Cómo probar una tira de leds WS2801

Antes de querer emular el ambilight con una tira de led basada en el chip WS2802 , es muy interesante que probemos nuestra composición de leds en un entrono controlable como puede ser con un Arduino Uno. Obviamente este paso es aun mas relavante si hemos detectado animalias con los leds que en este post vamos a solucionar


Es muy frustrante adquirir  una costosa tira de leds  WS2801 ( ni importa que sea SMD o en formato “luces de navidad”) ,  adherirla y fijarla  con mucho esmero a nuestro TV o monitor ,siguiendo  cuidadosamente los muchísimos tutoriales que hay en Internet (por ejemplo para simular  con esta  el famoso  sistema ambilight ),   y al final no conseguimos obtener nada  quizás porque nuestro hardware esta mal conectado (o tenemos algo estropeado)  o bien no hemos  configurado el sw ,o una mezcla de ambas cosas.

Antes de abandonar veamos  con la ayuda de una placa Arduino Uno conectada a nuestro PC  , vamos  a ver algunas pautas que seguro  nos resuelven el misterio:

 

En primer lugar usaremos una  placa Arduino UNO , para lo cual usaremos sólo  tres cables para  conectar a uno de los  extremos de la tira de leds a Arduino . Las conexiones estandarizadas que haremos sea cual sea la modalidad de la tira de leds son las siguientes:

  • CK de la tira WS2801  al pin GPIO 13(reloj del SPI)
  • SD de la tira WS2801  al pin GPIO11 (SPI MOSI).
  • GND de la tira WS2801 al GND de Arduino
  • +5v   de la tira WS2801  a  una fuente de alimentación aparte de mínimo 2Amp ,5VDC

En algunas tiras formato “luces de navidad” el hilo azul es  GND , el . Verde  es CK  y amarillo es SD ,y el cable rojo es +5V ,  pero esto no es norma porque las tiras SMD   suelen tener un cable rojo para CK, otro verde para SD , el negro para GND  y un violeta para +5V  , lo cual como vemos no sigue para nada la pauta anterior

Aunque no es necesario  también se puede utilizar un Arduino Mega, conectando  reloj del SPI al pin 52   ,  conectando SD al   pin 51 SPI MOSI  y por supuesto las masas.

Es importante destacar que los cables extra rojo y azul son para conectar  5V DC   de al menos 2 Amp ( en función del numero de leds que vayamos a conectar)  lo cual no deberíamos extraer de la placa Arduino sino de una fuente auxiliar DC de 5V    no  olvidando de unir ambas masas ( la de Arduino y de la fuente externa).

En el siguiente esquema podemos ver claramente este montaje.
led_pixels_wiring-diagram.png

Para probar   la tira  de leds    necesitamos si aun no lo tenemos dos herramientas :

  • El IDE de Arduino :Si no lo tiene ya instalado , descargar el Arduino IDE (entorno de desarrollo integrado) de la Web de Arduino. Seleccione la versión del software para su tipo de computadora: Windows, Mac o Linux   Es un poco diferente para cada uno de los tres sistemas operativos.
  • El IDE de Processing:A continuación, descargue el IDE de processing del sitio de procesamiento.Descomprima el fichero y cópielo al  directorio  c:\archivos de programa\ . Es importante que descargue la versión processing 2.2 pues la  versión 3.0  con el codigo Adalight  tendra  errores con él.
El IDE de Arduino y Processing  son  muy similares pero son dos programa muy distintos para diferentes funciones como vamos a  ver

Descargar Adalight ZIP

Por último, visite la página Adalight en Github y descargue el archivo ZIP. El botón de descarga está cerca de la parte superior izquierda de la página:

Después de descomprimir el archivo ZIP, necesitará mover algunos archivos en su lugar.

Si ha ejecutado el Arduino o el IDE de processing  debería haber  dos  correspondientes carpetas llamadas “Arduino” y de “Procesing” dentro de su carpeta personal de “Documents” (o “Mis documentos” en Windows). En ese caso, mover el contenido de la Arduino y procesando carpetas desde el archivo ZIP de Adalight en las carpetas correspondientes de documentos.

Si las carpetas de Arduino y Processing todavía no existen en el sistema,  puede copiar estas desde el archivo ZIP de Adalight a la carpeta de documentos.

Los otros archivos y carpetas en el archivo ZIP pueden ser ignoradas ya  que son para usuarios avanzados y no son esenciales para su uso.

Salga del Arduino y Processing  si se están ejecutando  pues las carpetas recién instaladas no serán visibles hasta la siguiente vez que inicien  estos programas.

Programar Arduino

Para  probar la tira de leds  en caso de que no lo tenga instalado deberá instalar  el IDE de Arduino.Si no lo tiene instalado el IDE de Arduino conecte la placa Arduino al ordenador con un cable USB A-B. Cuando conecta por primera vez, Windows los usuarios le pedirá que para instalar a un controlador.

Iniciar el IDE de Arduino. Después de un momento, debería ver una ventana azul y blanca simple con algunos botones.

En el menú archivo , seleccione Sketchbook,   y elegir  LEDstream. .

En el menú herramientas , seleccione la  placa  luego Arduino Uno (o tipo de cualquier placa Arduino que está usando).

En el menú herramientas , seleccione el Puerto Serial y luego el puerto correspondiente a su placa de Arduino.

Haga clic en el botón de subir cerca de la parte superior izquierda de la ventana:

ledsstreamarduino

Después de que el código sea cargado, si los LEDs están conectados correctamente conectados y la fuente de alimentación está conectada, todos  los LEDs deben encenderse en una secuencia  primero todo todos en flash rojo, luego  verde y después en azul aproximadamente un segundo cada uno, y luego se apagan todos. Se trata de un diagnóstico que indica el LED Arduino están trabajando correctamente y ahora están en espera de datos de que se  envíen desde nuestro ordenador con otro sw.

Gracias    a que el Arduino almacena el programa en memoria no volátil, sólo necesita hacer este proceso de carga una vez, no cada vez que desee utilizar Adalight.

Si los LED no parpadean, asegúrese de que el cableado coincide con la página anterior, y que la fuente de alimentación está conectada.
Si persiste el error  deberíamos probar la salida digital de los  pines 11 y 13 por si estuviesen defectuosas, para lo cual conecte dos leds normales  entre GND  y los pines 11 y 13  y cargue en Arduino el siguiente código de ejemplo:
void setup(){
pinMode(13, OUTPUT);
pinMode(11, OUTPUT);//10 ok 11 ok
}void loop(){digitalWrite(13,HIGH);
digitalWrite(11,LOW);delay(1000);

digitalWrite(13,LOW);
digitalWrite(11,HIGH);

delay(1000);

Al subir el código anterior en nuestro Arduino ,  ya deberían parpadear ambos leds , lo cual sera un claro indicio que la placa Arduino esta bien:

led13

 

Una vez hayamos probado que la placa Arduino esta correcta  con el simple test anterior,  lo que nos queda es volver a cargar el sketch de  probar LedStream cargado inicialmente pues  hay evidencias  de que algún (o algunos) modulo(s)  mal que esta bloqueando el resto de módulos

En el caso de que sólo los primeros pocos LEDs respondan  y ,el resto permanece apagado o parpadea aleatoriamente o incluso no se encienda ninguno, tendrá que estudiar cual de  los módulos esta mal  .

Dentro de cada píxel  hay  una pequeña placa de circuito con el CI WS2801   el led RGB   y algunos componentes adicionales . Si no funciona  el primer píxel apretar las conexiones  donde el cable de cinta se une a la placa  e intente comprobar la conexión ,Si no  funcionase , puede recortar  ese modulo , conectando las conexiones al siguiente  píxel   y seguir la  dirección de conexión ( en el montaje SMD  llevan una flecha  que indica claramente el orden de conexiones)

ws2801

Si consigue que algunos  leds  funcionen pero aún así  algún  led posterior  parpadea ,y fallan después todos los siguientes en la cadena ,también  es muy  posible que ademas  haya algún  otro chip defectuoso  más ,  así que el proceso  anterior lo  deberá repetir  cortando el  led asignado a ese  IC defectuoso y restituyendo las conexiones soldando cablecillos entre el modulo anterior y el siguiente .

img_20170219_222107

Obviamente este proceso tendrá  que repetirlo  hasta que  el test de leds ejecutado desde el  sketch de ledstream haga que se enciendan completamente todos los ledss de un color en las tres secuencias.

Ejecutar el Software de Processing

Este paso debe realizarlo solo cuando el  test de ledStram muestre la secuencia de arranque de rojo, verde y azul apagándose todos después.

Inicie  el programa Processing ejecutando el archivo “C:\Program Files\processing-2.2.1-windows64\processing-2.2.1\processing.exe”. Después de un momento, debería ver una ventana simple de blanca y gris  muy similar al IDE de Arduino.

En el menú archivo , seleccione carpeta de bocetos,  y seleccionar el último primero: Colorswirl.

 

color
Es muy importante anotar el numero de leds( en el ejemplo 88)   tras el primer import:

import processing.serial.*;int N_LEDS = 88; // Max of 65536

Haga clic en el botón Ejecutar cerca de la parte superior izquierda de la ventana: si el Arduino esta arrancado con el sketch (LedStram ) y por supuesto conectada la tira de leds a este  y alimentada con la tensión de 5V  se  debería ver un arco iris colorido de animación sobre los LED.

Si  no pasa nada , entonces usted tendrá que editar el código alrededor de la línea 26, buscando esta declaración:

myPort = serie new (this, Serial.list() [0], 115200);

Necesitaremos cambiar el código  que abre la conexión serie con el Arduino. Una ruta es a través de ensayo y error: tratar  Serial.list() [1], entonces Serial.list() [2]y así sucesivamente, volver a arrancar el programa cada vez para ver si funciona.

Para un enfoque más científico, añadir una nueva línea de código antes de ejecutar el sketch:

println(Serial.list());

Cuando se ejecuta, muestra una lista de todos los puertos serie o dispositivos. Si sabe que dispositivo o puerto COM corresponde al Arduino, puede cambiar la línea original para incluir estos datos.

Por ejemplo, ahora se puede leer:

myPort = serie new (this, “COM6”, 115200);

Obviamente esto será diferente en cada sistema, por lo que dependerá de cada situación..

Si aun tiene dudas ,otra manera de localizar el nombre del puerto, es en el IDE de Arduino, pues  el puerto seleccionado se ve  en el menú Tools→Serial Port antes de programar el chip.

Una vez conseguido este efecto sobre los leds , este resultado es sinónimo que absolutamente todos los leds son direccionables por lo que ya puede usar su conjunto de tiras de leds  para cualquier aplicación con la certeza de que ya  le debería funcionar.
Si planea organizar los LEDs de manera similar a los ejemplos  entonces tendrá nada más que cambiar  el software. Si utiliza un diseño diferente, necesitará realizar algunos ajustes en el código  para identificar su distribución concreta

Como nota ultima :Antes de montar los LEDs detrás del monitor o TV , nunca se olvide de ejecutar el software con los LEDs sueltos en su escritorio para confirmar que todo funciona. !Esto ahorrará tiempo y angustia en el raro evento que un led vuelva a estar mal  tenga que sustituirlo!.

img_20170219_225945

 

Acceso web de Sensores Analogicos para Raspberry Pi (parte 2)

Continuamos con la descripcion de los circuitos analogicos que podemos conectar a nuestra Raspberry Pi


En un post anterior veíamos algunas de las posibilidades de  conexión de sensores digitales  a nuestra Raspberry Pi como puede ser añadir sensores I2C con el CI DS1820 , sensores de Co2 basados en el Mq4, sensores genéricos,sensores de de presión con el BMP180,sensores de temperatura basados en el TMP102, sensores de proximidad basados en el VCNL 4000o  o los sensores de luminosidad basados en el  TSL2561.

Como todos sabemos  existen también una cantidad muy alta de sensores cuya salida no es digital , lo cual en principio no se podrian conectar directamente a nuestra Raspberry, pero esto no es exactamente asi, porque si podemos conectarlos por medio de convertidores A/D y D/A  y otros circuitos como vamos a ver  (y empezamos a  ver en un post  posterior ).

Retomamos nuevamente el mundo analógico y la Raspberry Pi  con mas ejemplos :

 

MCP23017

MCP23017

 Este CI  de coste  contenido  permite agregar 16 salidas a una placa  conectándola al puerto I2C. La conexión es sencilla como vamos a  ver  a continuación

Use el siguiente diagrama para conectar el MCP23017 IO expansor.

Paso 1

Desde el  Pi para alimentar VDD (pin 9) en el MCP23017.
MCP23017

Paso 2

Conectar tierra  de Pi al VSS (pin 10) en el MCP23017.
MCP23017

Paso 3

Conectar los pines SCL del MCP23017 (pin 12) a la Pi.
MCP23017

Paso 4

Conecte las clavijas SDA de la MCP23017 (pin 13) a la Pi.
MCP23017

Paso 5

Conectar toma de tierra a los pines de dirección (pin 15, 16, 17) en el MCP23017. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23017

Paso 6

Para el Reset (pin 18) en el MCP23017 . Debe conectar  el pin de Reset  para el funcionamiento normal.
MCP23017

Paso 7

¡Listo! Ahora puede Agregar el MCP23017 en el panel de Caynne, con dirección por defecto de 0 x 20.

MCP23009

MCP23009

 El MCP23009-E / SS es un expansor de E / S de 8 bits con salidas de drenaje abierto. Consiste en múltiples registros de configuración de 8 bits para la selección de entrada, salida y polaridad. El maestro del sistema puede habilitar E / S como entradas o salidas escribiendo los bits de configuración de E / S. Los datos de cada entrada o salida se guardan en el registro de entrada o salida correspondiente. La polaridad del registro del puerto de entrada puede invertirse con el registro de inversión de polaridad. Todos los registros pueden ser leídos por el maestro del sistema. El registro de captura de interrupción captura los valores de puerto en el momento de la interrupción, ahorrando así la condición que causó la interrupción. El restablecimiento de encendido (POR) ajusta los registros a sus valores predeterminados e inicializa la máquina de estado del dispositivo. El pin de dirección de hardware se utiliza para determinar la dirección del dispositivo.

Use el siguiente diagrama para conectar su MCP23009 IO expansor.

Paso 1

Desde el pastel de Pi para alimentar VDD (pin 1) en el MCP23009.
MCP23009

Paso 2

Conectar la tierra de la Pi a VSS (pin 18) en el MCP23009.
MCP23009

Paso 3

Conectar los pines SCL de la MCP23009 (pin 3) y la Pi.
MCP23009

Paso 4

Conecte las clavijas SDA de la MCP23009 (pin 4) y la  Pi.
MCP23009

Paso 5

Conectar toma de tierra al pin de dirección (pin 5) en el MCP23009. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23009

Paso 6

Alimentar el reset (pin 6) en el MCP23009. Conectar  Reset es necesario para el funcionamiento normal.
MCP23009

Paso 7

¡Listo! Ahora puede Agregar el MCP23009 en el panel de cayenne, con dirección por defecto de 0 x 20.

MCP23008

MCP23008

Es un circuito muy similar al anterior que  nso proporciona 8 entradas  o salidas  binarias a traves del SDA

Use el siguiente diagrama para conectar su MCP23008 IO expansor.

Paso 1

Conecte las líneas de energía, conectando a VDD (pin 18) en el MCP23008.
MCP23008

Paso 2

Conecte las líneas de tierra, conexión de tierra al VSS (pin 9) en el MCP23008.
MCP23008

Paso 3

Conecte las clavijas SDA de la MCP23008 (pin 2) y la  Pi.
MCP23008

Paso 4

Conectar los pines SCL de la MCP23008 (pin 1) y la  Pi.
MCP23008

Paso 5

Conectar toma de tierra a los pines de dirección (pines 3, 4, 5) en el MCP23008. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23008

Paso 6

Alimentar el reset (pin 6) en el MCP23008. Conectar el pin Reset es necesario para el funcionamiento normal.
MCP23008

Paso 7

¡Listo! Ahora puede Agregar el MCP23008 en el  panel de control de Cayenne, con dirección por defecto de 0 x 20.

DS2408

ds2408

 El DS2408 es un chip de E / S 1-Wire® programable de 8 canales. Las salidas PIO se configuran como drenaje abierto y proporcionan una resistencia de 100Ω máx. Un protocolo de comunicación de acceso de canal PIO robusto garantiza que los cambios de configuración de salida PIO se produzcan sin errores. Se puede utilizar una salida estroboscópica válida para datos para bloquear estados lógicos PIO en circuitería externa tal como un convertidor D / A (DAC) o un bus de datos de microcontrolador.

Un par de notas antes de comenzar:

  • Para aprovechar las ventajas de la detección automática de cayena de dispositivos 1-wire, conecte a 4 GPIO.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunos placas de prototipos (usados en los diagramas a continuación) tienen una  linea de alimentación  que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como el Pi.

Use el siguiente diagrama para conectar su DS2408 “1-Wire” IO expansor.

Paso 1

Desde el  Pi alimentar el DS2408 VCC (pin 3). Asegúrese de que añade  una resistencia de pull-up entre la potencia (pin 3) y pines de datos (pin 4) en el DS2408.
DS2408

Paso 2

Conectar la tierra del Pi a la tierra de DS2408 (pin 5).
DS2408

Paso 3

Conectar la clavija de control DS2408 en GPIO Pin 4 en el Pi. Conexión a 4 GPIO permite la detección automática .
DS2408

Paso 4

¡Listo! Encienda su frambuesa Pi y el agente Cayenne automáticamente detectará el expansor DS2408 y agregara este a su panel de control.

MCP23S09

MCP23S09

 El MCP23S09-E / P es un expansor de E / S de 8 bits con salidas de drenaje abierto. Consiste en múltiples registros de configuración de 8 bits para la selección de entrada, salida y polaridad. El maestro del sistema puede habilitar E / S como entradas o salidas escribiendo los bits de configuración de E / S. Los datos de cada entrada o salida se guardan en el registro de entrada o salida correspondiente. La polaridad del registro del puerto de entrada puede invertirse con el registro de inversión de polaridad. Todos los registros pueden ser leídos por el maestro del sistema. El registro de captura de interrupción captura los valores de puerto en el momento de la interrupción, ahorrando así la condición que causó la interrupción. El restablecimiento de encendido (POR) ajusta los registros a sus valores por defecto e inicializa la máquina de estado del dispositivo. El pin de dirección de hardware se utiliza para determinar la dirección del dispositivo.

Use el siguiente diagrama para conectar su Convertidor A/D de MCP23S09 con interfaz de SPI.

Paso 1

Alimentar desde el  Pi al MCP23S09 pin 1 (VDD) y pin 7 (RESET).
MCP23S09

Paso 2

Conectar la tierra del  Pi al MCP23S09 pin 18 (VSS).
MCP23S09

Paso 3

Conecte la clavija de entrada MCP23S09 chip select (CS) de 3 a uno de los pines del chip select del Pi  CE0 en este ejemplo.
MCP23S09

Paso 4

Conectar patillas SCLK del  Pi y el MCP23S09 4 (SCK).
MCP23S09

Paso 5

Conectar patillas MOSI del Pi y el MCP23S09 5 (SI).
MCP23S09

Paso 6

Conectar patillas MISO del Pi y el MCP23S09 6 (SO).
MCP23S09

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP23S09 a tu panel de control usando el chip-select 0.

MCP23S08

MCP23S08

 El MCP23S08 es un “8-Bit I / O Expander con el interfaz de SPI” IC de Microchip . Este dispositivo también está disponible en variaciones I2C (MCP23008) y 16 bits (MCP23x17),

Use el siguiente diagrama para conectar su convertidor A/D de MCP23S08 con interfaz de SPI.

Paso 1

Alimentar desde el  Pi al MCP23S08 pin 18 (VDD) y la clavija 6 (RESET).
MCP23S08

Paso 2

Conectar la tierra del pastel de Pi al MCP23S08 pin 9 (VSS).
MCP23S08

Paso 3

Conectar patillas SCLK del Pi y el MCP23S08 pin 1 (SCK).
MCP23S08

Paso 4

Conectar patillas MOSI del  Pi y el MCP23S08 pin 2 (SI).
MCP23S08

Paso 5

Conectar patillas MISO del  Pi y el MCP23S08 pin 3 (SO).
MCP23S08

Paso 6

Conecte los dos de los pines de dirección de MCP23S08 (pines 4, 5) a tierra. Esto resultará en una dirección predeterminada de 0 x 20.
MCP23S08

Paso 7

Conecte la clavija de entrada MCP23S08 chip select (CS) pin 7 a uno de los pines del chip select Pi , CE0 en este ejemplo.
MCP23S08

Paso 8

¡Listo! Ahora puede Agregar el convertidor de MCP23S08 a su panel de control  de Cayenne usando el chip-select (pin  0).

MCP23S18

MCP23S18

Hablamos de un chip del fabricante MICROCHIP  que es un  Expansor de E/S de 16bit funcionando a  10 MHz con interfaz  SPI

Use el siguiente diagrama para conectar su Convertidor A/D de MCP23S18 con interfaz de SPI.

Paso 1

Alimentar de la Pi  a RESET (pin 16) y VDD (pin 11) en el MCP23S18.
MCP23S18

Paso 2

Conectar la tierra del  Pi a VSS (pin 1) en el MCP23S18.
MCP23S18

Paso 3

Conectar patillas SCLK del  Pi y el MCP23S18 13 (SCK).
MCP23S18

Paso 4

Conectar patillas MOSI del  Pi y el MCP23S18 14 (SI).
MCP23S18

Paso 5

Conecte la clavija de entrada MCP23S18 chip select (CS) del pin  12 a uno de los pines del chip select Pi Zapatero, CE(pin 0 )en este ejemplo.
MCP23S18

Paso 6

Conectar patillas MISO del  Pi y el MCP23S18 pin 15 (SO).
MCP23S18

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP23S18 a tu panel de control de Cayenee usando el chip-select 0.

MCP23S17

MCP23S17

Hablamos de un chip del fabricante MICROCHIP  que es un  Expansor de E/S de 16bit funcionando a  10 MHz con interfaz  SPI

 El MCP23s08 y MCP23s17 tiene 3 bits de selección de direcciones por lo que en teoría se puede conectar hasta 8 MCP23s08 y MCP23S17 en la misma señal de selección SPI que le da una capacidad GPIO de una señal adicional de 128 pines por SPI seleccionar cuando se utilizan estos dispositivos. (O el doble que si utiliza 8 más en la 2 ª SPI seleccionar)

Use el siguiente diagrama para conectar su Convertidor A/D de MCP23S17 con interfaz de SPI.

Paso 1

Desde el  Pi alimentar VDD (pin 9) en el MCP23S17.
MCP23S17

Paso 2

Conectar la tierra del  Pi a VSS (pin 10) en el MCP23S17.
MCP23S17

Paso 3

Conecte la clavija de entrada MCP23S17 chip select (CS) del pin  11 a uno de los pines del chip select Pi Zapatero, CE0 en este ejemplo.
MCP23S17

Paso 4

Conectar patillas SCLK del  Pi y el pin 12 del MCP23S17  (SCK).
MCP23S17

Paso 5

Conectar patillas MOSI del  Pi y el  pin 13 del MCP23S17 (SI).
MCP23S17

Paso 6

Conectar patillas MISO del  Pi y el pin  14 del MCP23S17  (SO).
MCP23S17

Paso 7

Conectar toma de tierra a los pines de dirección de MCP23S17 (15, 16, 17). Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23S17

Paso 8

Alimentar al pin de RESET (pin 18) en el MCP23S17. Conectar  el pin de Reset es necesario para el funcionamiento normal.
MCP23S17

Paso 9

¡Listo! Ahora puede Agregar el convertidor de MCP23S17 a su panel de control usando el chip-select 0.

 

Por cierto , para  mas información sobre como configurar el panel de control de Cayenne  , puede encontrar mas información en ingles  aqui 

Entorno abierto y gratuito para simulacion

Es un software libre escrito en Java, desarrollado para realizar simulaciones y modelar experimentos orientados al aprendizaje, utilizando y creando librerías de componentes, los cuales pueden ser fácilmente conectados.Es una herramienta flexible que permite adaptar los componentes a diversos campos de la simulación: sistemas analógicos y digitales, robótica (simulación, control y programación), física,


MyOpenlab es un entorno orientado a la simulación y modelado de sistemas físicos, electrónicos y de control con un amplio campo de aplicaciones: Simulación de Circuitos digitales y/o Analógicos,Simulación de Instrumentos, Simulación de Automatismos, Modelado de Fenómenos Físicos, Simulación de Automatismos, Simulación de Robots, Control de Elementos Físicos mediante Interfaces, Tratamiento de Imágenes y Sonidos, Operaciones con matrices y vectores 2D y 3D,etcMyOpenLab es una plataforma libre, licencia LGPL ,gratuita y en la que son  soportados los idiomas  Ingles ,alemán y español.

Esta herramienta esta recomendada para estudiantes de prácticamente todos los niveles  , estando desarrollada en el lenguaje JAVA  y  Netbeans (no afecta a las plataformas hw) siendo por ello  portable a distintas plataformas  tanto  para Linux ,Mac como para Windows.

En el campo del modelado y simulación es muy interesante contar con una herramienta flexible que a partir de una amplia biblioteca de bloques funcionales permita realizar modelos a base de conectar bloques funcionales.

MyOpenLab es capaz de conectarse al mundo físico mediante una interface de amplia difusión en el mercado como es la Tarjeta Experimental (USB) K8055 de Valleman. También soporta Velleman (R) PCS10 / grabador K8047 / registrador, USB CompuLab Interfaz (bus de módulo),Arduino (actualmente con los componentes “IO de interface” y “Firmata IO Interface” disponibles) y en general  cualquier hardware que implementa el protocolo Firmata y Balón por encima del RS232.

La  placa HQ K8055N – Tarjeta interfaz USB de experimentación de Velleman( unos 36€ en Amazon.es )  es muy útil para la realización de aplicaciones de adquisición de datos y control con PC pues la conexión al PC es mediante USB. La K8055 no es programable lo que significa que para que funcione debe estar siempre conectada al puerto. El control, pues, lo realiza siempre el PC con la aplicación de MyOpenLab que esté en ejecución.

HQ K8055N - Tarjeta interfaz USB de experimentación

La presentación de los resultados y/o el control de las simulaciones se hacen mediante un potente conjunto de bloques de función de visualización y/o interacción capaz de manejar todo tipo de datos (analógicos, digitales, matrices, vectores, imágenes, sonidos, etc.)

A la facilidad de uso se  une una amplia biblioteca de funciones tanto para manejo de señales analógicas como digitales como por ejemplo librerías de elementos de Visualización y Control (Panel Frontal):Elementos de Decoración, Elementos de visualización numérica ,Elementos de activación digital ,Elementos de Entrada y salida de cadenas de caracteres,Elementos de entrada y salida tipo vectores y matrices de datos,Elementos de visualización gráfica en ejes coordenados I ,Elementos de visualización gráfica en ejes coordenados II,Librería de Extras,Elementos de Automatización ,Elementos de librería de usuario ,Robot 2D  
y también  librerías de Elementos Funcionales (Panel Lógico) : Elementos de decoración ,Operadores Digitales,Operadores Numéricos,Tratamiento de Caracteres,Elementos Analógicos,Utilidades,Ficheros de Entrada/Salida,Comparadores,Tratamiento de Imágenes,Tratamiento de Sonidos,Color,Pines de E/S,Vectores y matrices,Agrupación de Elementos,Objetos Gráficos “canvas”,Librería de Física,Librería de Diagramas de Flujo,Librería de Extras,Librería de Conexiones entre aplicaciones,Librería definida por el Usuario,Automation+librería de Automatización Interfaces  así como  otra  potente biblioteca de objetos gráficos tipo “canvas” mediante la que se puede dotar de       movimiento cualquier objeto o imagen asociándola a variables de los modelos a simular.

Incluso es posible la ampliación de su librería de componentes, editándolos en código JAVA , así como  creando  “submodelos de panel” y “submodelos de circuito” encapsulados.

Otras de las facilidades del programa es el tratamiento de los tipos de datos ,permitiendo crear pantallas de visualización que recojan el estado de las variables y eventos de las simulaciones y operaciones con estos,  llegando incluso a la realización de las aplicaciones mediante el uso de bloques de función con la posibilidad de encapsularlos en “macros”.
myopen

El programa puede funcionar en plataformas Linux y sus requerimientos de sistema son muy poco restrictivos, lo cual lo hace ideal para usar en casi cualquier equipo, bastando con  que se instale el runtime de JAVA JRE o JDK.

Para instalar este programa  puede seguir los siguientes pasos:

  1. Descargar MyOpenLab ,para conseguir el programa diríjase a : http://es.myopenlab.de

  2. Si no lo tiene ya descargue Java SE 7 o posterior del http://java.com/de/.

  3. Descomprimir el Archivo de distribución con Winzip o WinRar. (Precaución: no se ejecutan directamente desde el archivo)

  4. En el directorio descomprimido el archivo Ejecutar “start.bat”

  5. Confirmar licencias (sólo la primera vez)

  6. Ahora puede cargar un proyecto de ejemplo y ejecutar (estos están en el directorio MyOpenLab: por ejemplo: ejemplos)

  7. Nota para los usuarios de Linux:Antes de empezar a MyOpenLab usted deberá ejecutar  chmod + x start_linux en el directorio de distribución de otro modo run.

  8. Nota para los usuarios de Ma3 RS232 no funciona en el Mac .

Requisitos:

  • Desde Windows XP 32/64, 32/64 Linux
  • Java 7

  • Para aplicaciones 3D: (Sólo para Java 7) Java3D

  • Mínimo espacio en disco duro minuto 50 MB

  • Pantalla de activación min. 1024×768 píxeles

Ahora puede unirse al grupo de trabajo de MyOpenLab. El código fuente y compilado esta disponible enhttps://sourceforge.net/p/myopenlab3/