Como usar una webcam standard con una Raspberry Pi


Una de las opciones que, a priori, puede parecernos más   atractiva  y tal vez útil por las posibilidades  que  no ofrece como cámara de seguridad, reconocimiento de imágenes, cámara trasera para vehículos , etc   para nuestra Raspberry Pi  es  conectarle una cámara e  intentar  visualizar y/o  capturar en el monitor la imagen captada por la misma..

Lamentablemente  en el universo Linux es algo más complicado añadir drivers para todo el hw disponible ,  y es ahí  donde por desgracia no le son ajenas las cámaras web usadas para pc pues en lugar de utilizar el módulo de la cámara  nativa del Raspberry Pi  que suele tener un coste ciertamente elevado es mas interesante  utilizar una versátil webcam USB estándar para tomar fotos y vídeo en la Raspberry Pi.Tenga en cuenta que la calidad y capacidad de configuración del módulo de cámara nativo con interfaz CSI  es muy superior a una webcam USB estándar,  pero por el contrario este también tiene una gran limitación : la longitud del cable de cinta que excepto compremos que dos  adaptadores de CSi a HDMI (lado cámara) , de HDM a CSI (lado Raspberry Py)   y luego un largo cable hdmi   solo se podría situar tan solo unos pocos centímetros respecto a la Raspberry Pi .

raspberrypi

Requisito previos

Una vez que tengamos una cámara para operar con nuestra RasPi hemos de asegurarnos de que la misma es “soportada” por el S.O. Linux que estamos utilizando.

La consulta de la lista de compatibilidad puede ayudar  pero podemos comprobarlo en desde  linea de  comandos para verificar si el sistema la identifica correctamente.

Antes de conectar la cámara al sistema iremos al terminal y teclearemos el comando dmesg | tail, lo que hará que se nos muestren los últimos mensajes generados por la RasPi.  Ahora conectamos la cámara a la Raspberry Pi y repetimos el comando anterior (dmesg | tail), y en este caso se nos deberán mostrar algunos mensajes que hagan referencia al nuevo hardware detectado.

Otra comprobación interesante es verificar si la cámara ha sido detectada como dispositivo Linux, para ello teclearemos ls /dev , lo que hará que aparezca  , si es que el sistema la detecta , como dispositivo  /dev/videoX ( normalmente /dev/video0 pero asegurese con un ls /dev)

De forma previa podemos instalar  el  software para poder visualizar de una forma cómoda los ficheros obtenidos  para poder verlos desde el propio terminal dentro del entorno gráfico pues la visualización de imágenes desde el entorno gráfico se puede efectuar con solo “pinchar” en la imagen a mostrar desde el navegador gráfico de archivos para los cual podemos instalar el sw de imagen magick

Para instalar el paquete citado  basta teclear:

 sudo apt-get install imagemagick

Existen varias utilidades para capturar imágenes  desde un web cam  veamoslas:

Fswebcam

En efecto la  herramienta fswebcam, que funciona bajo línea de comandos,  nos permite capturar imágenes a través de la Webcam USB, para ello en primer lugar, instale el paquete:fswebcam  con el comando sudo , es decir:

sudo apt-get install fswebcam 

Ahora escriba el comando seguido de un nombre de archivo y una imagen se tomaron con la cámara web y se guardarán al nombre de archivo especificado como por ejemplo fswebcam /dev/video0 image.jpg

Este comando mostrará la siguiente información:

[email protected]:~ $ fswebcam -d /dev/video0 pepe.jpg
--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
Adjusting resolution from 384x288 to 352x288.
--- Capturing frame...
Captured frame in 0.00 seconds.
--- Processing captured image...
Writing JPEG image to 'pepe.jpg'

Como vemos la resolución por defecto es pequeña y ademas se complementa en la parte inferior con un pequeño banner  que muestra la fecha y hora.

prueba.PNG

En caso de utilizar una web cam hd,  para especificar la resolución podemos forzar que la imagen para sea tomada  a mayor resolución , para ello se puede  utilizar la bandera:1280 x 720-r

fswebcam -r 1280x720 -d /dev/video0 pepe2.jpg

Este comando mostrará la siguiente información:

--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
Adjusting resolution from 1280x720 to 640x480.
--- Capturing frame...
Captured frame in 0.00 seconds.
--- Processing captured image...
Writing JPEG image to 'pepe2.jpg'

Puede   quitar el banner inferior puede añadir el siguiente parámetro:--no-banner :

fswebcam -r 1280x720 --no-banner image3.jpg

El cual  muestra la siguiente información:

--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
--- Capturing frame...
Corrupt JPEG data: 2 extraneous bytes before marker 0xd6
Captured frame in 0.00 seconds.
--- Processing captured image...
Disabling banner.
Writing JPEG image to 'image3.jpg'.

Ahora con  ese parámetro ya   se toma la imagen a resolución completa  sin banner

Script de captura

Puede escribir un script de Bash para que tome una foto con la webcam por lo que la secuencia de comandos  que vamos a vera continuación guarda las imágenes en el directorio,

En primer lugar  crear el subdirectorio primero en:/home/pi/webcamwebcam  conmkdir webcam

Para crear una secuencia de comandos, abra su editor de la opción y escriba el siguiente código de ejemplo:

#!/bin/bash

DATE=$(date +"%Y-%m-%d_%H%M")

fswebcam -r 1280x720 --no-banner /home/pi/webcam/$DATE.jpg

Este script tome una fotografía y usa como nombre del archivo con una marca de tiempo.

Para poder ejecutar el script webcam.sh en primer lugar nos gustaría hacer el archivo ejecutable:

chmod +x webcam.sh

Luego ejecutar con:

./webcam.sh

Al ejecutarlo dar la  siguiente salida:

--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
--- Capturing frame...
Corrupt JPEG data: 2 extraneous bytes before marker 0xd6
Captured frame in 0.00 seconds.
--- Processing captured image...
Disabling banner.
Writing JPEG image to '/home/pi/webcam/2013-06-07_2338.jpg'.

Time-lapse con cron

Usted puede utilizar para tomar una fotografía en un intervalo dado, como cada minuto para capturar un time-lapse.cron ,para ello primero abra la tabla cron para editar:

crontab -e

Esto tampoco pedirá que editor que desea utilizar, o abrirá en su editor predeterminado. Una vez que tenga el archivo abierto en un editor, agregue la línea siguiente para tomar una fotografía cada minuto (refiriéndose a la secuencia de comandos de Bash desde arriba):

* * * * * /home/pi/webcam.sh 2>&1

Guardar y salir y usted debería ver el mensaje:

crontab: installing new crontab

Asegúrese de que su gscript no permite guardar cada fotografía tomada con el mismo nombre de archivo. Esta acción sobrescribirá la imagen cada vez.

 

Uvcpature

Para poder utilizar las prestaciones de nuestra cámara web también podemos instalar los paquetes uvccapture y libv4linux-0

Antes de hacerlo puede ser preciso (recomendable) actualizar las fuentes de instalación con: sudo apt-get update  y para descargar los paquetes ejecutaremos:

 sudo apt-get

install uvccapture libv4l-0

Conectada la cámara y teniendo los programas adecuados ya instalados, vamos a realizar una prueba simple de que todo está funcionando correctamente. Desde el terminal tomamos una instantánea con los parámetros estándar (opción -m) :

 uvccapture -m

Ahora listamos la carpeta para comprobar que se capturó el fichero snap.jpg (nombre por defecto de la captura) y luego lo visualizamos mediante el comando display snap.jpg

En caso de que  el fichero capturado (snap.jpg) salga  bastante obscuro podemos ver como están los ajustes por defecto de la cámara mediante el parámetro -v , uvccapture -m -v

También si el brillo está muy bajo, podemos capturar una nueva imagen pero subiéndolo bastante mediante el comando (parámetro -Buvccapture -m -B50

Además de los parámetros comentados, el comando uvccapture nos permite otra serie de interesantes opciones, como por ejemplo podemos parametrizar una nueva captura – modificando brillo y contraste – pero guardando la misma en un fichero llamado “captura.jpg

uvccapture -m -B50 -C10 -o”captura.jpg”

Por si fuera poco el comando uvccapture permite que efectuemos de forma secuencial, – y en un lapso de tiempo elegido por nosotros – la captura consecutiva de tomas desde la cámara USB. No debemos confundir esta posibilidad – aunque se le parezca – con la toma de un “stream” o flujo de vídeo continuo. Lo que obtendremos al efectuar esta captura consecutiva es imágenes cada cierto intervalo. Así que vamos a verlo con un ejemplo…

Ejecutamos el comando uvccapture con el parámetro -t , el cual hace que se capture una imágen cada cierto número de segundos (3 segundos en nuestro ejemplo), el cual, si no se especifíca algo diferente se guardará en el fichero snap.jpg.

uvccapture -m -B70 -C40 -S5 -t3   (pulsar VTRL+c para finalizar el bucle de captura)

El resultado de la captura será una toma cada 3 segundos que se guardará en el fichero por defecto (snap.jpg). La única desventaja de este método radica en que el fichero de captura se “machaca” con cada una de ellas, por lo que solo estará a nuestra disposición el último de los generados.

Para subsanar esto podemos hacer uso de una de las prestaciones del programa uvccapture que nos permite ejecutar un comando Linux inmediatamente después de efectuar una captura. ¿Y que podemos ejecutar?… pues parece claro que lo más idóneo sería algún tipo de comando o sucesión de estos que nos permita salvaguardar la última captura, de forma y manera que al realizarse la siguiente toma esta no sea “machacada” impunemente de forma muy similar a como vimos en el script anterior.

 

 

 

Otras herramientas útiles

Otras herramientas están disponibles que puede ser útil cuando se utiliza la cámara o una webcam:

  • SSH  Utilizado para acceder remotamente el Raspberry Pi en su red local
  • SCP  Sirve para copiar ficheros sobre SSH  ypara obtener copias de las fotografías tomadas en la Pi en el ordenador principal
  • rsync : Uso para sincronizar la carpeta de imágenes tomadas en una carpeta entre el Pi al ordenadorrsync
  • cron Utilizar para programar tomar una fotografía en un intervalo dado, como cada minuto para capturar un time-lapsecron

 

 

 

Mas  información en  raspberrypi.org

Anuncios

Raspberry Pi como centro de entretenimiento al volante


El proyecto, desarrollado por Michal Szwaj, plantea un sistema para un vehículo  en el que es posible controlar la reproducción multimedia   o acceder a los mapas de Google, aunque de momento no  ofrece funciones como la navegación GPS, pero la versatilidad de la Raspberry Pi   con el soporte Bluetooth ,hace que esa opción no parezca difícil de implementar.

OpenAuto,  es un proyecto que con una Raspberry Pi 3 y una pantalla táctil nos da acceso a unas funciones muy similares a las que ofrece Android Auto, basándose en la  biblioteca  aasdk y librerías Qt siendo el objetivo principal  ejecutar esta aplicación en una placa  de RaspberryPI 3 sin problemas. El proyecto se basa en la instalación de una distribución Linux, Raspbian Stretch, a la que luego se le añaden librerías como las célebres Qt para poder ejecutar las aplicaciones orientadas a ser utilizadas en el coche.

A la Raspberry Pi 3 se le conecta una pantalla táctil (480p, 720p o 1080p)  pues  este es recomendable para la interacción con el sistema. Completar el proceso es relativamente sencillo, y tanto el código fuente como las instrucciones de instalación están disponibles públicamente en GitHub .

Las funcionalidades soportadas  son las siguientes:

  • 480p, 720p y 1080p con 30 o 60 FPS.
  • Aceleración de hardware de RaspberryPI 3 soporte para decodificar la secuencia de vídeo (hasta [email protected]).
  • Reproducción de audio de todos los canales de audio (los medios de comunicación, sistema y discurso).
  • Entrada de audio para comandos de voz.
  • Pantalla táctil y soporte de  botones de entrada.
  • Bluetooth.
  • Lanzamiento automático después de dispositivo hotplug.
  • Detección automática de dispositivos Android conectados.
  • Modo inalámbrico (WiFi) mediante servidor de unidad principal (debe estar habilitado en configuración desarrollador ocultos).
  • Configuración fácil de usar.

 

Electrónica necesaria

Sin duda , aparte de la propia Rasberry Pi  3 , el display  táctil es un componte  fundamental en este proyecto. Con una resolución de 800×480 el modulo oficial de display +sensor se conecta a la Raspberry Pi  3 a través de una placa  adaptadora que se encarga de controlar la alimentación y la señal de vídeo.

Solo se necesitan dos conexiones de la Raspberry Pi 3 : la  alimentación desde el conector GPIO y el cable plano al conector DSI, presentes en todas las Raspberry.

El kit incluye:

  • Pantalla 7″ multitáctil 10 puntos
  • Placa conversara
  • Cable plano DSI
  • 4x tornillos para ajustar la Raspberry a la pantalla
  • 4x cables para conectar la pantalla a la Raspberry

En el siguiente video se puede ver el proceso de  montaje de este kit.

El controlador táctil ofrece 10 puntos de presión, por lo que el usar teclados en pantalla como el integrado en Raspbian lo hacen realmente sencillo.

Este kit convierte pues  una Raspberry en una tableta multitáctil, sistema de información o dispositivo independiente.Es realmente interactivo  pues la ultima version de Raspbian soporta teclado virtual en pantalla, así que no se necesita conectar un teclado y un ratón físicos ni por supuesto una pantalla externa.

Como podemos ver Android Auto se ejecuta en una Raspberry Pi 3 con la pantalla táctil oficial de 7 pulgadas anteriormente citada.  Estos son los componentes esenciales para implementar  este proyecto:

 

 

 

Raspvid

raspivid es la herramienta de línea de comandos para capturar vídeo con el módulo de cámara nativo de Raspberry. Con el modulo de cámara conectado y activado, se puede grabar un vídeo utilizando el siguiente comando:

raspivid -o vid.h264

Recuerde que debe utilizar y para voltear la imagen si es necesario, como con raspistill-hf-vf (esto guardara un archivo de vídeo 5 segundo en el camino dado aquí como (longitud por defecto de tiempo).vid.h264)

Para especificar la longitud del vídeo tomado, pase en la bandera con un número de milisegundos. Por ejemplo:-t raspivid -o video.h264 -t 10000  (Esto graba 10 segundos de video.)

Para una lista completa de las opciones posibles, ejecutar sin argumentos, o este comando a través de y desplácese a través de la pipa:raspividless

raspivid 2>&1 | less

Utilice las teclas de flecha para desplazarse y el tipo de salida.q

Para ver la cámara trasera ejecutar raspvid seguido de los  parámetros  , como por ejemplo:

raspvid  -t 5000

raspvid -t 0

raspvid -t  -vh

raspvid -t 0 -vf ( invierte la imagen)

raspvid -t 0 -hf -vf

 

 Instalar aasdk en Raspberri PI 3

  1. Instalar el software necesario

 sudo apt-get install -y libboost-all-dev libusb-1.0.0-dev libssl-dev cmake libprotobuf-dev protobuf-c-compiler protobuf-compiler

  1. Repositorio de aasdk clon

$ cd

$ git clone -b master https://github.com/f1xpl/aasdk.git

  1. Crear el directorio aasdk_build en el mismo nivel que aasdk dir

$ mkdir aasdk_build

$ cd aasdk_build

  1. Generar archivos de cmake

$ cmake-DCMAKE_BUILD_TYPE = lanzamiento… /AASDK

  1. Construir aasdk

$ make

Instalar el resto de sw en Raspberry PI 3

  1. Instalar el software necesario

$ sudo apt-get install -y libqt5multimedia5 libqt5multimedia5-plugins libqt5multimediawidgets5 qtmultimedia5-dev libqt5bluetooth5 libqt5bluetooth5-bin qtconnectivity5-dev pulseaudio librtaudio-dev librtaudio5a

  1. Construir ilclient de frambuesa PI 3 firmware

$ cd /opt/vc/src/hello_pi/libs/ilclient

$ make

  1. Repositorio de Open clon

$ cd

$ git clone -b master https://github.com/f1xpl/openauto.git

  1. Crear el directorio openauto_build en el mismo nivel que Open dir

$ mkdir openauto_build

$ cd openauto_build

  1. Generar archivos de cmake

Nota: Si es necesario, ajustar los path  a su localización de directorios aasdk y aasdk_build.

$ cmake -DCMAKE_BUILD_TYPE=Release -DRPI3_BUILD=TRUE -DAASDK_INCLUDE_DIRS=”/home/pi/aasdk/include” -DAASDK_LIBRARIES=”/home/pi/aasdk/lib/libaasdk.so” -DAASDK_PROTO_INCLUDE_DIRS=”/home/pi/aasdk_build” -DAASDK_PROTO_LIBRARIES=”/home/pi/aasdk/lib/libaasdk_proto.so” ../openauto

  1. Construir OpenAuto

$ make

  1. Ejecutar Open

$ /home/pi/openauto/bin/autoapp

Añadir Open a autorun

  1. Archivo abrir autostart

$ sudo nano /home/pi/.config/lxsession/LXDE-pi/autostart

  1. Agregar debajo de línea al final del archivo autorun

@/ hogar/pi/Open/bin/autoapp

 

Apagar  Raspbery PI 3 cuando el teléfono se está desconectando

  1. Archivo abierto openauto.rules

$ sudo nano /etc/udev/rules.d/openauto.rules

  1. Añadir a continuación las líneas al final del archivo openauto.rules

SUBSISTEMA == “usb”, acción == “add”, ENV {ID_VENDOR_ID} == “18d 1”, ENV {ID_MODEL_ID} == “2d 00” RUN += “/ bin/sh – c ‘ / sbin/shutdown – c & & echo 0 > /sys/class/backlight/rpi_backlight/bl_power'”

SUBSISTEMA == “usb”, acción == “add”, ENV {ID_VENDOR_ID} == “18d 1”, ENV {ID_MODEL_ID} == “2d 01”, RUN += “/ bin/sh – c ‘ / sbin/shutdown – c & & echo 0 > /sys/class/backlight/rpi_backlight/bl_power'”

SUBSISTEMA == “usb”, acción == “remove”, ENV {ID_VENDOR_ID} == “18d 1”, ENV {ID_MODEL_ID} == “2d 00” RUN += “/ bin/sh – c ‘ / sbin/shutdown: apagado 1 & & echo 1 > /sys/class/backlight/rpi_backlight/bl_power'”

SUBSISTEMA == “usb”, acción == “remove”, ENV {ID_VENDOR_ID} == “18d 1”, ENV {ID_MODEL_ID} == “2d 01”, RUN += “/ bin/sh – c ‘ / sbin/shutdown: apagado 1 & & echo 1 > /sys/class/backlight/rpi_backlight/bl_power'”

Este  script va a hacer las siguientes acciones:

  1. Desactivar el apagado de pantalla y programar de forma  retrasada  por 1 minuto cuando el teléfono se está desconectando
  2. Encender la pantalla y cancelar el apagado cuando el teléfono se está conectando

Puede ajustarse el  retraso de 1 minuto para sus necesidades.

 

Reglas de udev (permisos de USB)

Para utilizar Open con sistema operativo basado en Linux (por ejemplo, Raspbian) con udev, debe crear una regla para permitir la comunicación con los dispositivos USB en modo de lectura/escritura.

La regla más simple parece debajo de uno:

SUBSISTEMA == “usb”, atributos {idVendor} == “*”, atributos {idProduct} == “*”, MODE = “0660”, grupo = “plugdev”

Para agregar esta regla de udev, hacer:

$ cd /etc/udev/rules.d

$ sudo touch openauto.rules

$ sudo nano openauto.rules

Aplique estas reglas, guarde el archivo y reinicie el dispositivo.

Tenga en cuenta que la regla anterior permite  abrir cualquier dispositivo USB en modo de lectura/escritura por cualquier aplicación instalada en el sistema. Considerar como insegura.

Configuración de PulseAudio

Paquetes audio de AndroidAuto se entregan en trozos muy pequeños. Debido a esto podrían necesitarse ajustes de configuración de PulseAudio para evitar problemas con el audio.

Añadir/anulación por debajo de las líneas en /etc/pulse/daemon.conf

resample-method = ffmpeg

En /etc/pulse/default.pa añadir tsched = 0 en la línea de ‘carga-módulo módulo-udev-detect’

load-module module-udev-detect tsched=0

Después de cambios de configuración debe reiniciar la instancia de pulseaudio. Puede hacerlo con  la ejecución del comando  pulseaudio -k .

 

Fuente https://github.com/f1xpl/openauto/wiki/Build-instructions

 

ELECTRÓNICA ADICIONAL

Para facilitar el manejo  de openAuto  y extender su funcionamiento  Everlanders ha conectado 4 pulsadores directos para activar la cámara, variar el brillo o despertar la placa

No deja de ser importante el  apartado de alimentación  pues en la Raspberry Pi 3 es de 5v DC 2amp y en un automóvil es de 12V  requiriéndose  un convertidor   dc-dc  .Obviamente en los tiempos que correen ,es mucho mas eficiente  un convertidor conmutado 12v-5v  que un regulador  7805

También ,por ultimo para detectar la marcha atrás ,es muy  interesante usar un opto-acoplador para aislar a la Raspberry Pi 3 de posibles problemas ele ctricos   en el automovil dado el aislamiento galvánico que nos ofrecen los optoaisladores.

El esquema final de este montaje completamente opcional es el siguiente:

esquema.PNG

Para manejar los pulsadores se requieren   los siguientes tres siguientes scripts escritos por el  Everlands:

LightMonitor.py

Este script en Python sirve  para atenuar la pantalla y cambiar a la cámara de retroceso. Recuerde, que es interesante usar un optoacoplador para detectar la marcha atrás con los la lógica se invierte … 0 = encendido 1 = apagado. Ademas, solo se debe ejecutar uno de estos scripts de “Monitor”, es decir  no puede estar ejecutando RearviewMonitor.py Y LightMonitor.py

CODIGO DE LIGTMONITOR.PY

#!/usr/bin/python

import RPi.GPIO as GPIO
import time
import subprocess, os
import signal
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
RearView_Switch = 14 # pin 18
Brightness_Switch = 15 # pin 16
#Extra_Switch = 1 # pin 3
GPIO.setup(RearView_Switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(Brightness_Switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)

print ” Press Ctrl & C to Quit”

try:

run = 0
bright = 0
while True :
time.sleep(0.25)

# esto restringe la secuencia de comandos para verificar las luces cada 1/4 de segundo. #No tiene sentido revisar 10.000 veces por segundo.

# Si se encienden las luces de marcha atrás, hacer esto:
if GPIO.input(RearView_Switch)==0 and run == 0:
print “Switching Rearview Camera On”
rpistr = “raspivid -t 0 -vf -h 480 -w 800”
p=subprocess.Popen(rpistr,shell=True, preexec_fn=os.setsid)
run = 1

Cuando las luces de marcha atrás se apagan, hacer esto:

if GPIO.input(RearView_Switch)==1 and run == 1:
os.killpg(p.pid, signal.SIGTERM)
print “Killing the reverse camera feed”
run = 0

# Estos dos bloques siguientes monitorean los faros o la luz del marcador y ajustan la #configuración de brillo de la pantalla.

if GPIO.input(Brightness_Switch)==0 and bright == 0:
print “Setting Brightness to 20” # 20 is about 10%
subprocess.call (“/usr/local/bin/backlight.sh 20”, shell=True)
bright = 1

if GPIO.input(Brightness_Switch)==1 and bright == 1:
print “Setting Brightness back to 255” #255 is 100%
subprocess.call (“/usr/local/bin/backlight.sh 255″, shell=True)
bright = 0

except KeyboardInterrupt:
print ” Quit”
GPIO.cleanup()

 

backlight.sh

Este script en cshell sirve par ajustar el nivel de luminosidad de la pantalla oficial qeu hemos conectado a la raspberry. Como es de esperar acepta  un parámetro que es precisamente un entero entre 0 y 255

CODIGO SCRIPT BACKLIGHT

#!/bin/bash

level=$1
#echo “level given is $level”

if [ $# != 1 ]; then
echo “USAGE: $0 brightness_level (0 to 255)”
exit 1
fi

if [[ $level -ge 0 && $level -le 255 ]]; then
#echo “level given is $level”
echo $level > /sys/class/backlight/rpi_backlight/brightness
echo “Screen brightness set to $level.”
exit 0
else
echo “Brightness level $level is out of range! (0 to 255 only)”
exit 1
fi

Para  probar el  script de retro-iluminación   ejecutar el script con el parámetro usando un valor entero menor que 255 ,por ejemplo  ./backlight.sh 128

 

ButtonMonitor.py

#!/usr/bin/python

import RPi.GPIO as GPIO
import time
import subprocess, os
import signal
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
RearView_Switch = 14 # pin 18
Brightness_Switch = 15 # pin 16
#Extra_Switch = 1 # pin 3
GPIO.setup(RearView_Switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(Brightness_Switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)

print ” Press Ctrl & C to Quit”

try:

run = 0
bright = 0
while True :
time.sleep(0.1)

#los siguientes cuatro bloques se utilizan para alternar entre las vistas de la cámara.

if GPIO.input(RearView_Switch)==0 and run == 0:
print ” Started Full Screen”
rpistr = “raspivid -t 0 -vf -h 480 -w 800”
p=subprocess.Popen(rpistr,shell=True, preexec_fn=os.setsid)
run = 1
while GPIO.input(RearView_Switch)==0:
time.sleep(0.1)

if GPIO.input(RearView_Switch)==0 and run == 1:
os.killpg(p.pid, signal.SIGTERM)
print ” Started Full Screen Transparent”
rpistr = “raspivid -t 0 -vf -op 128 -h 480 -w 800”
p=subprocess.Popen(rpistr,shell=True, preexec_fn=os.setsid)
run = 2
while GPIO.input(RearView_Switch)==0:
time.sleep(0.1)

if GPIO.input(RearView_Switch)==0 and run == 2:
os.killpg(p.pid, signal.SIGTERM)
print ” Started PIP Right side”
rpistr = “raspivid -t 0 -vf -p 350,1,480,320”
p=subprocess.Popen(rpistr,shell=True, preexec_fn=os.setsid)
run = 3
while GPIO.input(RearView_Switch)==0:
time.sleep(0.1)

if GPIO.input(RearView_Switch)==0 and run == 3:
print ” Stopped ”
run = 0
os.killpg(p.pid, signal.SIGTERM)
while GPIO.input(RearView_Switch)==0:
time.sleep(0.1)

# Estos tres bloques siguientes alternan entre las tres configuraciones de brillo.

if GPIO.input(Brightness_Switch)==0 and bright == 0:
print “Setting Brightness to 255”
subprocess.call (“/usr/local/bin/backlight.sh 255”, shell=True)
bright = 1
while GPIO.input(Brightness_Switch)==0:
time.sleep(0.1)

if GPIO.input(Brightness_Switch)==0 and bright == 1:
print “Setting Brightness to 128”
subprocess.call (“/usr/local/bin/backlight.sh 128”, shell=True)
bright = 2
while GPIO.input(Brightness_Switch)==0:
time.sleep(0.1)

if GPIO.input(Brightness_Switch)==0 and bright == 2:
print “Setting Brightness to 20”
subprocess.call (“/usr/local/bin/backlight.sh 20”, shell=True)
bright = 0
while GPIO.input(Brightness_Switch)==0:
time.sleep(0.1)

except KeyboardInterrupt:
print ” Quit”
GPIO.cleanup()

 

Respecto a la activación ,para probar la camara  ejecutar  ButtonMonitor.py.  Ahora una vez probado , tenemos que hacer  que se ejecute automáticamente . Para ello tenemos que editar el archivo /home/pi/.config/lxsession/LXDE-pi/autostart

En la ultima linea del script  añadir  /usr/local/bin/ButtonMonitor.py

autostart.PNG

 

IMPORTANTE : Deberemos copiar los tres  scripts  a la ruta /usr/local/bin  y conceder los permisos de ejecución  mediante el comando sudo chmod +x . La fuente original de los  scripts  es :https://gist.github.com/Everlanders

 

En el siguiente vídeo podemos ver todo el proceso de creación de un dispositivo basado en Raspberry PI  para uso exclusivo en un vehículo  usando  todos los componentes mencionados anteriormente.

 

Cámara trasera con Raspberry PI para coche basada en Android


En efecto  simplemente podemos  usar una frambuesa Pi como retrovisor o cámara trasera  en conjunción con su smartphone o tablet gracias a la aplicación  RearPi.

Esta app disponible en Google Play  gratuita  y sin anuncios se conecta a su Raspberry  Pi a través de SSH y activa bien  una cámara usb  externa  o bien    la  cámara nativa para Raspberry Pi con interfaz CSI  un enlace de mayor ancho de banda que transporta los datos de píxeles de la cámara al procesador.  .

Disponiendo de la Rasberry con una cámara,   basta  con conectarse  a esta via ssh (nombre de IP-Adress/Login y contraseña), iniciar la cámara en el arranque de la aplicación o con el botón “Abrir” y  pulsar  el  modo de pantalla completa  para disponer de la visión trasera desde la app de un modo  muy nítido  . Al continuar el trayecto si ya no se requiere  basta cerrar la cámara con el botón “EXIT” para disponer nuestro smartphone  para reproducir nuestra lista de música favorita o que nos guié a través de alguna app  de navegación

 

Imagen

Razones para usar una Raspberry Pi como cámara trasera

RearPi es una sencilla aplicación para Android disponible gratuitamente   SIN PUBLICIDAD en en Google Play  que nos va a permitir  visualizar y grabar señales de vídeo transmitidas por una Raspberry Pi o similar   a través de WiFi , por lo que es utilizable para casi todos los coches para transmitir señales  de vídeo procedentes de una cámara frontal  o  de una cámara trasera hacia un terminal Android.

Puede que piense que existen en el mercado soluciones especificas de cámaras traseras para coche  a un precio  similar  a una Raspberry Pi   sobre todo si pensamos en que necesitamos adquirir el hardware especifico que vamos a describir, lo cual  ciertamente podría ser parcialmente cierto , pero  esta afirmación se desmorona si  podemos usar elementos que ya tengamos   pero  sobre todo  , si deseamos  usar  nuestro smartphone o incluso un  terminal obsoleto  que tengamos  para visualizar la señal , lo cual  es un punto a su favor de  esta solución  si lo comparamos con las pequeñísimas o antiestéticas  pantallas de visualización  que  ofrecen los kits de cámaras traseras  (piensese que  solemos llevar  siempre  un smartphone y ademas puede usarse para otras usos)

Incluso en otros vehículos (por ejemplo  para las caravanas)  pueden  usarse para ofrecer la visión delantera o trasera por  múltiples pantallas de  forma inalámbrica

Algunas características de esta aplicación:
  • Grabación cámara  (.. 15 min 30 min 45 min)
  • Bucle de grabación (.. 15 min 30 min 45 min)
  • Opción para establecer la calidad de grabación
  • Reproductor multimedia integrado para ver grabaciones
  • Modo de pantalla completa  y sin publicidad
  •  Documentación Integrada

En realidad  como podemos intuir , esta  app  se conecta a su Raspberry Pi ( o  cualquier placa basada en Linux  )  por ssh   mediante   IP-Dirección , login y contraseña mediante WIFI dentro de la misma red , y , una vez conectada se puede  iniciar la cámara en la   aplicación o con el botón “OPEN” ,pudiéndose   cerrar la cámara con el botón “SALIR”

Para utilizar su Frambuesa Pi con RearPi como cámara y esta aplicación  rearPi    tendremos   que seguir unos pocos sencillos   pasos en la Raspberry  PI, pero antes veamos  el hardware necesario

 

Hardware necesario

¿Qué necesita para obtener una señal de video?

  • Una Raspberry Pi o un dispositivo que ejecute una distribución de Linux con un sistema operativo preinstalado y una trabajando la conexión SSH.
  • Un dongle WiFi como el “Edimax EW-7811”
  • Una cámara USB o cámara web como Logitech C270
  • Un cable de carga micro USB
  • Un cargador de coche como el “Anker” PowerDrive2 ” Entrada: DC 12 / 24V Salida: 5V / 4.8A 2.4 A por puerto.Por favor, asegúrese de que su Raspberry  se pone suficiente potencia y el voltaje correcto.La salida de su cargador de coche debería tener 5V y la capacidad actual recomendada para su modelo está escrito en la lista siguiente:

raspberrrypower.PNG

Instalación de mjpg streamer

Para que su Raspberry esté lista para transmitir video via tcp/ip a traves de una conexión wifi, debe seguir estos pasos:

1. Abra un terminal por ssh
2. Instale mread streamer con estos comandos (comience con el primero):
 sudo apt-get install libv4l-dev
 sudo apt-get install libjpeg8-dev
 sudo apt-get install subversion
 sudo apt-get install imagemagick
 svn co https://svn.code.sf.net/p/mjpg-streamer/code/
 cd / home / pi / code / mjpg-streamer /
 make USE_LIBV4L2 = true clean all
 sudo make DESTDIR = / usr install
3. !Listo!!

Configurar una dirección IP estática y conexión WiFi

Para asegurarse de que su Raspberry Pi siempre tenga la misma dirección IP, establezca IP estática (para que no tenga problemas al  iniciar la app)

Por ello verifque su interfaz WiFi  con  el comando :ifconfig (buscar la ip asociada a Interfaz WiFi) y una vez seap el  nombre de interfaz WiFi asi  , edite las interfaces:

  • sudo nano / etc / network / interfaces
  • Desplazarse hacia abajo a la #WLAN  sección (si no está allí crear uno al final del archivo)
  • Configure su interfaz a IP estática
  • Configure su Raspberry Pi  a una  dirección  fija ,por ejemplo “192.168.43.125” o lo que quiera
  • Escriba el nombre de la zona wifi y contraseña entre comillas  “
  • Salvar el fichero y reiniciar la Raspberry

RearPi

Para empezar a usar  su Raspeberrry Pi como cámara IP trasera, una vez seguido el proceso anterior de personalización de la  Pi , es importante que  nuestro smartphone  y la  Raspberry estén en la misma red , para lo cual podemos  automatizar el proceso con la App Automate , tal y como vimos en este post 

Muy  resumidamente  la red wifi , se consigue con la función de “hot spot ”  de nuestro teléfono inteligente  la cual permite conectar diferentes dispositivos conectados a nuestra propia red wifi generada desde el  propio terminal   .En caso de Android   vaya a “Configuración –>Más –>Anclaje y punto de acceso portátil” o en versiones de Android superiores a   a la 7 vaya   a  Ajustes (la tuerca ) , busque la opción de  Más y vaya  a  Anclaje de red y zona Wi-Fi  y pulse  Zona Wifi portátil  y áctivelo ( interruptor a la derecha).Una  vez creada la zona wifi podemos  automatizar el proceso con la App Automate buscando   el punto de acceso en el automóvil ( Hotspot ON/OF CAR ) y descargando el flujo

Ahora con  ambos  equipos en red ,conecte la Raspberry Pi con su cargador e Instale la app RearPi desde Google Play 

Una vez ejecute la app, abra la “configuración” y configure la “Dirección IP”, el “Nombre de inicio de sesión” y la contraseña (std pw = raspberry) y podemos empezar con los ajustes de  la pantalla de inicio ajustable:

  •  Establezca los segundos por cuánto tiempo pantalla de inicio se queda (en la configuración)
  •  Establecer “0” para ninguna pantalla de inicio
  •  Activar la cámara cada inicio

Imagen Imagen

Una vez  realizados los ajustes , pulsaremos  el  botón ABRIR , el cual  se conectará a la Raspberry Pi y activara la cámara  actualizando la señal de vídeo

Si queremos abandonar  esta utilidad  , pulsaremos  el  Botón EXIT, el cual se conectara a la Raspberry Pi y desactivara la cámara, cerrando  aplicación

Un modo muy interesante es el Modo de pantalla completa, qu e opera del siguiente modo:

  •  Toque una vez en el vídeo para obtener modo de pantalla completa
  •  Toque  nuevamente para salir de pantalla completa modo

Imagen

Un truco muy interesante es el Modo de pantalla completa al inicio, que conseguiremos si  establecemos la marca de verificación para ir directamente en el modo de pantalla completa (configuración)  cuando iniciemos la aplicación

Por cierto también es posible  grabar video  y visionarlo  desde la propia  aplicación

 

Imagen

 

Resumidamente estos son los posos a seguir para crear una camara trasera  :

  • Establecer un hot spot  para conectar la Pi y su teléfono / tableta.
  • Para transmitir vídeo tiene que instalar streamer MJPG  en Raspberry Pi:.
  • Ejecute   sudo ◦ apt-get install build-essential libjpeg-dev ImageMagick subversión libv4l-dev checkinstall
  • Ejecute  svn co svn: //svn.code.sf.net/p/mjpg-streamer/code/ MJPG-streamer
  • Ejecute cd MJPG-streamer / mjpg-streamer
  • Ejecute  VERSION = $ (sed -n ‘/SOURCE_VERSION/s/^.*”\(.*\)”.*$/\1/gp’ REVISIÓN ◦ = $ (CN svnversion | sed “s /.*: //”)
  • Ejecute sudo checkinstall –pkgname = MJPG-streamer –pkgversion = “$ + $ VERSIÓN DE REVISIÓN ~ checkinstall” –default
  • Hacer USE_LIBV4L2 = true ← opcional
  • De a suu Raspberry Pi una dirección IP estática (pasos detallados en el manual de PDF).
  •  Conectar con la App a su a Pi (IP / Conexión / PW)

 

Con  esta solución  no, necesita alguna fuente de radiación lumínica o infrarroja pues  en condiciones de muy baja luminosidad trabaja bien especialmente si usa la camra nativa.

Por cierto para probar si esta funcionando el stream de video ,tenemos  el comando raspistill que   sirve para hacer fotografías. Si busca en internet hay proyectos para hacer de forma automatizada varias tomas y hacer un timelapse  de modo  qeu la ventaja de esta cámara es que la podrá usar como cámara de vigilancia con uno leds infrarojos para iluminar la zona

En el siguiente vídeo podemos  ver la cámara en acción:

 

Documentación: https://alikamouche.files.wordpress.com … _v1-33.pdf

Sencilla cámara trasera basada en Android


Las cámaras de atrás para  vehículos son sin duda una pieza fundamental en materia de seguridad , pues además  de ser muy  útiles para aparcar  se han demostrado  que son muy necesarias para reducir accidentes mientras transmiten una  imagen mas real de la parte atrás del vehículo  sin ángulos muertos  hacia el conductor .

Tal es su utilidad  que desde 2014 se requieren en todos los coches nuevos en los Estados Unidos, aunque  en Europa y Sudamérica aun todavía no es obligatorio, aunque muchos fabricantes incluso en gamas económicas lo incluyen  de serie .

Su su coche no dispone de cámara trasera , se puede hacer un sistema de relativamente bajo costo del mercado con muy poca inversión.

Aunque existen muchísimas  soluciones vamos  a ver tres bastante económicas:

Usar un  smartphone como cámara

En efecto, dado la potencia  y versatilidad de los smartphones actuales , realmente pueden usarse perfectamente estos  como cámaras IP portátiles , eso si ,  siempre que el smartphone que hace cámara y el smartphone que hace de visor  estén en la misma red, para lo cual puede ser muy interesante automatizar el proceso  como vimos en este post

Vamos a ver algunas aplicaciones para  tal cometido:

FreeRear ViewCam

Es una app que contiene publicidad donde el teléfono inteligente actual se utiliza como un monitor cerca del conductor y su “viejo terminal “, sin uso encuentra su lugar “atrás” y utiliza la funcionalidad de la cámara. A través de la aplicación, los dos teléfonos inteligentes están acoplados, la cámara de la “vieja” y el monitor de los “nuevos” teléfonos – que es la cámara trasera.
Como aspecto negativo la cámara de marcha y la función de grabación contiene publicidad  (hay que pagar  una pequeña cuota para anularlo en la versión avanzada).
Una versión Pro con características especiales está previsto para el futuro.

Es importante destacar que  la transmisión del flujo de vídeo consume  batería  fuertemente, en particular la de los teléfonos con cámara. Si desea transmitir un tiempo más largo conecte el teléfono a una fuente de alimentación y / o Apágala después de su uso.

Advertir a los usuarios de termimales SAMSUNG que el desarrollador  desaconseja el uso de dispositivos de Samsung con FreeRearviewCam. Debido a que una aplicación individual de directrices Android cualquier reconexión entre el transmisor y el receptor móvil requiere una nueva validación en el teléfono transmisor., lo cual o significa que el usuario durante cada nuevo uso de la aplicación en el coche debe  dar permiso para enviar :

Esta app utiliza FFmpeg para el procesamiento de vídeo. Se llama a un FFmpeg binario precompilado como proceso externo. Puede encontrar el código fuente utilizado para compilar el FFmpeg través https://www.freerearviewcam.com/ffmpeg

Los pasos para usar esta app son bien sencillos:

  • Descargar e instalar la app  en los dos terminales  desde  Google Play

Captura de pantalla

  • Ambos  terminales deben estar conectados por wifi a la misma red.
  • Pulsar Back Camara  en el terminal que va a hacer de cámara.
  • Pulsar Front Monitor en el terminal que va a hacer de visor :en unos segundos deberíamos ver en el terminal la imagen captada por la cámara.

IP Webcam

Esta app es muy similar la anterior  debiéndose usar  la misma app para ambas funciones : camera o visor.

Tan solo hay una diferencia con la pp anterior  y es el hecho de generar un token desde la cámara , que deberá ser introducida en el visor.

Captura de pantallaCaptura de pantallaCaptura de pantallaCaptura de pantallaCaptura de pantalla

Esta app en realidad no es para coche  pues utiliza el teléfono Android como cámara web, convirtiendo  un teléfono inteligente en  una cámaras de seguridad para el hogar, es decir una cámara de red  que  permite  ver la cámara en cualquier lugar , pero en realidad  puede servir para monitorizar también la vista trasera del coche
Lo que esta claro es que esta app transforma un  antiguos teléfono inteligente en una cámara ip , que puede usarse como  sistema de seguridad para el hogar, vigilando y protegiendo tu casa, cámara para mascotas, monitor de bebé,o cámara de coche

Este es el link en Google Play https://play.google.com/store/apps/details?id=nfo.webcam

Por cierto una app “profesional” similar a las dos anteriores,  y que puede  usarse no solo como cámara de vigilancia sino cámara trasera para coche, es la famosa aplicación de cámara de vigilancia wifi de Alfred Labs (https://play.google.com/store/apps/details?id=com.ivuu)

Otra solución : una cámara IP

Hemos hablado de cámaras wifi con terminales android , pero también existen camaras IP especificas para coche  y que nos van a permitir    visionar en nuestro terminal android la imagen captada por estas de un modo mas funcional y útil que una pantalla especifica.

La cámara opera  a  2.3-2.4ghz, Velocidad de fotogramas de 30 fps; rango de transmisión de 20 pies a 60 pies (hasta 100 pies bajo ninguna otra condición de obstáculo).

Esta camara  IP  es impermeable, a prueba de polvo y a prueba de choques; iluminación mínima del soporte menos de 0.5 señal digital del lux,de modo que usted podría conseguir una imagen clara incluso en la noche.

Es muy fácil de instalar y operar:

  1. Conecte el transmisor wifi y la cámara trasera a la luz de reserva o alimentación de 9V-30V,
  2. Descargue la aplicación “WIFIAV” en su teléfono (dispositivo inteligente) desde Google Play Store
  3. Instale la aplicación gratuita WiFiAV .
  4. Puede utilizar  el nombre predeterminado del dispositivo (WiFiAV) y la contraseña predeterminada (12345678), pero se puede personalizar con un nuevo nombre y contraseña de la manera que se desee.Hay un botón en el transmisor que reiniciará el transmisor a este valor predeterminado en caso de que cambie las cosas y olvide su nueva contraseña
  5. Obtenga una señal de imagen

Esta cámara   tampoco sirve para Samsung J7 S7 S8 pero soporta iPhone, iPad  auqnue no es compatible con la versión del teléfono que está por debajo de 4.0.

La pantalla de la aplicación llena toda la pantalla, pero puedes pellizcarla y arrastrarla para ajustarla a tu gusto. aproximadamente 3/4 de la pantalla para que sea realmente clara y nítida y  como novedad implementa lineas  de referencia.

.Captura de pantalla

El precio es lo único que nos puede disuadir  ; unos 62,99€ en Amazon pues por lo demás no nos  parece una mala opción.

Tercera solución; Rasberry pi con camara

Ya  que hemos hablado de usar un terminal Android o una cámara especifica ¿por que no usar nuestro propio hw?  Pues en efecto se puede gracias a la aplicación RearPi de la que hablaremos en un próximo post.

Interactuar con Netduino via twitter


ThingSpeak™ es un servicio web gratuito muy veterano  y del que hemos  hablado en este blog en numerosas ocasiones   que  permite recopilar y almacenar datos de sensores  conectados a Rasberry Pi, Arduino ,Netduino  entre otros  para enviarlos  hacia  un servicio de datalogger  en la nube.

Asimismo  también sirve para  desarrollar aplicaciones de Internet de las cosas como por ejemplo desencadenar ciertas acciones  ante determinados cambios en las medidas  , tal y como vamos a ver en este caso desencadenando envíos de tweets con  el motivo de la alerta.

 

 

bandwidth close up computer connection

Photo by panumas nikhomkhai on Pexels.com

 

El servicio de web de ThingSpeak es uno de los servicios mas veteranos  en la red proporcionando  aplicaciones que le permiten analizar y visualizar los datos en MATLAB®y luego actuar sobre los cambios en esos  datos desencadenando acciones.

Los datos de los sensores pueden enviarse a ThingSpeak desde  un  Arduino®, Raspberry Pi™, BeagleBone Black  asi como  desde Netduino+  entre otras  plataformas

 

En este post vamos a intentar  ver  cómo se puede enviar un tweet cuando los datos de punto de rocío superan un umbral  usando dos  aplicaciones  como son ThingTweet y React :

  •  ThingTweet  sirve  para vincular una cuenta Twitter® a su cuenta ThingSpeak. Sus dispositivos pueden enviar alertas a través de Twitter utilizando la API de TweetContol. Por ejemplo, puede hacer que un dispositivo tuitee cuando la temperatura de su invernadero disminuya o cuando las baterías de un dispositivo se estén agotando. Los pasos son sencillos : entraremos c en Link Twitter Account para vincular una cuenta de Twitter a su cuenta ThingSpeak y cuando se le pida que autorice a ThingTweet a usar su cuenta ingresaremos el nombre de usuario y contraseña de Twitter marcando la casilla Recordarme para guardar en caché las credenciales de Twitter en su pc  y por supuesto haciendo clic en Autorizar aplicación
  • React funciona con las aplicaciones ThingHTTP, ThingTweet y MATLAB Analysis para realizar acciones cuando los datos del canal cumplen una determinada condición. Por ejemplo se  puede hacer que una aplicación móvil informe su latitud y longitud a un canal ThingSpeak, de modo que cuando su posición esté dentro de una cierta distancia de su casa,  ThingHTTP encienda las luces de su sala.

Como pasos previos para poder usar ambos servicios  se requiere que ya han realizado estos pasos:

  • Crear una cuenta de  Twitter® .
  • Iniciar sesión a su cuenta de MathWorks®   o la cuenta de ThingSpeak™ , o crear una nueva cuenta de MathWorks .
  • Crear un canal como el canal calculados del   punto de rocío.
  • Leer los datos de estación meteorológica( por ejemplo desde una placa Netduino)  en su canal y calcular el punto de rocío como vimos en el post anterior

Nota : En este  ejemplo vamos a  utilizar una medida   intermedia que es calculada en función de la humedad  y temperatura  , pero lógicamente  los desencadenantes se pueden  lanzar desde medidas sencillas   que no requieran un calculo intermedio .

Vincular  la cuenta de Twitter  a ThingSpeak

Para empezar  tenemos que vincular una cuenta de twitter a  nuestra cuenta de thingspeak . Para ello  puede seguir lo siguintes  pasos:

  1. Validese en su cuenta de ThinSpeak
  2. Ir a aplicaciones(Apps) > ThingTweet.
  3. En la página ThingTweet, haga clic en (enlace de cuenta de Twitter (Link Twitter Account ) para vincular su cuenta de Twitter a tu cuenta de ThingSpeak.
  4. Tiene que autorizar el acceso a su cuenta de twitter desde ThingSpeak
  5. Introduzca su nombre de usuario de Twitter y contraseña y haga clic en Autorizar la aplicación.

  6. En la página de autorización , haga clic en volver a ThingTweet(back to ThingSpeak).   Nos avisara de que su cuenta de Twitter está relacionada con ThingSpeak  devolviendonos  el valor del APIKEY   , el cual por cierto podemos fiorzar a cambiar  gracis  al boton  Regenerate API Key.
  7. Si queremos  deshacer este cambio simplemente pulsaremos sobre el botón  desenlazar cuenta  (“Unlink Account”)

Reaccionar al cambio en el punto de rocío

Una vez vinculada   su cuenta de twitter a thingspeak    ya podemos indicar a React que  envie un tweet cada vez que el nivel de punto de rocío supere  un valor va sobre 15ªC , testeando el  canal cada 10 minutos.

Estos son los pasos para hacerlo:

  1. Ir a aplicaciones > react  hacera clic en Reaccionar de nuevo.
  2. Nombre este react por ejemplo como  “Tweet de punto de rocío.”
  3. Defina el tipo numérico.
  4. Ajuste la Frecuencia de la prueba a cada 10 minutos.
  5. Establecer la condición cuando el valor de la humedad en su canal alcanza o supera los 60:
    • Si canal: seleccione el canal de medición de punto de rocío.
    • campo: seleccione 3 (punto de rocío).
    • Para el tipo de condición, seleccione es mayor o igual a.
    • El valor de condición, entre 60 (se refiere a grados Fahrenheit)

    • Ajuste acción en ThingTweet.
    • Entrar en esta cadena en tweet a continuación:
      Turn off that humidifier! It's above 60F
    • Seleccione su cuenta de Twitter con la cuenta de Twitter.
    • En Opciones, elija Ejecutar acción cada vez que la condición se cumple.

    Click Save React.

El tweet se envíara cada vez que el nivel de humedad supere los 15,5ºC o 60 ° F.

Es evidente que esta facilidad de ThingSpeak   ,que sinsisteimo es soportado por un amplio abanico de hardware (como Raspberrry, Arduino o el propio Netduino), tiene una utilidad indudable para infinidad de condiciones  que nos pueden facilitar la vida como por ejemplo  apertura de puertas o ventanas,  temperaturas anómalas , caídas de tensión ,  y un largo etcétera.

Disponible nueva version de Raspbian para Raspberry Pi


En efecto ya esta disponible  una nueva versión para Raspbian, el sistema operativo enfocado en  Raspberry Pi, con muchas mejoras pero sobre todo arreglos de errores.

Llegando poco más de dos semanas después de su última actualización lanzada el 18 de abril, Raspbian 2018-06-27 ya está disponible y trae consigo novedades interesantes.

Como siempre  esta nueva versión  se  descarga a partir de una nueva imagen descargada a partir del sitio  oficial Raspbian ,

En la url de descarga podrá  apreciar en la imagen de abajo ,   se mantienen tanto la imagen de la versión previa mínima (Lite) o la nueva version Stretch para escritorio:

raspbian.PNG

Lógicamente si la SD es suficiente grande , lo interesante es descargar la primera  en lugar de la versión mínima

Una vez decidida,  descargue la imagen correspondiente  en su ordenador y siga los siguientes pasos:

  • Inserte la tarjeta SD en el lector de tarjetas SD  de su ordenador comprobando cual es la letra de unidad asignada. Se puede ver fácilmente la letra de la unidad, tal como G :, mirando en la columna izquierda del Explorador de Windows.
  • Puede utilizar la ranura para tarjetas SD, si usted tiene uno, o un adaptador SD barato en un puerto USB.
  • Descargar la utilidad Win32DiskImager desde la página del proyecto en SourceForge como un archivo zip; puede ejecutar esto desde una unidad USB.
  • Extraer el ejecutable desde el archivo zip y ejecutar la utilidad Win32DiskImager; puede que tenga que ejecutar esto como administrador. Haga clic derecho en el archivo y seleccione Ejecutar como administrador.
  • Seleccione el archivo de imagen que ha extraído anteriormente de Raspbian.
  • Seleccione la letra de la unidad de la tarjeta SD en la caja del dispositivo. Tenga cuidado de seleccionar la unidad correcta; si usted consigue el incorrecto puede destruir los datos en el disco duro de su ordenador! Si está utilizando una ranura para tarjetas SD en su ordenador y no puede ver la unidad en la ventana Win32DiskImager, intente utilizar un adaptador SD externa.
  • Haga clic en Escribir y esperar a que la escritura se complete.
  • Salir del administrador de archivos  y expulsar la tarjeta SD.
  • Ya puede insertar la SD en su Raspberry Pi en el adaptador de micro-sd , conectar un monitor por el hdmi , conectar un teclado y ratón en los  conectores USB, conectar la  con un cable ethernet  al router  conectividad a Internet y finalmente conectar la alimentación  para comprobar que la Raspeberry arranca con la nueva imagen

La version previa basada  en  Raspbian Jessie ( Debian8 )  ya incluía  características y aplicaciones bastante interesantes así como algunos cambios más sutiles en el diseño del sistema, como por ejemplo,al iniciar ahora su Raspberry Pi que la pantalla inicial  cambiara  mostrando una imagen mas moderna .También  incluia  algunas aplicaciones como un navegador integrado , el  software  de RealVNC, para acceder a la Pi desde un escritorio remoto  , wallpapers nuevos para  decorar el fondo de escritorio de su Raspberry Pi,etc .

Ahora lo mas importante de  esta  nueva actualización es sin duda  la subida de version hacia Debian 9 ( recordemos que la versión anterior  era Debian 8)  trayendo  ademas un gran número de cambios y mejoras internas respecto a Debian 8 destacando quizás ademas de la subida de version el  incluir un  nuevo asistente de configuración que será mostrado en el primer inicio, lo cual  ayudará a los recién llegados a configurar el sistema Raspbian a su gusto sin tener que buscar los distintos paneles de ajustes.Por supuesto este asistente de configuración se ejecutará de forma automática en el primer inicio del sistema, permitiendo que los usuarios escojan su país, lenguaje, huso horario, configuren un perfil con contraseña, agreguen una red Wi-Fi e incluso instalen actualizaciones disponibles.

Esta nueva version llega con las últimas versiones de las aplicaciones y los paquetes incluidos en esta distribución, como, por ejemplo:

  • La última versión de Chromium 65 con enlaces actualizados de la Fundación Rasperry Pi y una nueva página de inicio.
  • Una versión offline de Scratch 2
  • Actualización del sintetizador de música Sonic Pi.
  • Los controladores de Bluetooth han sido actualizados, especialmente los de audio, que en vez de utilizar PulseAudio, con los problemas que eso supone, ahora utiliza Bluez-Alsa, mejorando notablemente tanto la calidad como el funcionamiento general del audio por bluetooth.
  • Un nuevo visor de PDF llamado qpdfView que funciona como software nativo remplazando el anterior Xpdf
  • La nueva aplicación de Software Recomendado, que funciona muy similar a la App Store, permitiendo que los usuarios revisen, seleccionen e instalen varias aplicaciones. La idea es mantener a Raspbian liviano para abastecer el almacenamiento limitado de la tarjeta SD, mientras que también permite a los usuarios instalar selectivamente cualquiera de los software gratuitos que recomienda usar.
  • etc

Otro cambio importante se encuentra a nivel de los usuarios del sistema, tanto pi, el usuario por defecto, que quedará vinculado al usuario principal, como sudo, que ahora pedirá siempre contraseña.

Por último, pero no menos importante, se ha solucionado la vulnerabilidad BROADPWN detectada hace dos meses en el chipset BCM43xx utilizado en los Raspberry Pi 3 y Zero W que podía permitir a un atacante ejecutar código remoto en el sistema.

Como enviar correos con adjuntos desde Linux desde linea de comandos


Es frecuente   en el manejo de maquinas Linux  usar muchos scripts en bash o c-shell para automatizar tareas  de una forma sencilla, dado  que al contrario de lo que muchas personas piensan,   shell script (o c-shell)  son  bastantes potentes  a la hora de manipular información .

Ante la cuestión de cómo enviar un correo electrónico desde linea de comandos  o desde un script , incluso  con archivos adjuntos desde una máquina Linux ,    lo primero   que pensamos es usar  la utilidad  mailx la cual mejora en muchos aspectos a la utilidad mail de viejos sistemas

La sintaxis básica para enviar correos electrónicos desde una máquina Linux mediante el comando mailx se muestra a continuación:

mailx -vvv -s   $asunto -r   $from  -S   $smtp     $destino

Como vemos , podemos   observar  varios parámetros en la  línea  anterior;

  • -vvv = Verbosity.
  • -s = especifica el asunto (subject).
  • -r = especificar el origen del Email.
  • -S = especifica el  smtp server.

Y lo ideal es usar variables:

  • $asunto: almacenamos el asunto ( subject ) del correo
  • $from : almacenamos el usuario que envía el correo
  • $smtp : almacenamos el servidor de correo
  • $destino : almacenamos  la dirección de correo destinatario  ( pueden poner sucesivas separando con espacios estas)

El comando anterior se puede complementar añadiendo   un cuerpo al contenido del correo  gracias al comando echo redirigiendo con el pipe (|)  hacia mailx

 echo  $cuerpo  | mailx -vvv -s   $asunto -r   $from  -S   $smtp     $destino

Dónde  $cuerpo  es  una variable que almacena el cuerpo del  email

person using macbook pro on brown wooden desk

Photo by rawpixel.com on Pexels.com

Es importante destacar que podemos obviar el servidor  stmp server si está configurado en la máquina así  como el origen del correo obvio , quedando su uso habitual tal como sigue:

 echo  $cuerpo  | mailx  -s   $asunto  -S     $destino1  $destino2  $destino3

Como se aprecia,   se  añade   un cuerpo al contenido del correo  gracias al comando echo redirigiendo con el pipe (|)  hacia mailx y se usan varias variables:

  • $cuerpo  es  una variable que almacena el cuerpo del  email
  • $asunto: almacenamos el asunto ( subject ) del correo
  • $smtp : almacenamos el servidor de correo
  • $destino1 : almacenamos  la dirección de correo destinatario
  • $destino2 : almacenamos  la dirección de correo destinatario
  • $destino3 : almacenamos  la dirección de correo destinatario

Anexando  adjuntos

Si   la versión de mailx que esta usando está por encima  de 12.x,e puede usar el nuevo interruptor adjunto (-a) en mailx para enviar archivos adjuntos con el correo ,  lo cual es una opción más simple  que el comando uuencode.

Como ejemplo mandar un fichero  a un destinatario, es muy sencillo usando el siguiente comando:

mailx -a $file  -s  $asunto  $destino1

En l comando anterior  se usan estas variables :

  • $asunto: almacenamos el asunto ( subject ) del correo
  • $destino1 : almacenamos  la dirección de correo destinatario
  • $file: ruta directa cal fichero a  anexar

El comando anterior imprimirá una nueva línea en blanco en el cuerpo del mensaje  aunque puede escribir el cuerpo del mensaje  presionar [ctrl] + [d] para enviar, lo cual  adjuntará el archivo al correo electrónico saliente correctamente con el Content-Type y encabezados  apropiados.

Para hacer esto más “scriptable”, puede enviar el mensaje sin un cuerpo con el siguiente comando:

mailx -a $file  -s  $asunto  $destino1< /dev/null

Para enviar correos con un cuerpo de mensaje, reemplace / dev / null en el comando anterior con su archivo de cuerpo de mensaje.

mailx -a $file  -s  $asunto  $destino1<   $cuerpo

Donde $cuerpo  es  una variable que almacena el cuerpo del  email

En esta  versión de mailx, los encabezados que se usan en el correo electrónico saliente cambian de:

From:
Date:
To:
Subject:

A la forma siguiente:

From:
Date:
To:
Subject:
User-Agent:
MIME-Version:
Content-Type:
Content-Transfer-Encoding:

Si la versión de mailx está por debajo de 12.x, puede usarse el comando uuencode para enviar correos con archivos adjuntos.

El comando uuencode  se utiliza para codificar un archivo binario.De forma predeterminada, uuencode tiene entrada desde la entrada estándar y escribe en la salida estándar como se muestra a continuación ( esa es la razón por la que se repite el nombre del fichero) utilizando  por defecto el formato de codificación estándar de UU.

 uuencode  $fichero $fichero | mailx -s $asunto  $destino

Usando el formato anterior ,como se aprecia, se  añade   un cuerpo al contenido del correo  gracias al comando echo redirigiendo con el pipe (|)  hacia mailx  , de forma similar a añadir un cuerpo al  correo ,  pero esta vez estamos anexamos un fichero previamente codificado con uuencode

Las variables usadas:

  • $asunto: almacenamos el asunto ( subject ) del correo
  • $destino : almacenamos  la dirección de correo destinatario
  • $fichero : almacenamos  la ruta completa del fichero a adjuntar
  •  $fichero : almacenamos  la misma  ruta completa del fichero a adjuntar ( en efecto se repite y no es un error)

Por cierto, en caso de necesitar adjuntar varios ficheros, puede usar esta receta:

uuencode $fichero1 $fichero1  >/tmp/out.mail

uuencode $fichero2 $fichero2  >/tmp/out.mail

cat email-body.txt >>/tmp/out.mail

Y ahora ya si podemos  enviar el correo:

mailx -s $asunto  $destino </tmp/out.mail

high angle view of paper against white background

Photo by Pixabay on Pexels.com

Correos con anexos y cuerpo

La sintaxis  para enviar correos electrónicos desde una máquina Linux mediante el comando mailx  puede tener problemas a la hora de incluir  además de anexo un cuerpo  en el mensaje, por lo que podemos usar en su lugar el comando mutt usando la siguiente sintaxis:

echo $body | mutt -s $asunto -a $fichero  $destino1  $destino2 $destino3

Como vemos , podemos   observar  varios parámetros en la  línea  anterior;

  • -s = especifica el asunto (subject).
  • -a = especifica el nombre del fichero con la ruta completa

Y como en  los ejemplos anteriores , lo ideal es usar variables:

  • $asunto: almacenamos el asunto ( subject ) del correo
  • $destino1 : almacenamos  la dirección de correo destinatario
  • $destino2 : almacenamos  la dirección de correo destinatario
  • $destino3 : almacenamos  la dirección de correo destinatario
  • $body : almacenamos el cuerpo del correo