Hasta luego, Netduino; Que vivas en nuestros corazones.

Hasta luego, Netduino. Le recordaremos en nuestros corazones, y siempre tendrá un lugar en la historia de la tecnología para establecer el estándar de oro en los tableros de .NET MicroFramework.


Netduino ha sido  una plataforma abierta  Open sw   basada en  Microsoft.NET Micro Framework   ,la cual por desgracia   ha quedado discontinuida ( es decir no se van a fabricar mas placas )

La  plataforma Netduino ha  sido buena con nosotros y con la comunidad pues  .NET MicroFramework  de hecho fue una incursión bienvenida para permitir el desarrollo de .NET en dispositivos integrados, y sin su inspiración no tendriamos  Meadow ( digamos la  “evolucion” de Netduino).

Desde este blog nuestras  felicitaciones para el equipo original de .NET MicroFramework, Colin, Lorenzo, y todos los demás que lo construyeron y trabajaron en él. Y el corazón de todo el ecosistema de .NET MicroFramework. GHI, Mountaineer, MikroBus, IngenuityMicro, José y la gente de NanoFramework, ( Mark, Craig, Adrian, Frank, Jorge, Scott) asi como  tantos Y, por supuesto, el mayor abrazo a Chris Walker, el ingeniero original que creó Netduino.

Haciendo un poco de historia  Wilderness Labs adquirió Netduino en 2017 y lo usaron para ayudar a crear prototipos de nuestros esfuerzos de .NET de próxima generación en embebidos, así como para apoyar a la comunidad que construyó a su alrededor. Arreglaron errores antiguos  creando Netduino.Foundation (el precursor de Meadow.Foundation) para que se conectara y jugara con sensores.

Sin embargo, el progreso tecnológico de la humanidad avanza inevitablemente, y desde el primer día, Wilderness tubo  la visión de poner la bondad de la experiencia .NET en hardware embebido, como es el caso de . Meadow  que  da cuenta de esa visión, y ahí es donde van sus esfuerzos ahora.

Netduino Foundation

Wildeerness Lab    en este contexto creó Netduino.Foundation,, una plataforma que toma gran parte de la complejidad del desarrollo de hardware y permite una experiencia de desarrollo lista donde se pueden crear soluciones de hardware sofisticado utilizando C#.

Usando  Xamarin,se pueden crear aplicaciones móviles que hablan y controlan cosas conectadas asi como escribir soluciones de extremo a extremo en. net,

El ecosistema Netduino

Haciendo un poco de historia  la versión  Plus se diferenciaba  por el interfaz Ethernet integrado, así como el apoyo de una ranura para microSD en la misma tarjeta  , pero además existía una version avanzada con adaptador wifi integrado

Esta placa contaba con un  potente microcontrolador de 32 bits integrado Cortex-M que ejecuta .NET Micro Framework (NETMF) v4.3  y  con un entorno de desarrollo estándar que está disponible gratuitamente a través de Microsoft (Visual Studio 2010).

Recuerde  que Microsoft. NET Micro Framework combina la facilidad de un lenguaje de programación de alto nivel (C #) con las características de los microcontroladores permitiendo la depuración de programación basada en eventos, multi-threading, línea por línea,puntos de interrupción y mucho más.   Ademas ..,se pueden añadir  mas accesorios ofreciendo funcionalidades extra ( por ejemplo la ubicación GPS, el control de servos ,displays  de todo tipo).

Una característica ademas muy  interesante es que el desarrollo es multiplataforma  por lo que  se puede hacer tanto en Windows, con Visual Studio, o con Xamarin Studio en Mac OS X.

La plataforma permitía una fácil interconexión con switches, sensores, LEDs, dispositivos de serie, y mucho más pues  Netduino combina 20 GPIO con SPI, I2C, UART 2 (1 RTS / CTS), 4 y 6canales de PWM ADC ,los  cuales son compatibles con pin / puerto con los escudos Arduino, abriendo asi mucha mas posibilidades de ampliacion.

Características de la placa original , mantenida en las siguientes versiones Netduino 2 y Netduino 3 (esta ultima  con interfaz wifi) :

● all 20 digital and analog pins: GPIO
● digital pins 0-1: UART 1 RX, TX
● digital pins 2-3: UART 2 RX, TX
● digital pins 5-6: PWM, PWM
● digital pins 7-8: UART 2 RTS, CTS
● digital pins 9-10: PWM, PWM
● digital pins 11-13: SPI MOSI, MISO, SPCK
● analog pins 4-5: I2C SDA, SCL

● ethernet: 100 mbps (solo versiones con ethernet en v1, v2, v3) con  network stack via  lwIP

● micro sd (up to 2 GB)
● auto card detect

 

Y  ahora  hablemos de las variantes de esta placa :

Netduino 3 :Era la ultima evolución de esta placa. Contaba con procesador  168Mhz Cortex-M4 (STM32F4) con o 1,408 KB of almacenamiento para código  y  164 KB de RAM.

Existía comercialmente en tres variantes:

    • N3  :384 KB Code Flash Storage,SIn ethenert  ni wifi
    • N3 Ethernet: 1,408 KB Code Flash Storage,10/100 Mbps Ethernet, Micro SD  Slot (up to 2GB),Con ethernet
    • N3 WiFi : 1,408 KB Code Flash Storage ,802.11b/g/n WiFi ,Micro SD Slot (up to 2GB) ,Con adaptador WiFI
Vista ISO del modelo WiFi Netduino 3

Netduino 2 :Es una de las versiones mas antiguas basada en Cortez M2   y M4. Existían únicamente dos  versiones:

      • N2 ; Cortex-M3 @ 120Mhz ,192 KB Code Flash Storage 60KB Ram ,SIn ethenert  ni wifi
      • N2 Plus : Cortex-M4 @ 168Mhz ,384 KB Code Flash Storage ,100 KB RAM ,10 Mbps Ethernet ,Micro SD Slot (up to 2GB) ,Con interfaz Ethernet

 

Como ya se ha comentado  Netduino en todas sus valientes se descontinuó  siendo reemplazado por  Meadow por completo.

 

 

Netduino es por tanto  100% de código abierto:

Puede encontrar la documentación de Netduino en developer.wildernesslabs.co/Netduino/  asi como detalles del hardware en  https://github.com/WildernessLabs/Netduino_Hardware

 

 

!Te recordaremos Netduino durante mucho tiempo con cariño  y deseamos mucha suerte para Meadow!

 

 

 

6 herramientas de domótica de código abierto

Construya un hogar más inteligente con estas soluciones de software de código abierto.


El Internet de las cosas no es sólo una palabra de moda, es una realidad que se ha expandido rápidamente desde la última vez que publicamos un artículo de revisión sobre las herramientas de domótica en 2016. En 2017, el 26,5% de los hogares estadounidenses ya tenían algún tipo de tecnología para hogares inteligentes en uso; en un plazo de cinco años, se espera que ese porcentaje se duplique.

Con un número cada vez mayor de dispositivos disponibles para ayudarle a automatizar, proteger y monitorear su hogar, nunca ha sido más fácil ni más tentador probar su mano en la automatización del hogar. Ya sea que esté buscando controlar su sistema HVAC de forma remota, integrar un cine en casa, proteger su hogar de robos, incendios u otras amenazas, reducir su consumo de energía o simplemente controlar algunas luces, hay innumerables dispositivos disponibles a su disposición.

Pero al mismo tiempo, muchos usuarios se preocupan por las implicaciones de seguridad y privacidad de traer nuevos dispositivos a sus hogares, una consideración muy real y seria. Quieren controlar quién tiene acceso a los sistemas vitales que controlan sus aparatos y registran cada momento de su vida cotidiana. Y es comprensible que en una época en la que incluso su refrigerador ahora sea un dispositivo inteligente, ¿no quiere saber si su refrigerador está llamando a casa? ¿No querría sin dudar en ello de que, incluso si concede permiso a un dispositivo para comunicarse externamente, solo es accesible para aquellos que están autorizados explícitamente?

Las preocupaciones de seguridad son algunas de las muchas razones por las que el código abierto será crítico para nuestro futuro con los dispositivos conectados. Ser capaz de comprender completamente los programas que controlan su hogar significa que puede ver, y si es necesario modificar, el código fuente que se ejecuta en los propios dispositivos.

Si bien los dispositivos conectados a menudo contienen componentes propietarios, un buen primer paso para incorporar código abierto a su sistema de domótica es asegurarse de que el dispositivo que une sus dispositivos y le presenta una interfaz para ellos (el “hub”) está abierto Fuente. Afortunadamente, hay muchas opciones por ahí, con opciones para ejecutar en todo, desde su computadora personal siempre activa a una Raspberry Pi.

Estos son solo algunos ejemplos de plataformas disponibles

 

 

Calaos

Calaos es una solución completa para domótica. Primero fue un sistema desarrollado por una empresa francesa del mismo nombre. Cuando la compañía fue cerrada durante 2013, toda la base de código fue de código abierto y lanzado como GPL. Una pequeña comunidad comenzó en torno al proyecto para continuar el desarrollo. La comunidad está creciendo cada día, el wiki y el foro están aquí para compartir información y buenas idea

Calaos está diseñado como una plataforma de domótica de pila completa, que incluye una aplicación de servidor, interfaz de pantalla táctil, aplicación web, aplicaciones móviles nativas para iOS y Android, y un sistema operativo Linux preconfigurado para funcionar debajo. El proyecto Calaos surgió de una empresa francesa, por lo que sus foros de apoyo están principalmente en francés, aunque la mayor parte del material instructivo y la documentación han sido traducidos al inglés.

Algunos ejemplos de lo que se puede hacer:

  • Bienvenido a casa! Después de un largo día de trabajo, ¡relájese! Cuando se vaya a casa, Calaos preparará un ambiente dulce. Las persianas están cerradas, las luces atenuadas, la música favorita comienza a reproducirse.
  • Controla su música.Comparta toda Su música en toda la casa. No mire donde lo tiene, no  transfieras más, simplemente presionE play en la habitación que debe escuchar Sus listas de reproducción favoritas.
  • Crear escenario: Todos los artículos vinculados a Calaos se pueden automatizar por tiempo, ambiente o estado de ánimo. Su hogar se vuelve inteligente a partir de hoy. La creación de un escenario se realiza en unos pocos clics en la pantalla táctil.
  • Configurar :Tiene herramientas escritas que le permiten configurar fácilmente su casa directamente desde su computadora. ¿Desea agregar más elementos a su sistema? Sólo tiene que instalar Calaos Installer.

Calaos está licenciado bajo la versión 3 de la GPL y puede ver su fuente en GitHub.

 

Domoticz

Domoticz es un sistema domótico con una biblioteca bastante amplia de dispositivos compatibles, que van desde estaciones meteorológicas hasta detectores de humo y controles remotos, y un gran número de integraciones adicionales de terceros se documentan en el sitio web del proyecto. Está diseñado con un front-end HTML5, por lo que es accesible desde los navegadores de escritorio y la mayoría de los teléfonos inteligentes modernos, y es ligero, se ejecuta en muchos dispositivos de baja potencia como raspberry Pi.

 

Es libre  y Open Source   y ademas esta diseñado para funcionar en varios sistemas operativos(es compatible con dispositivos Linux ,windows   embebidos ). La interfaz de usuario es un front-end web HTML5 escalable y se adapta automáticamente para dispositivos de escritorio y móviles.
Es compatible con todos los navegadores aunque  para los usuarios de Internet Explorer se necesita la versión 10+.

Algunas características destacables:

  • Hardware: Transceptor RFXCOM, Z-Wave, P1 Smart Meter, YouLess Meter, Contadores de pulsos, 1-Wire, EnOcean, y mucho más….
  • Registro extendido
  • Notificaciones push de iPhone / Android
  • Sensores/interruptores de aprendizaje automático
  • Creación manual de códigos de conmutación
  • Compartir / Usar dispositivos externos
  • Diseñado para la simplicidad

Domoticz está escrito principalmente en C/C++ bajo la GPLv3, y su código fuente se puede examinar en GitHub.

 

Home Assistant

Home Assistant es una plataforma de domótica de código abierto diseñada para implementarse fácilmente en casi cualquier máquina que pueda ejecutar Python 3, desde una Raspberry Pi hasta un dispositivo de almacenamiento conectado a la red (NAS), e incluso se suministra con un contenedor Docker para realizar la implementación en otros sistemas una brisa. Se integra con un gran número de ofertas comerciales y de código abierto, lo que le permite vincular, por ejemplo, IFTTT, información meteorológica o su dispositivo Amazon Echo, para controlar el hardware desde bloqueos hasta luces.

 

Home Assistant se publica bajo una licencia mIT,y su fuente se puede descargar desde GitHub.

 

 

 

Misterhouse

MisterHouse ha ganado mucho terreno desde 2016, cuando era “otra opción a considerar” en esta lista. Utiliza scripts Perl para monitorear cualquier cosa que pueda ser consultada por un ordenador o controlar cualquier cosa capaz de ser controlada a distancia.

Responde a los comandos de voz, hora del día, clima, ubicación y otros eventos para encender las luces, despertarte, grabar tu programa de televisión favorito, anunciar a las personas que llaman, advertir que tu puerta principal está abierta, reportar cuánto tiempo ha estado tu hijo en línea, te dicen si tu el coche de su hija está acelerando, y mucho más. Se ejecuta en ordenadores Linux, macOS y Windows y puede leer/escribir desde una amplia variedad de dispositivos, incluidos sistemas de seguridad, estaciones meteorológicas, identificador de llamadas, enrutadores, sistemas de ubicación de vehículos y más

MisterHouse está licenciado bajo la GPLv2 y puede ver su código fuente en GitHub.

OpenHAB

OpenHAB (abreviatura de Open Home Automation Bus) es una de las herramientas de domótica más conocidas entre los entusiastas del código abierto, con una gran comunidad de usuarios y un buen número de dispositivos e integraciones compatibles.

Escrito en Java, openHAB es portátil en la mayoría de los principales sistemas operativos e incluso funciona muy bien en Raspberry Pi. Compatible con cientos de dispositivos, openHAB está diseñado para ser independiente del dispositivo, al tiempo que facilita a los desarrolladores agregar sus propios dispositivos o plugins al sistema. OpenHAB también incluye aplicaciones iOS y Android para el control de dispositivos, así como herramientas de diseño para que pueda crear su propia interfaz de usuario para su sistema doméstico.

Con su arquitectura conectable openHAB soporta más de 200 diferentes tecnologías y sistemas y miles de dispositivos permitiendo además  automatice con facilidad . POr ejemplo puede utilizar un motor potente y flexible para diseñar reglas,con disparadores basados en tiempo y eventos, scripts, acciones, notificaciones y control de voz.

El sw puede  correr  en todas partes :Linux, macOS, Windows, Raspberry Pi, PINE64, Docker, Synology… accediendo a él con aplicaciones para la web, iOS, Android y otros.

Por cierto openHAB se ejecuta en su hardware, no requiere ningún servicio en la nube para funcionar, mantiene sus datos de forma privada en casa y habla directamente con sus dispositivos locales siempre que sea posible. En el centro de sua filosofía es que siempre el usuario tiene el control  aunque es amigable con la nube pues las integraciones están disponibles para las plataformas de hogar inteligente basadas en la nube más populares, como Google Assistant, Amazon Alexa, Apple HomeKit e IFTTT. Utilice el conector openHAB Cloud con el servicio de myopenhab.org gratuito o hospede el suyo propio

 
Una opción deseable es probar  la imagen openHAB  proporcionada para Raspberry Pi, una opción de hardware ampliamente utilizada y recomendada. Flashee una tarjeta SD, arranque y disfrute de su configuración openHAB actualizada con ajustes del sistema y software convenientemente preconfigurados como Samba, Grafana y Eclipse Mosquitto.

Puede encontrar el código fuente de openHAB en GitHub con licencia bajo la licencia pública Eclipse.

OpenMotics

OpenMotics es un sistema domótico con hardware y software bajo licencias de código abierto. Está diseñado para proporcionar un sistema completo para controlar dispositivos, en lugar de unir muchos dispositivos de diferentes proveedores. A diferencia de muchos de los otros sistemas diseñados principalmente para un fácil reacondicionamiento, OpenMotics se centra en una solución cableada. 

La plataforma de OpenMotics combina hardware de código abierto asequible con soluciones modernas en la nube. La plataforma intuitiva aprende de su comportamiento y puede expandirse a sus necesidades personales suscribiéndose a servicios adicionales.

Tambien openMotics  esta disponible para profesionales :Smart Homes ofrece beneficios significativos durante las fases de planificación, diseño y construcción de cualquier nuevo hogar, oficina u otro edificio.

El código fuente de OpenMotics está licenciado bajo la GPLv2 y está disponible para su descarga en GitHub.

 

 


Estas no son las únicas opciones disponibles, por supuesto. Muchos entusiastas de la domótica van con una solución diferente, o incluso deciden rodar la suya propia. Otros usuarios eligen utilizar dispositivos domésticos inteligentes individuales sin integrarlos en un único sistema integral.

Si las soluciones anteriores no satisfacen sus necesidades, estas son algunas alternativas potenciales a tener en cuenta:

  • EventGhost es una herramienta de automatización de cine en casa de código abierto (GPL v2) que funciona solo en equipos Microsoft Windows. Permite a los usuarios controlar los EQUIPOS multimedia y el hardware adjunto mediante el uso de plugins que activan macros o mediante la escritura de scripts de Python personalizados.
  • ioBroker es una plataforma IoT basada en JavaScript que puede controlar luces, cerraduras, termostatos, medios, webcams y más. Se ejecutará en cualquier hardware que ejecute Node.js, incluidos Windows, Linux y macOS, y sea de código abierto bajo la licencia MIT.
  • Jeedom es una plataforma de domótica compuesta por software de código abierto (GPL v2) para controlar luces, cerraduras, medios y más. Incluye una aplicación móvil (Android e iOS) y funciona en PC Linux; la compañía también vende centros que, según según él, proporcionan una solución lista para usar para configurar la automatización del hogar.
  • LinuxMCE se presenta a sí mismo como el “pegamento digital” entre sus medios y todos sus aparatos eléctricos.” Se ejecuta en Linux (incluyendo Raspberry Pi), se lanza bajo la licenciade código abierto Pluto, y se puede utilizar para la seguridad del hogar, telecomunicaciones (VoIP y correo de voz), equipos audiovisuales, domótica, y, de forma única, para jugar videojuegos.
  • OpenNetHome,al igual que las otras soluciones de esta categoría, es un software de código abierto para el control de luces, alarmas, electrodomésticos, etc. Se basa en Java y Apache Maven, funciona en Windows, macOS y Linux, incluyendo Raspberry Pi, y se lanza bajo GPLv3.
  • Smarthomatic es un marco de domótica de código abierto que se concentra en dispositivos de hardware y software, en lugar de interfaces de usuario. Licenciado bajo GPLv3,se utiliza para cosas como controlar luces, electrodomésticos y humedad del aire, medir la temperatura ambiente y recordar regar sus plantas.

 

 

 

 

 

Ahora es su turno: ¿Ya tiene un sistema de domótica de código abierto en su lugar? O tal vez usted está investigando las opciones para crear uno. ¿Qué consejo tendría para un recién llegado a la domótica y qué sistema o sistemas recomendaría?

Simple cámara de seguridad

En este post vamos una potente ver placa para reconocimiento de imágenes que es plug and play. La placa permite la transmisión de imágenes a través de Wi-Fi, depuración a través de un puerto Micro USB, reconocimiento facial y de voz. Compatible con el sitio web de Espressif con ESP-IDF (IoT). ESP-WHO (AI) Marco de desarrollo, herramientas y tutoriales. El post culmina con un resumen de cómo configurar una placa raspberry pi con una pantalla táctil conectada  a esta para ver las imágenes servidas por dicha placa


En efecto gracias al nivel de integración alcanzado , cada vez hay soluciones más “sencillas” a problemas de computación en tiempo real que tradicionalmente han sido  muy complejos  como por ejemplo puede ser el reconocimiento y detección de imágenes en tiempo real .

Como muestra  de este tipo de soluciones  vamos a ver la placa ESP-EYE , una  pequeña placa de desarrollo del fabricante chino Espressif centrada en el  reconocimiento de imágenes  con  procesamiento de audio en aplicaciones AIoT

Realmente esta solución  se basa en dos componentes claramente  diferenciados:

  • El hardware  :  esta solución es soportable por muy diferentes propuesta  pero el  hw  más sencillo  y del que vamos  a ver en este post   el ESP-EYE , una placa de desarrollo  de  menos de 30€  para el reconocimiento de imágenes y el procesamiento de audio, que se puede utilizar en varias aplicaciones AIoT. Cuenta con un chip ESP32, una cámara de 2 megapíxeles y un micrófono. ESP-EYE ofrece mucho almacenamiento, con una PSRAM de 8 Mbyte y un flash de 4 Mbyte. También es compatible con la transmisión de imágenes a través de Wi-Fi y depuración a través de un puerto Micro-USB. Aunque el ESP-EYE es una opción en kit  muy asequible, el fabricante también ofrece una opción más potente :Esp-Wrover-Kit

 

  • El software :  ESP-WHO, que  es un marco de desarrollo de detección y reconocimiento de rostros diseñado para aplicaciones AIoT. Puede usarse con la placa de desarrollo ESP-EYE, el ESP-WROVER-KIT calificado por Amazon FreeRTOS u otras placas de desarrollo basadas en ESP32. Luego, al agregar solo unos pocos periféricos, como cámaras y pantallas, puede crear fácilmente aplicaciones AIoT completas.  Para ejecutar ESP-WHO, debe tener una placa de desarrollo que integre un módulo ESP32 que tenga suficientes pines GPIO y más de 4 MB de RAM externa SP  como la placa  anteriormente comentada (ESP-EYE ), aunque  no obstante  ESP-WROVER-KIT  también pueden ser otra opción como placa de pruebas.

 

Espressif ESP-EYE

Como hemos comentados hablado  estamos ante una Placa de desarrollo de Espressif para reconocimiento de imágenes y procesamiento de audio en aplicaciones AIoT.

Espressif , el fabricante  ofrece una solución AIoT completa que combina ESP32 con un marco de desarrollo de inteligencia artificial (AI).  Esta solución incluye la placa de desarrollo ESP-EYE, junto con los marcos de desarrollo IoT y AI de Espressif, también conocidos como ESP-IDF y ESP-WHO, respectivamente.

 

 

ESP-EYE es una placa de desarrollo para el reconocimiento de imágenes y el procesamiento de audio, que se puede utilizar en varias aplicaciones AIoT. Cuenta con un chip ESP32, una cámara de 2 megapíxeles y un micrófono, todo ello integrado en una minúscula placa de 8 x4 cm (mas o menos como un pen-drive USB).

ESP-EYE ofrece mucho almacenamiento, con una PSRAM de 8 Mbyte y un flash de 4 Mbyte. También es compatible con la transmisión de imágenes a través de Wi-Fi y depuración a través de un puerto Micro-USB.

 

 

Aunque el sl fabricante ha dejado disponible en Github su sw , también  puede apoyarse en otras soluciones del mismo fabricante como el ESP-WROVER-KIT-VB que f ofrece una solución integrada  AIoT completa que combina un ESP32 con un marco de desarrollo de inteligencia artificial   y además incluye la placa de desarrollo ESP-EYE, junto con los marcos de desarrollo IoT y AI de Espressif, también conocidos como ESP-IDF y ESP-WHO, respectivamente.

 

ESP-WROVER-KIT-VB

Es una placa de desarrollo de ultra bajo consumo altamente integrada que incluye Flash y PSRAM  agregando una interfaz USB, una pantalla LCD de 3.2 “, una interfaz de cámara OV7670 y una ranura para tarjeta micro SD.Alcanza un gran rendimiento con una RAM de 4.5 MB y una CPU de doble núcleo de 240 MHz permitiendo creer cámaras de Internet, pantallas inteligentes o radios de Internet conectando pantallas LCD, micrófonos y códecs ) , todo ello a un precio relativamente competitivo (  unos 62€)

Esta  placa Esp-Wrover-Kit  también del mismo  fabricante   Expressif es otra opción  que puede soportar el software  ESP-WHO , En este caso es una una placa de desarrollo calificada por AWS( Amazon Web Services ) . Además del ESP-IDF SDK de Espressif, puede usar Amazon FreeRTOS en ESP-WROVER-KIT-VB. Amazon FreeRTOS proporciona conectividad lista para usar con AWS IoT, AWS Greengrass y otros servicios de AWS.

Aunque  ESP32 admite la depuración JTAG, este modulo  ESP-WROVER-KIT-VB integra un depurador USB también, lo cual  hace que la depuración y el rastreo de aplicaciones complejas sea muy fácil, sin la necesidad de ningún hardware adicional.

ESP-WROVER-KIT-VB es pues la versión mejorada del ESP-WROVER-KIT ( de hecho cuesta casi el doble que la  version anterior) . Su PSRAM  en l aversion 2 aumenta a 8 MBytes, mientras que esta placa de desarrollo también cuenta con una interfaz de tarjeta Micro-SD de alta velocidad, una interfaz de cámara VGA, un panel LCD SPI de 3.2 ”y capacidades de expansión de E / S. Asimismo cuenta con  un procesador de doble núcleo, radios Bluetooth y WiFi, y 520 KB de SRAM.

Ultimamente estan distribuyendo la versión 3 que contiene 32 Mbit adicionales de PSRAM  siendo  el ESP32 s compatible con SPI, I2C, serie, etc.

Espressif admite dos cadenas de herramientas:

  • El entorno de lenguaje C nativo que se ejecuta bajo el sistema operativo en tiempo real FreeRTOS
  • El entorno Arduino C / C ++. Los programas desarrollados usando el entorno Arduino en realidad se ejecutan como una tarea en FreeRTOS y pueden usar las bibliotecas FreeRTOS.

Puede ser  preocupante el soporte para el controlador LCD  ya  que las versiones 2 y 3 de la placa utilizan un controlador ST7789V pero la placa de la versión 1 utiliza un controlador ILI9341.  La última versión de la demostración TFT simple en ESP32 SDK llamada spi_master se puede configurar para ejecutarse en cualquiera de los ESP32-WROVER-KIT. No obstante “Loboris” en github tiene una biblioteca TFT  con todas las funciones con opción de configuración para construir la biblioteca y el programa de demostración para la versión 3 WROVER-KIT. Incluso con SPI, la actualización de la pantalla es muy rápida.

No se incluye documentación con la placa, pero hay mucha documentación en la web, y el SDK nativo viene con una serie de ejemplos útiles. La desventaja es que el ESP32 es relativamente nuevo, parte del software está cambiando y faltan algunas bibliotecas de Arduino.

Sin dua el ESP32-WROVER-KIT es una gran pieza de hardware, aunque su uso requiere cierta experiencia con microcontroladores y cierta tenacidad para examinar la documentación en línea y el código de ejemplo , pero quizás valga la pena el esfuerzo por toda la potencia que le brinda esta placa.

EL software

El sw   necesario se  compone del  marco de desarrollo IoT  ( también llamado ESP-IDF  ) y la AI de Espressif ( también conocidos como ESP-WHO ).

Para ejecutar ESP-WHO, debe tener una placa de desarrollo que integre un módulo ESP32 generico que tenga suficientes pines GPIO y más de 4 MB de RAM externa SPI  y una cámara CCD . Lo mas sencillo es usar el  ESP-WROVER-KIT o el recomndado  por el fabricante:  el   ESP-EYE que hemos visto integra el ESP32 y la cámara integrado en una solución de bajo coste

 

 

ESP-WHO es pues  la utilidad de detección, reconocimiento e imagen son el núcleo de la plataforma   constando en realidad de los siguientes módulos:

  • Image Utility ofrece API de procesamiento de imágenes fundamentales.
  • La detección toma imágenes como entrada y proporciona la posición de la cara si hay una cara. Se implementa con el modelo MTMN, que se refiere a MTCNN y MobileNets .
  • El reconocimiento es identificar a la persona en particular y necesita los resultados de la detección. Se implementa con el modelo MobileFace.
  • La optimización consiste principalmente en aumentar la precisión de la inferencia y acelerar todo el proceso. Pero también podría cambiar la estructura de la red, actualizar los coeficientes, refactorizar el código, etc.

Tanto la entrada como la salida son flexibles porque las fuentes de imagen pueden ingresarse a través de la cámara ( aunque sin embargo, no proporcionan  muchos controladores en este momento, ya que los de otros módulos de cámara se lanzarán en el futuro)  y porque los resultados se pueden mostrar  a través de la línea de comando, un LCD o incluso el sitio web a través del servicio de Wi-Fi http.

 

Para saber cómo configurar el módulo ESP32 para sus aplicaciones, puede consultar el archivo README.md de cada ejemplo del respositorio de github ( https://github.com/espressif/esp-who )

Preparación de software

La resolución recomendada de la imagen de entrada es QVGA (320×240) . En cuanto a elegir la cámara si no usa el citado modulo recomendado  ESP-EYE      el módulo ESP32 usado   deberá tener libre los  pines específicos según la  cámara que use Por ahora el  sw  proporcionado soporta el controlador de OV2640 y OV3660 , que son muy recomendables para comenzar.

Veamos como instalar los dos módulos sw necesarios:

 ESP-WHO

Asegúrese de clonar el proyecto de forma recursiva usando el siguiente comando:

git clone --recursive https://github.com/espressif/esp-who.git

Si clona un proyecto sin --recursive ( es decir usando el indicador --recursive), vaya al directorio esp-who y ejecute el comando git submodule update --init antes de hacer nada.

 ESP-IDF

Consulte las guías de configuración para obtener instrucciones detalladas para configurar el ESP-IDF:Guía de inicio para la versión estable de ESP-IDF

En este caso, tomamos ESP-IDF v3.2 como la versión de prueba.Si ya ha configurado ESP-IDF antes y no desea cambiar el existente, puede señalar IDF_PATH al ESP-IDF que se encuentra en ESP-WHO.

 Otros componentes sw

Otros componentes  sw necesarios lo constituye  el marco principal del SDK, con algunos controladores y algunos  algoritmos dentro.

  • Cámara :  El componente de cámara contiene controladores para dispositivos de cámara de ESP32.
  • Face de esp: El componente esp-face contiene las API de las redes neuronales ESP-WHO, incluido el marco de detección y reconocimiento de rostros.

Ejemplos

La carpeta de /examples/  del respositorio de github ( https://github.com/espressif/esp-who )   contiene ejemplos de aplicaciones que demuestran las características API de ESP-WHO.

Una buena muestra es la  detección de rostros , para lo cual habría que seguir los siguientes pasos:

  1. esp-who/examples/single_chip/detection_with_command_line a una carpeta de ejemplo esp-who/examples/single_chip/detection_with_command_line .
  2.  cd esp-who/examples/single_chip/detection_with_command_line
  1. Compila y actualiza el proyecto.   idf.py build idf.py flash -p [PORT]
  1. Los usuarios avanzados pueden modificar algunas opciones mediante el comando idf.py menuconfig .

Verifique README.md de cada ejemplo  del respositorio de github ( https://github.com/espressif/esp-who )      para más detalles.

Demo

En el siguiente , podemos ver  cómo hacer su propio proyecto de seguridad para el hogar en solo 5 minutos utilizando la placa   ESP-EYE y una Raspberry Pi para visualizar el resultado aunque   puede usarse un pc portatil ,tableta , etc en su lugar  . Este proyecto  además es  plug and play pues  apenas  requiere ningún conocimiento de codificación o hardware.
Para  hacer su propio  dispositivo de transmisión inalámbrica por tanto sólo usaremos  una a pantalla LCD táctil conectada a la Raspberry pi . Como normalmente el fabricante del LCD suele incluir las instrucciones necesarias para  conectar esta a la Raspberry Pi y que sea funcional en la demo  no se requiere ninguna codificación y tampoco  ningún circuito   ya que nos bastará  conectar estos dispositivos y empezar a transmitir
En realidad  no es dificil  conectar un apantalla tactil a una raspberry pi   , pues de  hecho en este  blog vimos en este post http://soloelectronicos.com/2018/12/02/como-instalar-una-pantalla-tactil-de-5-en-una-raspberry-pi-3/  como hacerlo con un simple escudo   de kuman  y  cargando en nuestra Raspberry Pi la imagen de Raspbian con los drivers ya instalados

En primer lugar necesitaremos encender este ESP  alimentando con 5v DC por medio del puerto microUSB . En el inicio del LED rojo se enciende  en el ESP ,pero   el LED rojo comenzará a parpadear que revela que este dispositivo  se despierta  y ha creado  su punto de acceso propio al  que se  puede  conectar todos los dispositivos .

En este ejemplo  como se usa  Raspberry Pi para ver  los datos  que vienen del CSPI ,encenderemos la placa Raspberry Pi . Para la primera vez que se conecte es recomendable  tener teclado y ratón conectados a la Raspberry Pi , pero esto  sólo será para  la primera vez  pues después  el ajuste se guardará en esta Raspberry Pi y no necesitará  teclado y ratón ,ya que se puede utilizar  la pantalla táctil

Cómo  está abierto  el punto de acceso ,sólo necesitamos para conectar a través de este punto ,  abrir el navegador web y conectarnos a esta dirección IP( doble barra oblicua ,dos puntos y la ip del módulo y   podremos ver  la imagen que esta transmitiendo la cámara .

Para la  segunda vez no hay necesidad de utilizar este tipo de teclado porque una Raspberry Pi automáticamente se conectara con este punto de acceso particular y en el navegador puede usar esta dirección IP ,la cual  se guardará en el historial para que pueda tocar    la  dirección IP en el historial  y acceder directamente

 

 

En este video, pues  hemos visto cómo hacer su propio proyecto de seguridad para el hogar en solo 5 minutos utilizando el tablero ESP-EYE y Raspberry Pi, proyecto por cierto que como hemos visto es plug and play , y no requiere ningún conocimiento de codificación o hardware.

!Este módulo sin duda es una versátil aliado para múltiples retos  que se nos presente!