Soldador de puntos casero para celdas 18650


En otro post hablábamos en este blog de los  supercondensadores y sus posibilidades  dado que  diferencia de los condensadores ordinarios, las baterías almacenan energía en una reacción química, y debido a esto, los iones se insertan realmente en la estructura atómica de un electrodo.

A diferencia de un condensador, los iones simplemente “se adhieren”. Esto es importante, porque almacenar energía sin reacciones químicas permite que los súpercondensadores se carguen y descarguen mucho más rápido que las baterías y debido a que los condensadores no sufren el desgaste causado por las reacciones químicas,también duran mucho más tiempo.

La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel (por ejemplo las famosas  celdas 18650) ,   entre  sus miles de aplicaciones más.

En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues esta muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ).

 

Solador de puntos basado en  supercondensador

Construir un soldador de puntos basándose en condensadores  por tanto  es la forma mas habitual de  y fácil de construirlo    a un precio bastante asequible.

Estas configuraciones funcionan  durante  mucho tiempo y normalmente   son  mucho mas optimas y eficientes  que los soldadores basados en transformadores de microondas modificados que como hemos comentado albergan cierto peligro.

La alta temperatura destruye las baterías de litio, por lo que la soldadura  tradicional térmica no es una opción, así que esta configuración  es perfecta  , y justo . es por eso  que hay personas que la llaman “soldadura fría” .

El circuito propuesto,  es bastante sencillo, pues simplemente  se basa en un simple circuito de carga a corriente constante basado en uan resistencia   y supercondensador de 500F/2.7V

El circuito es completando con un led con su correspondiente resistencia imitadora para indicar que el condensador esta cargado ,   así como unas puntas   de soldadura  que van conectadas directamente al condensador   u opcionalmente  por medio de un pulsador de  pie

solder.PNG

Los componente usados para este  montaje , por tanto, son los siguientes:

  • Supercondensador de 500F  de 2.7V
  • Placa de protección para supercondensador ( algunos ya lo suelen  integrar en el propio supercondensador)
  • Led rojo
  • Resistencia de 2.2 ohm y 5W   para cargador de 5v/2Amp (usar  5 ohm /5W si usa cargador  5V /1Amp
  • Resistencia 220ohm  1/4W
  • Fuente de  5V  2Amp ( por ejemplo un cargador usb )
  • Dos hilos rigidos  de cobre de 1mm de sección o mas
  • Pulsador de pie (opcional)

 

 

El montaje de estos componentes es bastante sencillo , pudiéndose incluso realizar las conexiones directamente sobre el propio super-condensador

 

Este circuito al no tener ningún elemento de control   ( como en el circuito propuesto con MOSFET que realizamos en este blog ) requiere  de cierta practica para controlar los tiempos necesarios para realizar la soldadura , aunque si se tiene dificultad  se podría intercalar entre cualquiera de los dos electrodos un pulsador de pie  que pueda soportar al menos los 2Amp,

Por supuesto al utilizar el circuito  debe tener la máxima precauciones de seguridad debido a la gran capacidad del condensador, pero sobre  todo , se recomienda desconectar el cargador cuando no este usando así como dejar descargado el condensador  cruzando los terminales si no se va  a usar el circuito

 

El modo de trabajo  es similar  a otros circuitos basados en super-condensadores:

  • Conecte  el circuito a  una fuente de 5V al menos 2Amp
  • Espere alrededor entre 5 a 10 Minutos  para cargar el condensador
  • El led rojo brillara  indicando que la carga del condensador esta alrededor de 2V
  • El led brillara intensamente señal que esta preparado para soldar
  • Use una  fina lamina de niquel para unir las baterias 18650
  • Apriete con fuerza el niquel con los bornes de las baterias
  • Use la  punta del electrodo para realizar la soldadura  de puntos primero tocando  con un extremo  y luego de forma momentánea con el otro
  • Debe liberar el contacto rapidamente

 

 

 

 

A continuación en el siguiente vídeo podemos ver todos  los  pasos  a la hora de construir este simple pero eficaz soldador de puntos ideal para  soldar  baterías 18650  o incluso otras  operaciones de soldadura  donde se requiera soldar elementos metálicos de poca sección.

 

Anuncios

Soldador de puntos sin transformador


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues esta muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ).

En los últimos años, los supercondensadores han surgido como una alternativa o complemento importante para otros dispositivos de producción o almacenamiento de energía eléctrica como las pilas de combustible o las baterías . La principal virtud del primero frente a los dos últimos es la mayor potencia que es capaz de inyectar, aunque poseen una menor densidad de energía. Otras características de los supercondensadores son la rapidez de carga y descarga, pueden proporcionar corrientes de carga altas, cosa que daña a las baterías, el número de ciclos de vida de los mismos, del orden de millones de veces, no necesitan mantenimiento, trabajan en condiciones de temperatura muy adversas y por último, no presentan en su composición elementos tóxicos, muy común en baterías.
La principal desventaja de los supercondensadores es la limitada capacidad de almacenar energía, y a día de hoy, su mayor precio. En realidad debido a sus diferentes prestaciones, condensadores y baterías no son sistemas que rivalizan entre sí, si no más bien se pueden considerar en muchas aplicaciones como sistemas complementarios donde la batería aporta la energía mientras el supercondensador aporta los picos de potencia

Si Q es la cantidad de carga almacenada cuando el voltaje entero de la batería aparece en los terminales del condensador, entonces la energía almacenada se obtiene de la integral:

Esta expresión de la energía se puede poner en tres formas equivalentes por solo permutaciones de la definición de capacidad C=Q/V.


Los materiales  usados  como electrodos para supercondensadores son principalmente de tres tipos: óxidos de metales de transición, polímeros conductores y materiales de carbono activados.

Se puede decir que, actualmente, sólo los supercondensadores basados en carbono, o también llamados condensadores de doble capa (double-layer capacitors), han conseguido llegar a la etapa de comercialización.

SOLDADOR ELECTRÓNICO  DE PUNTOS

Es la forma mas habitual de  y fácil de construir un soldador de puntos   a un precio bastante asequible.

Estas configuraciones funcionan  durante  mucho tiempo y normalmente  estas configuraciones  son  mucho mas optimas y eficientes  que los soldadores basados en transformadores de microondas modificados.

La alta temperatura destruye las baterías de litio, por lo que la soldadura  tradicional térmica no es una opción, así que esta configuración  es perfecta  , (es por eso  que hay personas que la llaman “soldadura fria” )

El circuito propuesto es el siguiente:

soldador de puntos

Como vemos en el siguiente circuito,  el principio es bastante sencillo usando 10  transistores Mosfet del tipo IRF1404 (Vdss=40V, Rds(on)=0.004ohm, Id=162A⑥) en configuración  paralelo para  controlar la descarga de un supercondensador de 120 Faradio de 15V compuesto por la asociación serie de 5 condensadores de 120F /2.7v  , el cual  almacena la energía  suficiente para producir la chispa que permita realizar   la soldadura por puntos.

Las resistencias de 1k  y 10K únicamente sirven para asegurar que pase a conducción los transistores,  motivo  por el cual se usa un pulsador para que conduzca  únicamente durante un breve espacio de tiempo  en el que se mantenga apretando el pulsador

Aunque el IRF1404 soporta hasta 200W de disipación , el motivo por el que se usan 10 transistores en paralelo  es para  evitar usar un voluminoso radiador pues en esta configuración  la disipación por elemento se divide por 10 ,lo cual hacen innecesario cualquier disipador térmico.

Alternativamente  a  los supercondensadores se pueden emplear dos viejas baterías de gel de 12V  /7Ah , aunque el conjunto ya no sera tan liviano ,pero incluso será mas efectivo dado que no es necesario cargar  los condensadores tras cada soldadura  pues las baterías almacenan  suficiente energía para bastantes soldaduras  ( en el montaje de condensadores tras varias descargas si que los es)

El circuito montado, lo podemos ver en la imagen siguiente,donde se observa una peculiaridad importante: dada la gran intensidad que va a pasar por el circuito ,los bornes  de las dos conexiones de los mosfet , deben ser metálicos de buena sección para evitar que esto se quemen por el paso de la corriente:

Asimismo los cables de salida del circuito deben ser de una sección adecuada , y deberían terminar en una punta de cobre macizo para facilitar la soldadura

En la imagen se puede ver como se puede soldar dos pequeñas laminas de níquel

Por ultimo en la siguiente imagen podemos ver una versión   del conjunto ya montado apreciándose claramente el pulsador de pie, y en este caso el uso de las dos baterías  que sustituyen a  los supercondensadores dado su mayor autonomía  y rendimiento:

Componentes

10 X  MOSFET  IRF1404

Resistencia  de  10k 1/4w

Resistencia  de 1k

6  x  Condensador  de 120F , 2.7V   (para el caso de montaje con condensadores) o  2 baterías de 12V  7AH

Pulsador normalmente abierto

Interruptor general

Voltímetro panel (para el caso de montaje con condensadores)

Fuente 15V (para el caso de montaje con condensadores)

2 x puntas de cobre