Acceso web de Sensores Analogicos para Raspberry Pi (parte 1)


En un post anterior veíamos algunas de las posibilidades de  conexión de sensores digitales  a nuestra Raspberry Pi como puede ser añadir sensores I2C con el CI DS1820 , sensores de Co2 basados en el Mq4, sensores genéricos,sensores de presión con el BMP180,sensores de temperatura basados en el TMP102, sensores de proximidad basados en el VCNL 4000o  o los sensores de luminosidad basados en el  TSL2561.

Como todos sabemos  existen también una cantidad muy alta de sensores cuya salida no es digital , lo cual en principio no se podrían conectar directamente a nuestra Raspberry,pero esto no es exactamente así porque si podemos conectarlos por medio de convertidores A/D y D/A  como vamos a ver a continuación

 

PCA9685 PWM

pca9685.png

En efecto con este CI  que podemos comprar por unos 12€  en Amazon podemos ajustar el brillo por ejemplo de 12 leds mediante PWM o por supuesto también controlar hasta 12 servos con esta placa

El  circuito contiene un controlador PWM controlado por I2C con un reloj incorporado. A diferencia de la familia TLC5940, no es necesario enviar continuamente señales pues es gestionado  utilizando sólo dos pines para controlar 16 salidas PWM de funcionamiento libre e  incluso puede encadenar 62 salidas para controlar hasta 992 salidas PWM

Funciona a 5V, lo que significa que puede controlarlo desde 3,3V y seguir con seguridad hasta 6V salidas (esto es bueno cuando se desea controlar LEDs blancos o azules con 3,4+ voltajes hacia adelante)

Lleva 3 conectores de clavija en grupos de 4, así que usted puede enchufar 16 servos a la vez (los enchufes del servo son levemente más anchos de 0.1 “por lo que usted puede apilar solamente 4 al lado de uno a en 0.1”)
La  resolución es de 12 bits para cada salida – para servos, lo que significa una resolución de 4us a 60Hz

 

Un par de notas antes de comenzar:
  • Para agregar un actuador de luminosidad necesita un controlador PWM. Para este ejemplo vamos a utilizar un regulador de la entrada-salida de PCA9685 PWM. Este tutorial asume que usted ya tiene el PCA9685 conectado. Consulte el Tutorial de PCA9685 si necesita ayuda con la parte.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunos placas de prototipos tamaño completo (usados en los diagramas a continuación) tienen una linea de alimntación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como tu pastel de Pi.

Use el siguiente diagrama para conectar un LED a su frambuesa Pi y ajustar su brillo mediante PWM.

Paso 1

Conecte uno de los pines PWM de la PCA9685 a lo LED, a través de un resistor conectado al cable (positivo) más. En este caso, utilizaremos canal 0 en el PCA9685.
Luminosity

Paso 2

Conecte tierra del canal 0 de la PCA9685 de los LEDs más corto (negativo).
Luminosity

Paso 3

¡Listo! Ahora puede Agregar el actuador de luminosidad a su panel de control, utilizando el canal 0 en el PCA9685 para ajustar el brillo de los LEDs.

TMP36

TMP36

Antes de comenzar,para poder utilizar un sensor análogo del tipo  TMP36  con la RP Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado.

Use el siguiente diagrama para conectar un sensor de temperatura de analógico TMP36.

 

Paso 1

Conecte la energía eléctrica desde el  Pi al TMP36 pin 1 (+ VS).
TMP36

Paso 2

Conectar la tierra de la Pi al TMP36 pin 3 (GND).
TMP36

Paso 3

Conectar la clavija de TMP36 2 (VOUT) en uno de los 8 canales de la MCP3008. Para este ejemplo, CH0.
TMP36

Paso 4

¡Listo! Ahora puede añadir el sensor TMP36 al tablero de Cayenne, usando canal de la MCP3008  para leer el valor del sensor.

 

MCP3004

MCP3004

El  MCP3004  es  un conversor A/D de canales de 10 bits de resolución

Use el siguiente diagrama para conectar su Convertidor A/D de MCP3004 con interfaz en serie SPI.

Paso 1

Desde el pastel de Pi para alimentar el pin MCP3004 14 (VDD) y 13 (VREF).
MCP3004

Paso 2

Conectar la tierra de la Pi al MCP3004 pin 7 (DGND) y 12 (AGND).
MCP3004

Paso 3

Conectar patillas SCLK de la Pi y el MCP3004 11 (CLK).
MCP3004

Paso 4

Conectar patillas MISO de la  Pi y el MCP3004 10 (DUDA).
MCP3004

Paso 5

Conectar patillas MOSI de la Pi y el MCP3004 9 (DIN).
MCP3004

Paso 6

Conecte la clavija de la entrada de la selección de chip MCP3004 8 (CS/SHDN) a uno de los pines del chip select Pi, CE0 en este ejemplo
MCP3004

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3004 a tu panel de control usando el chip-select 0.

MCP3204

MCP3204

Use el siguiente diagrama para conectar su Convertidor de A/D MCP3204 con interfaz en serie SPI.

Paso 1

Desde  Pi puede alimentar el pin MCP3204 14 (VDD) y 13 (VREF).
MCP3204

Paso 2

Conectar la tierra del  Pi al MCP3204 pin 7 (DGND) y 12 (AGND).
MCP3204

Paso 3

Conectar patillas SCLK del Pi y la MCP3204 11 (CLK).
MCP3204

Paso 4

Conectar patillas MISO del Pi y la MCP3204 10 (MOSI).
MCP3204

Paso 5

Conectar patillas MOSI del Pi y la MCP3204 9 (DIN).
MCP3204

Paso 6

Conecte la clavija de la entrada de la selección de chip MCP3204 8 (CS/SHDN) a uno de los pines del chip select del Pi , CE0 en este ejemplo.
MCP3204

Paso 7

¡Listo! Ahora puede Agregar el convertidor MCP3204 a su panel de control usando el chip-select 0.

MCP3208

MCP3208

El  MCP3008  es  un conversor A/D de 8 canales de 10 bits de resolución

Use el siguiente diagrama para conectar su Convertidor A/D de MCP3208 con interfaz en serie SPI.

 

Paso 1

Desde el  Pi alimentar el pin MCP3208 16 (VDD) y 15 (VREF).
MCP3208

Paso 2

Conectar la tierra del pastel de Pi al MCP3208 pin 9 (DGND) y 14 (AGND).
MCP3208

Paso 3

Conectar patillas SCLK del  Pi y el MCP3208 13 (CLK).
MCP3208

Paso 4

Conectar patillas MISO del  Pi y el MCP3208 12 (MOSI).
MCP3208

Paso 5

Conectar patillas MOSI del Pi y el MCP3208 11 (DIN).
MCP3208

Paso 6

Conecte la clavija de entrada MCP3208 chip select (CS/SHDN) de 10 a uno de los pines del chip select del Pi , CE0 en este ejemplo.
MCP3208

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3208 a su panel de control usando el chip-select 0.

MCP3008

MCP3008

El  MCP3008  es  un conversor A/D de 8 canales de 10 bits de resolución  de bajo coste (6€)

Use el siguiente diagrama para conectar su convertidor A/D de MCP3008 con interfaz en serie SPI.

Paso 1

Desde el Pi alimentar el pin MCP3008 16 (VDD) y 15 (VREF).
MCP3008

Paso 2

Conectar la tierra del Pi al MCP3008 pin 9 (DGND) y 14 (AGND).
MCP3008

Paso 3

Conectar patillas SCLK del Pi y el MCP3008 13 (CLK).
MCP3008

Paso 4

Conectar patillas MISO del  Pi y el MCP3008 12 (MOSI).
MCP3008

Paso 5

Conectar patillas MOSI del  Pi y el MCP3008 11 (DIN).
MCP3008

Paso 6

Conecte la clavija de entrada MCP3008 chip select (CS/SHDN) de 10 a uno de los pines del chip select Pi Zapatero, CE0 en este ejemplo.
MCP3008

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3008 a su panel de control, usando el chip-select 0.

ADS1115

ADS1115

El  ADS1115 es un convertidor A/D de alta resolucion de 16 bits de 4 canales de un coste muy contenido (unos 4,25€).

El ADS1115 le permite seleccionar esclavo diferentes direcciones para el convertidor. Para este ejemplo usaremos 0x48.

Use el siguiente diagrama para conectar su convertidor A/D de ADS1115.

 

Paso 1

Desde el Pi para alimentar el ADS1115.
ADS1115

Paso 2

Conectar la tierra del  Pi a la ADS1115.
ADS1115

Paso 3

Conecte los pines SCL de la ADS1115   a la  Pi.
ADS1115

Paso 4

Conecte las clavijas SDA de la ADS1115 de  la Pi.
ADS1115

Paso 5

Conecte los pines GND y ADDR en la ADS1115. Esto resultará en una dirección de I2C del 0x48.
ADS1115

Paso 6

¡Listo! Ahora puede Agregar el convertidor de ADS1115 en el tablero de Cayenne, con dirección por defecto de 0x48.

ADS1015

ADS1015

Hablamos del ADS1015  un conversor  A/D de 12 bits  de 5 canales .El ADS1015 le permite seleccionar esclavo diferentes direcciones para el convertidor. Para este ejemplo usaremos 0x48.

Use el siguiente diagrama para conectar su convertidor A/D de ADS1015.

 

Paso 1

Desde el pastel de Pi para alimentar el ADS1015.
ADS1015

Paso 2

Conectar la tierra del  Pi a la ADS1015.
ADS1015

Paso 3

Conecte los pines SCL de la ADS1015 a la Pi.
ADS1015

Paso 4

Conecte las clavijas SDA de la ADS1015 a la  Pi.
ADS1015

Paso 5

Conecte los pines GND y ADDR en la ADS1015. Esto resultará en una dirección de I2C del 0x48.
ADS1015

¡Listo! Ahora puede Agregar el convertidor de ADS1015 en el panel de Cayenne, con dirección por defecto de 0x48.

 

MCP23018

MCP23018

El MCP23018 es un convesor A/D de 12bits de 4 canales  de alta precisión .Use el siguiente diagrama para conectar su MCP23018 IO expansor.

Paso 1

Alimentar 5V desde el zapatero de Pi a VDD (pin 11) en el MCP23018.
MCP23018

Paso 2

Conectarse tierra del Pi el VSS (pin 1) en el MCP23018.
MCP23018

Paso 3

Conectar los pines SCL de la MCP23018 (pin 12)  de su Pi.
MCP23018

Paso 4

Conecte las clavijas SDA de la MCP23018 (pin 13)  a la  Pi.
MCP23018

Paso 5

Alimentar el reset (pin 16) en el MCP23018. Tira de alta Reset es necesario para el funcionamiento normal.
MCP23018

Paso 6

Conectar toma de tierra al pin de dirección (pin 15) en el MCP23018. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23018

Paso 7

¡Listo! Ahora puede Agregar el MCP23018 en el panel de Cayenne, con dirección por defecto de 0 x 20.

No se preocupe  hay muchos mas posibilidades  que hablaremos en proximos post
Anuncios

Relé WiFi con ESP8266


En el post de hoy vamos  a ver lo sencillo y económico que resulta fabricar un tele-control por wifi para controlar dos cargas AC  usando como referencia la placa de bajo coste ESP8266

El Módulo ESP8266 WiFi es un SOC autónomo con pila de protocolos TCP / IP integrada que puede dar acceso a cualquier microcontrolador a su red WiFi. El ESP8266 es capaz de alojar una aplicación o descargar todas las funciones de red Wi-Fi desde otro procesador de aplicaciones.

Cada módulo ESP8266 viene preprogramado con un firmware de conjunto de comandos AT, lo que significa que simplemente puede conectarlo a su dispositivo Arduino y obtener casi la capacidad Wi-Fi que ofrece Wi-Shield.

Este módulo cuenta con una capacidad de almacenamiento y procesamiento a bordo lo suficientemente potente para permitir  integrarse con los sensores y otros dispositivos específicos a través de sus GPIO con un desarrollo mínimo inicial y una carga mínima durante el tiempo de ejecución.

Su alto grado de integración en el chip permite un mínimo de circuitos externos, incluyendo el módulo de front-end, estando diseñado para ocupar un área mínima de PCB.

Asimsimo el ESP8266 admite APSD para aplicaciones VoIP y interfaces de coexistencia Bluetooth, contiene un RF autocalibrado que le permite trabajar en todas las condiciones de funcionamiento y no requiere piezas externas de RF.

Nota: Existen una nueva versión del módulo ESP8266 WiFi que ha aumentado el tamaño del disco flash de 512k a 1 MB.

Caracteristicas:

  • 802.11 b / g / n
  • Wi-Fi Direct (P2P), soft-AP
  • Pila de protocolos TCP / IP integrada
  • Interruptor TR integrado, balun, LNA, amplificador de potencia y red de conexión
    PLLs integrados, reguladores, DCXO y unidades de administración de energía
  • + 19.5dBm de potencia de salida en modo 802.11b
  • Corriente de fuga de <10uA
  • 1MB de memoria flash
  • CPU de 32 bits de baja potencia integrada podría utilizarse como procesador de aplicaciones
  • SDIO 1.1 / 2.0, SPI, UART
  • STBC, 1 × 1 MIMO, 2 x 1 MIMO
  • A-MPDU & A-MSDU agregación & 0.4ms intervalo de guardia
  • Despierta y transmite paquetes en <2ms
  • Consumo de energía en espera de < 1.0mW (DTIM3)

Como nota importante,el módulo ESP8266 no es capaz de cambiar la lógica de 5-3V y requerirá un convertidor de nivel lógico externo si necesita conectar sensores o actuadores que utilizen logica TTL.

Si alguna vez ha intentado conectar un dispositivo de 3,3 V a un sistema de 5 V, es un  desafío  por lo que lo mejor es usar un  convertidor de nivel lógico bidireccional.Estos suelen ser pequeños dispositivos que descienden de forma segura las señales de 5V a 3.3V y suben de 3.3V a 5V al mismo tiempo. Estos convertidores de nivel también funcionan con dispositivos de 2.8V y 1.8V y son  muy fácil de usar: estas placad debe ser alimentada por las dos fuentes de tensión (alta y baja tensión) que su sistema está utilizando. Alta tensión (5V por ejemplo) al pin ‘HV’, baja tensión (3.3V por ejemplo) a ‘LV’, y tierra del sistema al pin ‘GND’.

 Materiales y herramientas

Para hacer este relé wifi necesitara:

  • Un Esp8266 ,el cual  se puede programar como un arduino y un adapatador
  • 2 relés 220vac control por 12v
  • 2 transistores TIP122
  • 6 diodos IN4007
  • unas resistencias (2x1k, 2x10k, 330, 220)
  • un transformador de 12v
  • un lm317
  • condensadores 50v 1000uf y 10uf
  • pcb de prototipos,algunos tornillos,enchufe AC , cable ,etc

Para las herramientas necesitará un soldador, un taladro, un 3d impresora (opcional) y papel de lija.

 La placa de relé

Aunque se pueden adquirir ya montados  placas con reles y el driver  por un precio bastante económico,  es también bastante sencillo construirlo usando dos reles de 12v , dos transistores  mosfet TIP122, dos diodos de proteccion  y dos resistencias de base de 1K

Picture of The Relay Board
 Todo el conjunto se puede montar en una simple placa de prototipos pues como vemos el montaje es bastante sencillo:
16 17:05.jpg


La electrónica de este proyecto  pues o se compone de dos placas:

  • La placa de relé con 2 relés y 2 transistores, la cual puede ser adquirida aparte  o bien  montarla uno mismo
  • La placa de esp8266 con el módulo y toda la parte parte de alimentacion (transformador, puente rectificador y el lm317 para el 3c3 regular)

Un ejemplo de  montaje  es  colocar todos los componentes en el pcb de prototipo y luego cortar  la placa  el tamaño adecuado con una sierra. Todos los componentes se sueldan y después se ponen los  puentes con cable . Atención con el diámetro del cable cuando se conecta el relé pues,debe usar un cable de mas seccion  por el  tema de la carga AC

 La placa principal

El tablero principal consta de 3 partes:

  • La fuente  de 12v que inlcuye un puente rectificador de Graetz (bien ta montado o  con cuatro diodos) y un condensador electrolitico.
  • La fuente  de 3v3 regulados con el lm317 y las dos resistencias  que suministran un voltaje constante para la esp8266.
  • El  propio  modulo  esp8266  con las dos resistencias de protección

Para realizar la segunda placa , repita el mismo proceso de la primera. Cuando termine, compruebe el voltaje en el pin de alimentación del módulo.
Cuando están hechas las 2 placas, conecten con cable  ambo  módulos.

 Hacer la caja

 Se puede hacer  una caja con sketchup y una impresora 3d  .Si usted tiene acceso a una impresora 3d, descargar el archivo stl e imprimirlo (relleno de 20% y 0, 3 capas). Lijar la caja y los agujeros limpios.

Si no, puede hacer una caja de un Tupperware o cualquier caja de plástico.

Ahora usted puede terminar todo. Coloque primero la electrónica y el transformador en la caja y pegar. Tomar 3 tapones (uno en y 2 hacia fuera), el extremo de la tira . Conecte cada cable con el tornillo terminales siguiendo el esquema.

No se olvide de conectar el transformador.

Después de enchufe en el módulo, cierre el cuadro con  4 tornillos..!y eso es todo! ahora puede controlar cualquier dispositivo con su smartphone o PC.

Programa para la Esp8266

A continuación se describe el codigo de ejemplo para gestionar el ESP8266

#include
#include
#include

// crear una instancia Arest
aREST_UI rest = aREST_UI();

// parametros WiFi
const char* ssid = “wifi nom”;
const char* password = “mot de passe”;

// puertos  TCP
#define LISTEN_PORT 80

// crear una instancia de servidor
WiFiServer server(LISTEN_PORT);
void setup(void)
{
Serial.begin(115200);

// crear UI
rest.title(“Relay “);
rest.button(2);
rest.button(0);

//dar nombre y la identificación del módulo
rest.set_id(“1”);
rest.set_name(“esp8266”);

// conectarse a wifi
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(“.”);
}
Serial.println(“”);
Serial.println(“WiFi conectado”);

// inializando el servidor
server.begin();
Serial.println(“Servidor arrancado”);

// imprime  direccion  IP
Serial.println(WiFi.localIP());

}

void loop() {

WiFiClient client = server.available();
if (!client) {
return;
}
while(!client.available()){
delay(1);
}
rest.handle(client);

}

Basicamente se conecta a la red Wifi que se decida , se crea una instancia Arest que atiende el puerto 80 y en funcion del pulsador  que se pulse se actua  sobre  la placa

!No se olvide de cambiar el nombre de wifi y la contraseña en este código!

Picture of Program The Esp8266

Una vez tenemos el código ,el último paso es programar el esp8266 como un Arduino.

Seguir este tutorial si no ahora como hacerlo: https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide para lo cual hay que descargar el programa (wifirealy.ino ) y cargarlo  en el módulo esp8266 usando por ejemplo el  siguinte montaje

16 17:05.jpg

Para probar el montaje ,introduzca la dirección IP del módulo en cualquier navegador y verá 2 interruptores virtuales de encendido/apagado. Esto cambiara  el control de los pines gpio 2 conectados a los transistores que a su vez excitaran los reles correspondientes controlando las cargas que se tengan conectadas a estos .

 ¿Le parece útil este proyecto?

IoT con LattePanda


Muy resumidamente LattePanda es un un mini ordenador completo con Arduino integrado   que ejecuta la versión completa de Windows 10. Incluye todo lo que un PC normal tiene  pudiendo hacer cualquier cosa que hace un PC normal. Es ademas compatible con casi todos los aparatos que conoce como  impresoras, joysticks, cámaras y más. Todos los periféricos que funcionan en su PC funcionaran en LattePanda.

Ademas LattePanda viene pre-instalado con una edición completa  pre-activada de Windows 10.


Utilizando las API existentes, puede desarrollar sus propios proyectos de software y hardware en LattePanda como lo haría en un PC normal usando  C #, JavaScript, Ruby y así sucesivamente de modo que no necesita su ordenador portátil  para construir una aplicación con el

Pero no sólo puede ser utilizado como un ordenador normal de bajo costo con  Windows pues LattePanda también está diseñado con un compatible co-procesador Arduino, lo que significa que se puede utilizar para controlar y detectar el mundo físico, al igual que una placa Arduino!

Si usted es un desarrollador de Windows, un desarrollador de la IO, un fanático de hardware de bricolaje, diseñador interactivo, robótica genio o un fabricante, LattePanda puede ayudar a su proceso creativo con los proyectos informáticos físicos!

LattePanda puede ejecutar la versión completa de Windows 10 y Ubuntu.

ESPECIFICACIÓNES

  • Procesador: 1,8 GHz Intel Cherry Trail Z8300 Quad Core
  • Funcionamiento del sistema: Pre-instalado preactivado completa edición de Windows 10 (versión Inicio)
  • Ram: 2 / 4GB DDR3L
  • Capacidad de almacenamiento: 32 / 64GB
  • USB: 1 x USB 3.0, USB 2.0 x 2
  • HDMI de salida de vídeo y el puerto Ethernet
  • 3,5 mm de salida de audio jack
  • Ranura para tarjeta Micro SD
  • Toque y Conector de pantalla
  • Plug and Play Conectores de sensor
  • WiFi y Bluetooth 4.0
  • Coprocesador: ATmega32u4
  • GPIO: 2 GPIO de chips Intel, 20 GPIO para Arduino
  • Potencia: 5v / 2A
  • Dimensiones: 3.46 “x2.76”
  • Peso: 100 g

 Pines

Debajo de cuadros es un diagrama básico que muestra todos los pines del bus de expansión:

LattePanda pines

 

Distribución de los pines en el área U1 se asignan a la base de X-Z8300. Por el momento, no hay información disponible.

Distribución de los pines en el área de U2 se asignan al núcleo ATmega32u4.Cada uno de los 20 pines digitales (A0 – A5, D0 – D13) en la zona de U2 se puede utilizar como una entrada o salida, cada uno operando a 5 voltios. Cada salida puede fijar o recibir 40 mA y cada uno tiene una resistencia de pull-up (desconectada por defecto) de 20-50k ohmios.

Precaución: Superior a 40 mA en cualquier pin de E / S puede causar daños permanentes en el ATmega32u4.

Algunos pines tienen funciones especializadas:

Entradas analógicas: A0 – A5, A6 – A11 (en D4, D6, D8, D9, D10, D12 y). El LattePanda tiene 12 entradas analógicas, etiquetados A0 a A11, todos los cuales también pueden ser utilizados como I / O digital. Cada pin tiene una resolución de 10 bits (es decir, 1024 valores diferentes). Por defecto se miden desde el suelo a 5 voltios.

De serie: D0 (RX) y D1 (TX). Se utiliza para recibir (RX) y transmitir datos en serie (TX) TTL.

Las interrupciones externas: D3 (interrumpir 0), D2 (interrumpir 1), D0 (interrumpir 2), D1 (interrumpir 3) y D7 (interrumpir 4). Estos pines pueden ser configurados para desencadenar una interrupción en un valor bajo, un flanco ascendente o descendente, o un cambio en el valor.

PWM: D3, D5, D6, D9, D10, y D13 proporcionan salida PWM de 8 bits.

SPI: D16 (MOSI), D14 (MISO), D15 (SCK).

LED: D13 Hay un LED integrado impulsado por pin digital 13. Cuando el valor del pin es alto o bajo

TWI: D2 (SDA), D3 (SCL).

Otros pines de la placa:

Reset: Lleva a este BAJA línea para reiniciar el microcontrolador. Normalmente se utiliza para añadir un botón de reinicio para escudos que bloquean la una en la mesa.

¿Cuál es el propósito de este proyecto?

En este ejemplo  vamos a aprender, cómo nos comunicamos entre Arduino (chip de Arduino interna en LattePanda) y Microsoft Visual Studio y envían los datos desde el Arduino para utilizar una aplicación de Windows. Aquí vamos a medir la temperatura y humedad ambiental y enviar los datos del sensor de DHT Thingspeak.

Cómo acceder a la disposición de patillas de Visual Studio

LattePanda.Firmata es una biblioteca de código abierto Firmata proporcionada por LattePanda, que es adecuado para aplicaciones de Windows desarrollado en Visual Studio. Esta clase le permite controlar Arduino GPIO desde aplicaciones de Windows, con funciones que incluyen:

  • La lectura y escritura a los pines digitales
  • La lectura de las entradas analógicas
  • El control de servomotores
  • El envío de datos a los dispositivos y los dispositivos de recepción de formularios de datos a través del bus I2C

Para este proyecto, he hecho algunos cambios en la biblioteca Firmata de datos del sensor DHT leer o cualquier otro sensor.

3 pasos para su proyecto Arduino remoto

  • Descarga e instalación de Visual Studio 2015
  • Configurar el Arduino (Es pre-instalado, a menos que cambiara el programa de Arduino)
  • Crear un proyecto o utilizar el proyecto de ejemplo

Descarga e instalación de Visual Studio 2015

En el primer paso, es necesario instalar Visual Studio en LattePanda. No se instala por defecto.

  • Activar el modo de programador en su sistema operativo, para este fin, vaya a Configuración> Actualización y seguridad> en la sección para desarrolladores> Selección de Modo desarrollador

Estableció el Arduino

  • Descargar este archivo y abra el archivo en Arduino. (Este archivo reemplaza con StandardFirmata . Algunos cambios se han hecho en este archivo)
  • Seleccione Arduino Leonardo del Board sección. A continuación, seleccione el puerto COM correcto, cargar el último boceto.

Cableado

El objetivo de este proyecto es leer los datos de temperatura y humedad por el sensor DHT11 conectado a LattePanda(se puede utilizar en lugar de DHT21 o DHT22).

El sensor  se  debe conectar como en la imagen  siguiente ,es decir el pin de la izquierda (Data) al terminal D7 de LattePanda, el terminal central del sensor al pin +5V de LattePanda  y por ultimo el terminal de la derecha al ping de GND de LattePanda.

 

 

Leer Temperatura y Humedad

Descargar este archivo y abra el archivo con Microsoft Visual Studio.Registrarse en Thingspeak y crear un nuevo canal con dos campos. ( Field 1de la temperatura y Field 2 de la humedad). Después Save Channel , en la API Keys pestaña, copia Key valor y pegar en Program.cs archivo en lugar deTHINGSPEAK_KEY_HERE .

Guardar el archivo y haga clic Start botón. La salida será como se muestra a continuación:

Al final, los datos se pueden ver en el  servidor deThingspeak  apareceran  como se muestra a continuación:

Recursos

Fuente   aqui

Alarma casera usando Raspberry Pi, Netduino Plus y ATtiny85


En el post de vamos a tratar un interesante sistema de monitoreo de alarma para el hogar de código abierto ,que como peculiaridad  usa tres plataformas  completamente diferentes   como son una  Raspbery Pi , Netduino Plus , ATtiny 85   para mejorar  un típico sistema de alarma para el hogar  basada en  los controles  PC5010 Digital Security Controls (DSC) PowerSeries Security System control panel   y sensores.

Concretando un poco el hardware empleado el creador  ha usado un Netduino Plus 1 ejecutando  .NET Micro Framework 4.2 (o QFE1 qfe2) y una  Raspbery Pi Modelo A con Debian GNU / Linux 7.0 (wheezy).


El autor  Gilberto Garcia  empezó el  proyecto  HomeAlarmPlus en febrero de 2012 con la intención de tener un simple sistema de monitorización de alarma para el hogar  y aprender más acerca de los microcontroladores usando como base una placa Netduino. A medida que fue mejorando sus  conocimientos, también lo hizo la complejidad de los circuitos, el sistema y los requisitos.Entonces apareció la idea de usar  una placa  Raspbery Pi para complementar el proyecto existente mediante el uso de la capacidad total del servidor Web Apache. Esto implicó cambios masivos en el código  del  proyecto original  como lo refleja  incluso el nombre final: HomeAlarmPlusPi.

El Objetivo por tanto del proyecto fue utilizar las capacidades completas de Raspbery Pi y Netduino Plus para controlar el sistema de alarma de una casa y reportar cualquier actividad de sensor o detector de movimiento a través de correo electrónico (mediante simple de transferencia de correo (SMTP)), un servidor web local, notificaciones (usando PushingBox ) y Pachube (despues  Cosm  y ahora xively) .


Dada la diversidad de plataformas empleadas , también lo fueron los  lenguajes de Programación  empleados para este proyecto, los cuales  fueron  los siguientes:

En Netduino Plus

  • C # para Netduino Plus
  • HTML para Web Server con hojas de estilo en cascada (CSS)
  • JavaScript para Web Server

En Raspbery Pi

  • HTML5
  • PHP
  • Java script
  • JSON
  • jQuery
  • El tiempo en API
  • Python (en desarrollo: uso de GPIO)

En ATtiny85

  • C / C ++ para programar el ATtiny85. Programado gracias a un escudo ArduinoISP, que construyo siguiendo las instrucciones  del  MIT High-Low Tech Group.
Arduino “programador en-sistema” (ISP) escudo ATtiny programador.

 

El hardware necesario

  • Raspbery Pi Modelo A o B
  • Netduino Plus
  • ATtiny85 (ATTINY85-20PU).
  • Tarjeta de memoria SD de 4 GB o superior (clase 10 preferido).
  • 5V 1A (1000mA) puerto USB fuente de alimentación .
  • Tarjeta Micro SD de 2 GB
  • Wi-Fi (802.11b / g / n) Módulo USB [1] , [2] o [3]
  • Adaptador de tarjetas SD
  • 3mm verde diodo emisor de luz (LED) por zona de alarma y detector de movimiento.
  • 330 ohmios para cada LED.
  • Transistor NPN
  • 10k ohmios resistencia variable
  • Resistencia de 1k ohmios para la base del transistor.
  • 5600 ohmios por resistencia de la zona de alarma y detector de movimiento.
  • Diodo Schottky por zona de alarma. Diodo Schottky debe tener baja caída de tensión como el SBR10U40CT .
  • ScrewShield (Proto-Screwshield (Wingshield) Kit de [1] o [2] ).
  • Conexión WiFi a Internet utilizando cualquier adaptador Wi-Fi. Probado en NetgearWNCE3001 y IOGEAR GWU627 .
  • 16×2 carácter básico LCD [1] u otros [2] .
  • Interruptor DPDT [1] u otros [2] para la selección de voltaje LCD.
  • Registro de desplazamiento 74HC595

Hardware opcional

 

  • Robusto, USB / Panel de conectores a prueba de agua ( RR-211300-30 )
  • Receptor RF Toggle Type para armar / desarmar [1] .
  • Cable USB 2.0, tipo A macho a un varón (10 pies o más arriba). Se utiliza para acceder alNetduino Plus tabla en el panel de alarma.
  • 200 vatios / 350 VA UPS ( APC Sistema UPS BE350G o similar ).
  • Pulsador de rearme externo.
  • Arduino Proto Escudo R3. Más espacio para componentes adicionales. [1] o de otros [2] ,[3] .
  • Bajo perfil adaptador de tarjetas microSD para Raspberry Pi [1] .
  • Caja  Raspbery Pi [1] u otros [2]
  • Interruptor de encendido en la línea de 2,1 mm jack barril [1] o [2] .
  • Raspbery Pi conjunto de disipador de calor [1] .
  • Ventilador de 12 V CC Micro se enfríe Raspbery Pi [1] .

 

Ajustes
Para HomeAlarmPlus y HomeAlarmPlus Pi el símbolo condicional ALARM_DEBUG permite depurar alarma en Visual Studio. Para habilitar la depuración en la correcta proyecto presione AlarmByZones, seleccione propiedades, seleccione la pestaña Build de Visual Studio y añadir ALARM_DEBUG en “símbolos de compilación condicional”.

configuración de depuración

Más capacidades de depuración se llevarán a cabo para Raspbery Pi y ATtiny85.

Circuitería
El  siguiente Fritzing diagrama muestra cómo se conectan el Netduino además, los LED y las zonas de alarma (o detector de movimiento). En comparación de la aplicación anterior ( HomeAlarmPlus ) se ha añadido un  ATtiny85 con el fin de reducir los hilos en el Netduino Plus 1. De esta manera se han salvado 2 KB de RAM y dando  más espacio de código.

HomeAlarmPlus Pi diagrama de conexión I. Rev

 

circuitos HomeAlarmPlus Pi
HomeAlarmPlus Pi detalles de circuitos

Tenga en cuenta que una o más zonas consisten en lo siguiente:
a) 1 normalmente abierto de contacto y 1 Contacto normalmente cerrado con resistencia de fin de línea (EOL).
b) Doble circuito EOL, 1 contacto normalmente cerrado con una resistencia EOL 5.6kohm y el diodoSchottky. Esto hará que la protección necesaria para el Netduino o Arduino.
c) Cada zona de tierra debe ser conectado a la ProtoScrewShield GND.

Netduino / ProtoScrewShield Pin
Descripción
A0 Zona # 1
A1 Zona # 2
A2 Zona # 3
A3 Zona # 4
A4 Sensor # 1 [detector de movimiento]
D0 XBee RX
D2 LED de zona # 1
D3 LED de zona # 2
D4 Zona LED # 3
D5 Zona LED # 4
D6 LED Sensor # 1 [detector de movimiento]
D7 RF pasador articulado (Receptor RF)
D8 ATtiny85 poder
D9 Alarma antirrobo o Mini zumbador
D10, D11 y D13 LCD registro de desplazamiento

Opciones de servidor Web en Netduino Plus

opciones
Descripción
/ página raíz formato de escritorio.
/open Abrir último archivo en la tarjeta SD.
/ sdcard Lista los archivos en la tarjeta SD.
/ Do superusuario. Muestra opciones adicionales.
/ Pachube Muestra la actividad Pachube por zona / Datastream.
/about créditos de la aplicación y la versión. [Versión desktop]
/ about-mobile créditos de la aplicación y la versión. [Versión móvil]
/ delete-confirm Eliminar último archivo en la tarjeta SD [ventana de confirmar].
/ delete-last Eliminar último archivo en la tarjeta SD [ninguna ventana de confirmación].
/ diag Muestra la memoria disponible en Netduino y fuerzas para despejar el recolector de basura. [Versión de escritorio]
/ diag-mobile Muestra la memoria disponible en Netduino y fuerzas para despejar el recolector de basura. [Versión móvil]
/date Obtiene fecha y hora de Raspbery Pi.
/mobile página raíz formato móvil.

 

HomeAlarmPlus [Versión de escritorio]
HomeAlarmPlus [Versión móvil]

Opciones de servidor Web en Raspbery Pi

opciones
Descripción
/ página raíz formato de escritorio.
/index.php página raíz formato de escritorio.
/weather.html los datos de tiempo en Wunderground. [Versión desktop]
/móvil página raíz formato móvil.
/mobile/index.php página raíz formato móvil.
/references.htm Proyecto enlaces de referencia.
/about créditos de la aplicación y la versión.
/NetduinoPlus/setNetduinoTimer.php Configuración / Actualización Netduino Plus hora / fecha.

 

servidor web HomeAlarmPlus Pi [Versión de escritorio]
HomeAlarmPlus Pi servidor web [Versión móvil]

 

HomeAlarmPlus Pi [pantalla móvil Apple]

Arquitectura de software

HomeAlarmPlus Arquitectura de Software Pi

 

Arquitectura de Software detallada

Producto final

Producto final mostrando el acceso móvil, Raspbery Pi, Netduino Plus 1, escudo personalizados para el panel de alarma Netduino y Home

En desarrollo

  • Interfaz web para dispositivos basados en tabletas. [Pruebas, no publicado]
  • Las cámaras con sensor de movimiento integrado y la visión nocturna. Cámara debe integrarse con Raspbery Pi GPIO.
  • Más capacidades de depuración de Raspbery Pi y ATtiny85.
  • Explora las opciones de notificación adicionales como IFTTT. [Hecho. Lanzamiento 17 de de julio de, 2013]

Referencias muy interesantes para profundizar:

Repositorio de código y documentación
HomeAlarmPlusPi

Advertencia
El proyecto  contiene información relacionada con un típico sistemas de alarma. Por favor, tenga en cuenta que este procedimiento puede anular la garantía. Cualquier sistema de alarma o cualquier tipo puede ser comprometido deliberadamente o puede fallar al operar como se espera por una variedad de razones.

El autor, Gilberto García, no se hace responsable de los fallos del sistema, tales como: instalación inadecuada, el conocimiento penal, el acceso de intrusos, fallo de alimentación, el fallo de las baterías reemplazables, el compromiso de la radiofrecuencia dispositivos (inalámbricos), los usuarios del sistema, detectores de humo, movimiento detectores, dispositivos de alarma (sirenas, campanas, cuernos), líneas telefónicas, tiempo insuficiente, fallo de un componente, pruebas insuficientes, de seguridad y de seguros (de propiedad o de seguros de vida).

Una última cosa:Desconecte la alimentación de c.a.  y de teléfono antes de hacer cualquier cosa.

Fuente aqui

¿Qué es NETMF?


NETMF es una plataforma de código abierto, que se convirtió en un proyecto de colaboración de código abierto allá  por  el año 2009, cuya principal virtud es  ampliar  el potencial y la capacidad de adaptación de .NET para el mundo de los dispositivos integrados de modo que programadores de escritorio , también pueden crear aplicaciones que se ejecuten en una amplia gama de sistemas de pequeños dispositivos, como mandos a distancia,  PCs ,servidores en la nube ,etc    todos ellos usando el mismo modelo de programación y herramientas comunes. Así de  este modo ,desarrolladores de sistemas integrados pueden aprovechar las ventajas  de lenguajes de productividad masiva orientados a escritorio y reducir su tiempo de comercialización.

.NET Micro Framework  pues esta diseñado  pues para dispositivos pequeños y por tanto de recursos limitados ofreciendo un entorno completo e innovador de desarrollo y ejecución que trae la productividad de las herramientas informáticas modernas a esta clase de dispositivos,pudiendo utilizarse para construir dispositivos integrados en dispositivos limitados recursos en un microcontrolador con pocos cientos kilobytes de memoria RAM y almacenamiento  como por ejemplo Netduino del que tantas veces hemos tratado en este blog.

Uno de los punto fuertes  respecto a otras plataformas  Open Hardware como Arduino o Raspberry Pi es que los desarrolladores pueden utilizar sus conocimiento de Visual Studio, C# y .net   para escribir rápidamente aplicaciones integradas sin tener que preocuparse por las complejidades de cada microcontrolador, asi que cualquier desarrollador puede comprarse  una placa  compatible con .net, conectar la placa a su equipo de desarrollo con Visual Studio y comenzar a escribir aplicaciones para dispositivos físicos  no  necesitando por tanto amplios conocimientos de diseño de hardware  para empezar a escribir código para dispositivos físicos.

Las  ventajas de NETMF pues son las siguientes:

  • Mejores herramientas  y experiencia para los desarrolladores : al utilizar  tecnologías existentes (c#.net )  y entornos de desarrollo profesionales es evidente que  la experiencia de uso es mucho  mejor que en otros entornos de  desarrollo para crear micro dispositivos inteligentes de depuración.
  • Prototipado rápido :dar vida a sus ideas en horas es fácil (en lugar de días o semanas con otras plataformas) usando por ejemplo los módulos de . net Gadgeteer. Por tanto es una vía rápida y fácil de desarrollar sus invenciones para mostrar a la gente sus diseños creativos.
  • Aprovechamiento de . net y C# : puede usar su  base de conocimientos que ya tenga de C# y. net para hacer dispositivos frescos e innovadoras.

 

Desde el punto de vista del desarrollador ,  trabajar con NETMF tiene dos caras : portarlo al hardware  o  utilizarlo para controlar su hardware . Portarlo  requiere costo considerable , mucho tiempo y mucha experiencia . Una vez hecho esto , podrá usar  NETMF  casi sin esfuerzo .

Usando criterios de calidad y fiabilidad como  directrices principales, otras empresas  como Secrets Labs o GHI  han  enriquecido aún más NETMF con características de valor añadido tales como WiFi, USB servidor y base de datos, lo cual se traduce en soluciones  de bajo riesgo de abandono a un costo mínimo.

benefits

En cuanto al hardware  existen  dos partners de  .NET Micro como son  GHI Electronics y  Secret Labs.

placas

Características fundamentales

NETMF está lleno de características propias de  cualquier lenguaje  moderno,como el soporte de  las siguientes estructuras  y facilidades como son :

  • Arrays
  • Classes
  • Collections — ArrayList, Dictionary, Stack, Queue
  • Cryptography — Encrypting/decrypting, hashing, SSL
  • Displays
  • Dynamic memory management with GC
  • Exceptions
  • File I/O — Files, directories and various storage types.
  • Globalization
  • Graphics — Bitmap, GIF, JPEG, Windows Presentation Foundation (WPF), fonts, touch and gestures.
  • Numerics
  • Power Management
  • Reflection
  • Hardware — Analog Input/Output, Digital Input/Output, I2C, Interrupts, OneWire, PWM, SPI, UART (Serial Port)
  • Math helpers
  • Namespaces
  • Networking — DHCP. DNS. HTTP. Sockets. TCP. UDP. Wireless
  • Runtime Debugging
  • Serialization
  • Strings
  • Text Encoding/Decoding
  • Threading, Events, Delegates, and Timers
  • Time keeping
  • USB Client
  • XML
  • Resources

Hay empresas  como GHI , que ademas construyen sobre las características principales del NETMF anteriormente citadas , extensiones adicionales de valor añadido como pueden ser las siguientes:

  • Configuración de la pantalla y el logotipo de la puesta en marcha
  • E / S – CAN, captura de la señal, generador de señales, I2C Software, USB de almacenamiento masivo
  • En-Campo de actualización
  • PPP
  • Reloj en tiempo real
  • Registro Acceso
  • RLP para cargar código nativo (c / montaje) para los propósitos de velocidad y en tiempo real.
  • Base de datos SQLite
  • USB Client – joystick, teclado, almacenamiento masivo, Ratón
  • USB Host – joystick, teclado, almacenamiento masivo, ratón, USB-Serial, Webcam
  • Perro guardián

.NET Gadgeteer se construye en la parte superior de NETMF para proporcionar una plataforma de desarrollo rápido utilizando placas base y módulos plug-and-play  como sensores .

Supongamos que queremos por ejemplo  hacer una aplicación de registrador de temperatura,  esto requiere una placa base, módulo de tarjeta SD y un  módulo de temperatura. En cuanto al software, ademas también se necesitan  controladores necesarios .

Si contamos  con el hardware ya  preconstruido  y los controladores para estos se incluyen, en el desarrollo de  la nueva aplicación  se reducen significativamente el tiempo de desarrollo.

.NET Gadgeteer es un estándar mantenido por Microsoft para la normalización de las conexiones entre las placas base y módulos. GHI fue  elegido para ser el primer proveedor en ofrecer una tarjeta de .NET Gadgeteer, el FEZ araña. El ecosistema continúa creciendo con más placas base y módulos.

 

Diseñador

Usando el diseñador de .NET Gadgeteer es simple y acelera su diseño.En la pantalla de diseño, se abre la caja de herramientas, arrastrado y soltando los componentes deseados.Haciendo clic y seleccionando “Conectar todos los módulos”  habrá terminado la configuración inicial.

Este proceso  incluye automáticamente todos los archivos DLL necesarios y genera una variable para alcance de cada componente  que le permite centrarse en la escritura de la funcionalidad principal de su diseño sin tener que escribir todo desde el principio ahorrándole tiempo y recursos valiosos.

IntelliSense

Visual Studio de Microsoft incluye una característica denominada IntelliSense. A medida que escribe  su código , IntelliSense entiende lo que podría estar tratando de escribir y muestra cuadros con sugerencias. Es por eso que se envian productos .NET Gadgeteer sin ningún tipo de manuales de programación.

Imaginemos  que esta utilizando un módulo de la cámara:todo lo que necesita hacer es escribir la palabra “rfidReader” y  golpe  el teclado para ver una lista de los métodos admitidos disponibles en los controladores incluidos.

Gadgeteer vs  Arduino Phidgets

¿Cómo se compara Gadgeteer contra otras plataformas de desarrollo?,Si esta interesado puede echar un vistazo  al siguiente vídeo que compara parpadear un LED, el control de un servo con un potenciómetro y un podómetro que muestra los pasos en una matriz de LED todo ello comparando varias plataformas.

 

Fuente   aqui