día”  y a continuación seleccionaremos aquel día que nos interese investigar:

 

A continuación  nos dará pormenorizado el desglose del consumo total en kw/h  por franjas horarias para ese día

 

 

Observe que estos resultados se puede exportar a diferentes formatos como por ejemplo  una hoja excel   , precisamente  para salvar dicha información  en nuestro ordenador

 

Aun  mas interesante  que el dato anterior , puede ser seleccionar el combo de Vista por factura pues ahora nos aparecerá desglosada el consumo por día para analizar  pautas que podemos seguir en aras de intentar  disminuir  nuestro consumo eléctrico,

Asimismo  ,como vemos  mas abajo , también se pueden exportar dichos datos a una hoja excel ,    para no solo guardar estos en nuestro ordenador ,sino también para poder realizar cálculos sobre estos datos.

En este punto  también hay  una importante razón  para haber seleccionado la vista  por consumo  ( es decir la vista por días  ) , pues  si conectamos varios enchufes inteligentes,  como por ejemplo   el modelo  MSS310    al ofrecernos este el consumo diario del equipo conectado a este podemos ir restando del valor total  por día estas cantidades   para llegar al origen del mayor  consumo .

Por ejemplo  electrodomésticos destinados a  ser responsables del mayor consumo  no podemos olvidar equipos tan  gastosos como el termo eléctrico, el horno, la vitroceramica y la nevera  entre otros, por lo que quizás sea ahí donde podremos fijar nuestro enchufes inteligentes por ejemplo  modelo  MSS310  

 

Asimismo mediante la activación de diferentes skills o funcionalidades (es decir como  las apps para los samrtphones , pero en este caso para ejecutar en un altavoz inteligente ), es posible pedirle a Alexa( de Amazon )  de viva voz  ademas de que  ponga música, e lea un libro o que diga qué tiempo va a hacer mañana, gracias a  la nueva skill de Endesa,  preguntar por voz   por su  consumo de  energía asi como  tener más cerca que nunca el asesoramiento energético personalizado que le permita ahorrar en sus facturas.

Lógicamente  se necesita ser cliente de Endesa y tener alguno de los diferentes modelos de altavoces inalámbricos de  Amazon Echo

 

 

Ejemplos de coas que podemos preguntarle a Alexa:

  • ¿Estamos gastando más luz que el mes anterior?El primer paso para controlar tu consumo es descubrir cuándo te estás pasando.

  • ¿Cuánta energía hemos consumido el último mes? ¿Y el anterior?
  • ¿Está pagada mi última factura?

  • ¿Hay alguna tarifa nueva que pueda adaptarse a nuestro perfil de consumo y así ayudarnos  a ahorrar?

  • Dudas sobre  facturas y contratos Endesa

  • Etc.
Básicamente para poder usar esta funcionalidad, primero deberemos activar el skill de Endesa en nuestro Altavoz, para lo cual solo tenemos que ir a la página de skills de Alexa y activar dicho skill (necesitara tener cuenta en amazon) , aunque  dicho skill sea gratuito
Una vez activada, tenemos  que conectar el skill   a nuestro  usuario de endesaclientes (si es cliente de Endesa pero aún no tiene usuario necesitará , regístrase aquí.) , También si esta registrado pero no recuerda sus datos, puede recuperar su contraseña o incluso  recuperar su usuario.  A partir de aquí ya podrá hacer las preguntas anteriormente citadas  y todas las que se le ocurran. ! quien sabe a lo mejor nos sorprende !

Sencillo contador de energía para hogar


Desde que cambió la normativa que regulaba el uso de limitador  de la potencia contratada , gracias a los contadores inteligentes  con tele-gestión que van instalados aparte ( normalmente centralizados en una parte de edificio aparte)y que integran ademas  la habilidad de limitar ( o mejor dicho interrumpir) el suministro la potencia desde estos en función de la potencia contratada , en muchos casos  y  en muchas viviendas ha quedado libre el hueco  donde residía el antiguo  ICP magnetotérmico  que hacia de limitador  y que  instalaba la compañía suministradora

Este hueco  en la caja ICT  que ha quedado vacante normalmente ubicado a  la derecha de la caja de distribución de corriente alterna , es ideal  para instalar  un sencillo panel  muy económico que nos va ayudar muchísimo a concienciarnos de nuestro consumo energético en tiempo real   y por supuesto realizar las acciones correctores

El panel digital ,como se observa en la imagen superior ya montado,   encaja en la parte del hueco dejado por el antiguo magnetotérmico , aunque según el tipo de caja habrá que rebajar algo mas el hueco  con una lima para que encaje perfectamente en el hueco ,   y como se puede  apreciar ,es bastante llamativo visualmente gracias  a su luz de fondo azulada  mostrando en tiempo real   las siguientes medidas:

  • Tensión en voltios de la red de suministro ca
  • Intensidad en amperios del
  • Potencia instantánea consumida en Watios
  • Acumulado de  energía consumida wn Kw/h

 

 

 

El instrumento calcula la potencia activa usando la formula  P = U * I * (Cos ) donde  (Cos ) indica  el factor de potencia .

El factor de potencia o coseno de “fi” (Cos ) representa el valor del ángulo que se forma al representar gráficamente la potencia activa (P) y la potencia aparente (S), es decir, la relación existente entre la potencia real de trabajo y la potencia total consumida por la carga o el consumidor conectado a un circuito eléctrico de corriente alterna. 

En los circuitos inductivos, como ocurre con los motores, transformadores y la mayoría de los dispositivos o aparatos que trabajan con algún tipo de bobinado, el valor del factor de potencia se muestra siempre con una fracción decimal menor que la unidad ,lo cual realmente indica  el retraso o desfase que produce la carga inductiva en la sinusoide correspondiente a la intensidad de la corriente con respecto a la sinusoide de la tensión o voltaje.

Por ejemplo un  motor de corriente alterna con un  factor  de  potencia  o  Cos  = 0,95 ,  por  ejemplo,  será  mucho  más  eficiente  que  otro  que  posea  un  Cos  = 0,85 .

Instalación 

Como panel hemos elegido el modelo  Elegiac AC        de bajo coste (18,99€ )  que  tiene un tamaño muy compacto (90x50x25mm), alimentándose directamente a la red 110V-220V ( frecuencia de trabajo: 45-65Hz) ,y  que  soporta  hasta 100A / 22000W con una precisión de  1.0.

Ademas de  presentar parámetros eléctricos función de medición (tensión, corriente, potencia activa, potencia) cuenta con una función de alarma de sobrecarga cuyo  umbral de alarma se puede preseleccionar.

Una ventaja de este panel es que no necesita  fuente  de alimentación externa al llevarla integrada  en esta , lo  que significa en la practica  que únicamente habrá que alimentarla con 220 V c.a. .

La instalación es muy sencilla :

  • Cortamos la alimentación general ( normalmente desde el mangenetotermico de entrada de la red)
  • Insertaremos el panel digital  bien en la caja ICT en los huecos libres del limitador o bien con un belcro en cualquier punto que nos resulte atractivo visualmente
  • Alimentamos el panel  directamente  con 220oV , eso si , !con mucho cuidado de no equivocarnos donde  se conectan los hilos del  toroide!  (en la foto de bajo los bornes serian los dos inferiores)
  • Se hacer pasar uno de los cables de alimentación  general  ( o circuito  a medir  ,preferiblemente la fase ) por el interior del toroide
  • Se conectan  los dos hilos del toroide a los bornes correspondientes del panel(en la foto de bajo los bornes serian los dos superiores)
  • Restituimos el suministro de ca
  • Ajustaremos los parametros de luz

Conviene recordar que por seguridad cuando trabaje en cuadros de baja tensión siempre trabaje cortando la alimentación general y asegúrese después con un polimetro o un buscapolos que efectivamente no hay tensión

Obviamente si no se tiene experiencia en cableados de baja tensión o no esta seguro de la instalación , le  recomendamos encarecidamente  que este tipo de trabajos lo realice un instalador  o un electricista pues  manejar por error tensiones de ca puede ser peligroso  .

 

 

Ajustes
1. Luz de fondo

El control de luz de fondo se puede ajustarse presionando brevemente el botón para encender o apagar la luz de fondo,de modo que quedara almacenado  el estado de retroiluminación de almacenamiento automático.

2. Reseteo de las lecturas

  • Paso 1: Pulse el botón de encendido durante 5 segundos hasta que la pantalla digital parpadee, luego suelte el botón;
  • Paso 2: Si vuelve a pulsar el botón, los datos de consumo se borran y se borran para dejar de parpadear;
  • Paso 3: Si vuelve a pulsar el botón durante 5 segundos hasta que no parpadee, los datos de carga no se borran y la salida se borra.
  1. Ajustes del valor de la alarma
  • Paso 1: Pulse el botón, cuando la pantalla LCD muestre “SET CLr” después del botón de liberación, ajuste el valor en el informe de estado de energía;
  • Paso 2: El área de potencia muestra el valor actual de la alarma de alimentación y el dígito más bajo comienza a parpadear, entonces puede presionar el botón del +1 digital, cuando no haya operación de tecla más de tres segundos, cambia automáticamente por ajuste digital corto como encima;
  • Paso 3: Después de la configuración, presione el botón más de cinco segundos para guardar y salir automáticamente, el alcance del umbral de potencia activa establecido para el 0.0 ~ 22.0kW.

 

 

 

 

 

 

Soldador de puntos sin transformador


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues esta muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ).

En los últimos años, los supercondensadores han surgido como una alternativa o complemento importante para otros dispositivos de producción o almacenamiento de energía eléctrica como las pilas de combustible o las baterías . La principal virtud del primero frente a los dos últimos es la mayor potencia que es capaz de inyectar, aunque poseen una menor densidad de energía. Otras características de los supercondensadores son la rapidez de carga y descarga, pueden proporcionar corrientes de carga altas, cosa que daña a las baterías, el número de ciclos de vida de los mismos, del orden de millones de veces, no necesitan mantenimiento, trabajan en condiciones de temperatura muy adversas y por último, no presentan en su composición elementos tóxicos, muy común en baterías.
La principal desventaja de los supercondensadores es la limitada capacidad de almacenar energía, y a día de hoy, su mayor precio. En realidad debido a sus diferentes prestaciones, condensadores y baterías no son sistemas que rivalizan entre sí, si no más bien se pueden considerar en muchas aplicaciones como sistemas complementarios donde la batería aporta la energía mientras el supercondensador aporta los picos de potencia

Si Q es la cantidad de carga almacenada cuando el voltaje entero de la batería aparece en los terminales del condensador, entonces la energía almacenada se obtiene de la integral:

Esta expresión de la energía se puede poner en tres formas equivalentes por solo permutaciones de la definición de capacidad C=Q/V.


Los materiales  usados  como electrodos para supercondensadores son principalmente de tres tipos: óxidos de metales de transición, polímeros conductores y materiales de carbono activados.

Se puede decir que, actualmente, sólo los supercondensadores basados en carbono, o también llamados condensadores de doble capa (double-layer capacitors), han conseguido llegar a la etapa de comercialización.

SOLDADOR ELECTRÓNICO  DE PUNTOS

Es la forma mas habitual de  y fácil de construir un soldador de puntos   a un precio bastante asequible.

Estas configuraciones funcionan  durante  mucho tiempo y normalmente  estas configuraciones  son  mucho mas optimas y eficientes  que los soldadores basados en transformadores de microondas modificados.

La alta temperatura destruye las baterías de litio, por lo que la soldadura  tradicional térmica no es una opción, así que esta configuración  es perfecta  , (es por eso  que hay personas que la llaman “soldadura fria” )

El circuito propuesto es el siguiente:

soldador de puntos

Como vemos en el siguiente circuito,  el principio es bastante sencillo usando 10  transistores Mosfet del tipo IRF1404 (Vdss=40V, Rds(on)=0.004ohm, Id=162A⑥) en configuración  paralelo para  controlar la descarga de un supercondensador de 120 Faradio de 15V compuesto por la asociación serie de 5 condensadores de 120F /2.7v  , el cual  almacena la energía  suficiente para producir la chispa que permita realizar   la soldadura por puntos.

Las resistencias de 1k  y 10K únicamente sirven para asegurar que pase a conducción los transistores,  motivo  por el cual se usa un pulsador para que conduzca  únicamente durante un breve espacio de tiempo  en el que se mantenga apretando el pulsador

Aunque el IRF1404 soporta hasta 200W de disipación , el motivo por el que se usan 10 transistores en paralelo  es para  evitar usar un voluminoso radiador pues en esta configuración  la disipación por elemento se divide por 10 ,lo cual hacen innecesario cualquier disipador térmico.

Alternativamente  a  los supercondensadores se pueden emplear dos viejas baterías de gel de 12V  /7Ah , aunque el conjunto ya no sera tan liviano ,pero incluso será mas efectivo dado que no es necesario cargar  los condensadores tras cada soldadura  pues las baterías almacenan  suficiente energía para bastantes soldaduras  ( en el montaje de condensadores tras varias descargas si que los es)

El circuito montado, lo podemos ver en la imagen siguiente,donde se observa una peculiaridad importante: dada la gran intensidad que va a pasar por el circuito ,los bornes  de las dos conexiones de los mosfet , deben ser metálicos de buena sección para evitar que esto se quemen por el paso de la corriente:

Asimismo los cables de salida del circuito deben ser de una sección adecuada , y deberían terminar en una punta de cobre macizo para facilitar la soldadura

En la imagen se puede ver como se puede soldar dos pequeñas laminas de níquel

Por ultimo en la siguiente imagen podemos ver una versión   del conjunto ya montado apreciándose claramente el pulsador de pie, y en este caso el uso de las dos baterías  que sustituyen a  los supercondensadores dado su mayor autonomía  y rendimiento:

Componentes

10 X  MOSFET  IRF1404

Resistencia  de  10k 1/4w

Resistencia  de 1k

6  x  Condensador  de 120F , 2.7V   (para el caso de montaje con condensadores) o  2 baterías de 12V  7AH

Pulsador normalmente abierto

Interruptor general

Voltímetro panel (para el caso de montaje con condensadores)

Fuente 15V (para el caso de montaje con condensadores)

2 x puntas de cobre

Cómo eliminar el molesto efecto de iluminación residual producida por una luminaria basada en leds


Es  relativamente  frecuente  reemplazar las luminarias “de toda la vida”  basada en bombillas incandescentes, halógenas  o  fluorescentes(incluidas las compactas o “CFL” las cuales por cierto están en entre dicho por el peligro para nuestra salud si se rompe  el vidrio  al incluir  mercurio)   por las nuevas  luminarias basadas en LED  no solo por que son muchísimo mas eficientes desde el punto de vista energético: también porque tienen una durabilidad mayor (tienen una vida útil de hasta 50,000 horas  si excluimos el convertidor ca/cc para alimentarlas) , no producen calor, ocupan mucho menos espacio,  y un sinfín de otras ventajas ,que a modo de resumen vamos a ver:

  • Lo mas destacado es su efecto sobre la Salud  y medio ambiente pues la luz producida a través de la tecnología led no emite rayos ultravioleta ni rayos infrarrojos, lo que ayuda a evitar riesgos de salud. Otro aspecto  a destacar es que diferencia  de las bombillas compactas “de bajo consumo”( que por cierto emiten luz ultravioleta) , las iluminarias de leds  no contienen   mercurio , el cual es un metal muy  toxico , por lo que se deben tener cuidados especiales al momento de desechar la bombilla. Ademas  las lámparas con led producen una pérdida mínima por calor y ahorran energía, lo que ayuda enormemente a la protección del medio ambiente y a reducir las emisiones de CO2 . Por cierto ademas son reciclables y no contaminan el medio ambiente.
  • Eficiencia energética :sin duda  todos nos sentimos atraídos por su eficiencia energética , y es fácil entenderlo puesto que  las luminarias basadas en  l< tecnología led consumen aproximadamente un 80% menos energía eléctrica que una luminaria tradicional. Es cierto que las CFL’s cuando están nuevas  pueden aproximarse a la eficiencia (según la calidad  de la luminaria) , pero estas van perdiendo rendimiento lumínico con el paso del tiempo.En comparación con una bombilla incandescente de 60 vatios que ofrece alrededor de 800 lúmenes de luz puede gastar más de  300€ al año  ,un CFL utiliza menos de 15 vatios y sólo gasta 75€ de electricidad al año y una lampara LED de pot en lúmenes similar   consume  menos de 8 vatios de potencia, con lo que los costos anuales bajan a 30€  con una esperanza de vida de 50.000 horas ( o  posiblemente más ).
  • Fácilmente controlables con dimmers  o reguladores  a gran diferencia de  las basadas en fluorescentes o del tipo CFL  donde no es tan sencillo
  • Como hemos visto, aspecto interesante  de los leds  es su mayor eficiencia lumínica, llegando a tener hasta 150 lúmenes por watt en las lámparas de alta eficiencia y de 80 lúmenes por watt en las comunes. Con esto se optimiza el uso de la luz emitida y se reduce el consumo de energía y la contaminación. En consecuencia, las lámparas LED tienen un mayor rendimiento luminoso útil (en porcentaje de lúmenes por watt).
  • Respeto  a la durabilidad  de  las  lámparas basadas con Leds , esa   es otra gran ventaja pues  tienen una vida útil de hasta 50,000 horas al igual que los convertidores ac/dc para alimentarlas ( en caso de que sean de calidad )  . Esto en parte  es debido a que los Leds no contienen partes mecánicas ni filamentos. Los Leds en si no dejan de funcionar; sólo se va reduciendo su capacidad lumínica y es por eso que tienen que ser reemplazados en un lapso de 30.000 a 50.000 horas dependiendo del caso. Gracias a su vida útil de hasta 50,000 horas, las lámparas de LED evitan que se tengan interrupciones de luz o iluminación y evitan que se tengan que estar reemplazando constantemente, por lo que ofrecen un excelente ahorro en cuestiones de mantenimiento.
  • Por ultimo destacar  mayor calidad cromática de la luz emitida  gracias a que el índice de rendimiento cromático (CRI)  en la tecnología led se suele tener un CRI <90, contra un CRI de los focos comunes de 44, lo cual nos da como resultado colores más puros, nítidos, vivos y profundos. Las lámparas LED vienen en una amplia versatilidad de colores que no necesitan de filtros para que se puedan apreciar.
Es evidente  pues como la iluminación basada en la tecnología  de  leds   tiene indudables ventajas frente   a todos otros   sistemas de iluminación anteriores como son le tradicional basado en luminarias incandescentes, las luminarias halógenas , las luminarias CFL o los tubos incandescentes  .
A modo de resumen  esta   imagen  aclara muy bien  las diferencias entre los diferentes sistemas de iluminación:

 

Vistas las grandes ventajas de la iluminación basada en la tecnología led , es lógico pensar en ciertos inconvenientes,  como puede ser la escasez  de ciertos modelos de  luminarias en algunos  formatos poco  habituales ( aunque esto es cada vez mas relativo) y  un   coste mayor relativo  de las luminarias, que  no realmente cierto puesto que , a parte de que éste tiende a bajar,   es claramente compensado  por la gran durabilidad de estas , etc

En  este apartado  hay también  un  aspecto algo problemático  , que es también  común   en menos frecuencia existente a los sistemas de iluminación basados en CFL , que   es  el de la llamada  corriente residual,  un efecto por el que se  quedan casi encendidas de forma tenue después de pulsar el interruptor para apagarlas.

Inicialmente puede parecer muy molesto sobre todo en habitaciones dedicadas al descanso   llevando  incluso   a personas  a volver  a  sistemas tradicionales ,   pero como vamos   a ver es resoluble  y no es algo tan misterioso como se ppuede  pensar   pues simplemente responden a una instalación  eléctrica  inadecuada  para este tipo de luminarias.

Este efecto se produce porque las luminarias de tipo LED son muy sensibles a la corriente, observamos que podemos cambiar una Bombilla convencional de 60W  por una LED de 5W ., lo  cual  quiere decir que la tecnología LED necesita muy poca corriente para proporcionarnos una alta intensidad Lumínica. Por lo mencionado anteriormente, si en nuestra instalación tenemos algo que produzca alteración en la corriente, nos encontraremos con que la Bombilla LED es inestable, produciendo destellos o no apagándose en su totalidad.

Si en una  vivienda hay colocados  interruptores con piloto de señalización, un interruptor con temporizador o en los circuitos de conmutados, se produce una pequeña corriente de retorno a las lámparas que ocasiona el problema mencionado.

Veamos las posibles causas de este efecto indeseado  y sobre todo como podemos resolverlos

Interruptores de corte  mal instalados

Normalmente las luminarias  en instalaciones monofásicas  ( que es la instalación habitual en nuestras viviendas)    se alimentan por dos hilos: la fase y  el neutro  de modo   que  todos  los  interruptores deberían cortar la fase cuando los accionamos   y no el neutro

Este  error de montaje  en  instalaciones con luminarias   convencionales  no conlleva ninguna anomalía   pero en caso de alimentar  a   luminarias del tipo  LED si que puede ser molesto ( según el driver ) , pues puede  hacer que  queden parcialmente encendidas cuando pulsamos el interruptor para apagarlas,

Es  fácil entender que esa leve iluminación se debe  que una pequeña derivación que hace que fluya corriente desde la fase hacia tierra  pasando por nuestras luminarias LED, puesto  que con  muy poca  corriente  un LED puede empezar  a lucir, y de ahi el misterio de las luces que no se apagan nunca.,

La solución en este caso  no es tan  sencilla (es decir cambiar el neutro por la fase  )  pues no siempre esta accesible  a todo el mundo y ademas sobra decir el peligro que puede conllevar , pues no todo el mundo tiene los suficientes conocimientos de electricidad   para cambiarlo  , pues se  precisa   desmontar el interruptor y  normalmente la caja  de conexiones para  localizar      los dos hilos que van  a la luminarias

Desgraciadamente como  no siempre están ambos hilos  en la caja del interruptor pues de hecho  lo normal  es que estén las 4 conexiones  en una caja de conexiones  previas , es en la caja de conexiones  donde   habrá que hacer el  doble cambio   en caso de tener  los dos cables  ahí    En caso de dudas con un destornillador buscapolos de 1€ podemos asegurarnos cual es la fase

 

Si no consigue resolver el problema o le parece muy compleja o peligrosa , otra solución  muy sencilla es optar por  poner un  justo antes del portalámparas un relee tal y como describimos al final de este post

 

Interruptores con neón de señalización

Es bastante común encontrarnos con interruptores que cuentan con una pequeña lamparita de neón que nos permite encontrarlo en la oscuridad de modo  que cuando esta apagado al luz del testigo se enciende  y al encenderlo esta se apaga.

Internamente el  piloto no es mas que una pequeña lampara de neón  con su correspondiente resistencia   imitadora  conectando el conjunto  en paralelo con el contacto del interruptor. Dada la configuración, el piloto queda  en serie con la bombilla LED que intentamos apagar cuando el interruptor abierto , permitiendo que fluya una mínima corriente hacia la bombilla LED que lleva a que se quede iluminada de forma tenue.

 

Las soluciones a este problema podrían ser:

  1. Anular el neón del interruptor ( en muchos mecanismos   el neon es enchufable por  lo que bastara quitarlo por  presión)   o sustituir el interruptor por uno normal.
  2. Instalar una pequeña resistencia en paralelo con la bombilla LED de forma que se evacue ahí la potencia. Ésta solución tampoco nos ahorrará ese pequeño consumo pero se apagará la luz completamente al pulsar el interruptor.
  3. Si estamos instalando dicroicas LED a 230V en sustitución de halógenos a 12V y hemos eliminado el transformador, podemos dejarlo conectado sin carga a la salida, de esta forma la corriente residual iría al transformador y no a la bombilla, apagándose la luz completamente al pulsar el interruptor
  4. Instalar un condensador en paralelo con la luminaria  para lo cual habrá que seguir los siguientes pasos:
    1. Desconecte la corriente del cuadro de distribución de corriente alterna para trabajar seguro.
    2. Quite el embellecedor de la luminaria objeto del cambio a tecnología LED.
    3. En la ficha de conexión de la lampara  conecte   un condensador de 470nF 400v (podemos encontrarlo bajo diferentes nombres  0.47uF / 470nF 474J 400v)
    4. Vuelva a colocar el embellecedor de conexión. Listo.

Si no consigue resolver el problema o le parece muy compleja o peligrosa , otra solución  muy sencilla es optar por  poner un  justo antes del portalámparas un relee tal y como describimos al final de este post

Corrientes de retorno por neutro

Este es el caso menos común de todos. Es posible que algunos de los electrodomésticos de nuestra casa produzcan corrientes de retorno por el neutro, que aunque son muy pequeñas, al pasar por nuestros super-eficientes luminarias con  LEDs pueden hacer que se queden medio encendidas incluso con el interruptor apagado.

Para  solucionarlo de forma eficaz podría bastar  sustituir los interruptores unipolares  por unos interuptores bipolares que corten a la vez  tanto  la fase como  el neutro al pulsar el mecanismo. En caso de no encontrar estos interruptores o no querer cambiar la instalación , otra opción muy sencilla es optar por usar un rele  alimentando por 220 v   con dos  circuitos para situarlos  justo en el lado de la luminaria

Un ejemplo de rele  Modelo LY2J que admite 220VAC  con capacidad de contactos de hasta 10A  y que se puede comprar por 8.89€ en Amazon 

 

 

El esquema de conexiones para Modelo LY2J    es bastante sencillo ,  pues consiste simplemente  intercalar en el cable que alimente a la luminaria  los contactos normalmente abiertos del relé  para que se cierren estos cuando se alimente la bobina   y den paso  para encender la luminaria.

Obviamente el circuito se completa con la conexión de la bobina ( contactos 7 y 8)  hacia el cable de alimentación

 

 

 

Es decir ,,conectaremos los terminal 7 con el 3  a la fase, el 8 con el 4 al neutro ( o viceversa)   y luego conectamos la luminaria a lo contactos 5  y 6  ( no importa el orden) . Con este sencilla idea nos evitaremos  manipular la instalación original  y  resolveremos de una vez el problema  de una forma bastante sencilla y económica este molesto problema .