Cómo convertir su impresora 3D en un plotter en dos pasos


Un plotter o trazador es un dispositivo que puede dibujar texto e imágenes en papel con un utensilio ( por ejemplo un bolígrafo). 

Si pensamos en en el hardware necesario , podemos pensar que un buen atajo puede ser una vieja ( o no) impresora 3D pues estas ya incluyen todo el hardware y la electrónica que necesitamos: sólo hay que encontrar la manera de adjuntar un utensilio de dibujo y cómo decirle que dibuje.

En realidad como vamos a ver es mucho más fácil de lo que nos podemos imaginar, asi que en esta publicación de blog, aprenderá cómo puede hacer su propio dibujo de impresora.

Ejemplo del primer dibujo de su impresora 3D! 

Convertir una impresora 3D en una impresora 2D

Quizás se pregunte cuál es la utilidad de convertir una impresora 3D en algo que pueda dibujar imágenes 2D en un papel. Después de todo, las impresoras convencionales hacen eso desde hace varias décadas, ¿no es eso un paso atrás?

Pues , un plotter le permitirá dibujar con bolígrafo, lápices de colores, crayones, marcadores e incluso una pluma (básicamente todo lo que pueda dejar marcas en un papel). Pero no solo eso, incluso podemos dibujar en diferentes materiales, como cartón o vidrio. También puede ser creativo con tipos de tinta únicos, como dorada, plateada o que brillan en la oscuridad

Una utilidad innegable para los electrónicos es ayudar en la fabricación de circuitos impresos pues normalmente el diseño de la pcb se realiza calcando el diseño en la parte del cobre y luego hay que volver hay que repintar el diseño con un rotulador edding ( Además incluso puede ayudar en el taladrado con un cnc los orificios para los componentes)

Paso 1 – Colocación de un utensilio de dibujo

Desea montar de manera confiable un bolígrafo en el cabezal de la impresora y asegurarse de que la punta del bolígrafo quede un poco por debajo de la boquilla. Empecé diseñando una pequeña parte de este propósito. Se sujeta al cabezal de la impresora utilizando un pequeño tornillo M3 para fijar el bolígrafo en él:

Puede conseguir el modelo en thingiverse aquí . Debe adaptarse a cualquier impresora Creality Ender-3 o CR-20, y posiblemente a otras impresoras Creality. También es personalizable, por lo que puede modificar las dimensiones (si desea colocar un marcador más grande o necesita un ajuste más ajustado con la impresora).

Para otras impresoras, deberá diseñar su propio mecanismo de montaje (cuando lo haga, comparta un enlace en los comentarios). Si bien también es posible usar tornillos para montar el bolígrafo, personalmente prefiero el mecanismo de recorte, ya que me permite cambiar entre los modos de impresora 3D y trazador muy rápido, y también cambiar los bolígrafos muy rápido.

Paso 2 – Calibración

Una vez que haya montado correctamente su lápiz en su impresora, es hora de calibrarlo. Deberá adjuntar una hoja de papel a la cama de la impresora:

Bolígrafo montado, papel adjunto, ¡listo para su comando!

A continuación, deberá encontrar la altura correcta para imprimir. Se recomiendo usar Repetier Host pen lugar del clasico Cura, pues Repetier Host hara todo mucho más fácil ).

Antes de comenzar, asegúrese de que la plataforma de la impresora esté nivelada y que tanto la boquilla como la plataforma de la impresora estén frías.

Después de ubicar su impresora, vaya a la pestaña “Control manual” dentro de Repetier y mueva el cabezal de impresión hacia arriba hasta que la punta del bolígrafo esté por encima del papel. Luego, mueva su eje X / Y al borde de donde desea que esté su dibujo. Finalmente, mueva el eje Z hacia abajo en incrementos de 0,1 mm, hasta que vea que la punta del bolígrafo toca el papel. A continuación, puede mover un poco la X / Y y comprobar que el bolígrafo realmente deja un rastro en el papel. Cuando termine, observe los valores X / Y / Z que aparecen en la línea superior:

Calibración de la posición de su lápiz en Repetier Host.

En mi caso, los valores fueron 47 para X, 40 para Y y 14,6 para Z. Usaremos estos valores en breve cuando generemos el archivo GCode para imprimir.

Paso 3: elegir qué imprimir y generacion del gcode

Esa es una dificil pues existen infinitass opciones. Sin embargo, deberá obtenerlo en formato vectorial, por lo que si usa Google Imágenes, agregue el texto type:svg al final de su consulta de búsqueda. También puede convertir imágenes JPEG y PNG a SVG , pero sugeriría comenzar con algo que ya viene como un vector para simplificar las cosas.

Cuando se comenza un proyecto asi seguro que se piensa en el tiempo para conseguir el hardware correcto, pero se sorprenderalo rápido que se hace funcionar la parte del hardware. Sin embargo, el software es otra historia completamente diferente; como siempre, el software es donde reside la verdadera complejidad .

 Además de Repetier Host mencionado anteriormente, también necesita obtener Inkscape (que, por cierto, ¡también es útil si desea crear arte de PCB !).

Dentro de Inkscape, cree un nuevo archivo y vaya al menú Archivo → Propiedades del documento (Acceso directo: Ctrl + Shift + D). Luego, establezca el tamaño del documento un poco más pequeño que el tamaño de la cama de impresión y asegúrese también de usarlo mm para las unidades.

Una vez que haya establecido el tamaño, puede importar cualquier archivo SVG que desee o simplemente dibujar un texto con la herramienta Texto:

Cuando termine, con el texto aún seleccionado, haga clic en el menú Ruta → Objeto a ruta (Mayús + Ctrl + C). Esto convertirá el texto en una serie de puntos conectados por líneas, lo cual es necesario para alimentar la impresora. Puede agregar más elementos como espirales y formas de estrella, repitiendo la operación “Objeto a ruta” para cada uno:

Al imprimir, los objetos no se rellenarán, por lo que es posible que desee eliminar su color de relleno y establecer su color de trazo en negro (o el color de su lápiz), para obtener una representación más precisa del resultado final. Seleccione todos los objetos (Ctrl + A) y luego elimine el relleno y aplique color negro para el trazo (Ctrl + Shift + F):

Establecer el color de la pintura de trazo en negro

Cuando esté satisfecho con el resultado, es hora de generar el GCode para la impresora. Usaremos una extensión llamada “Gcodetools”, que viene incluida con Inkscape (si no, tiene una versión anterior y necesita actualizar).

Comenzaremos definiendo los puntos de orientación, que le dicen a la impresora cómo mapear las líneas en la pantalla en el papel. Vaya al Menú de extensiones → Gcodetools → Puntos de orientación  y después de asegurarse de que el modo “2 puntos” esté seleccionado, haga clic en Aplicar y luego en Cerrar . Ahora debería ver dos nuevos elementos de texto agregados en la parte inferior de su dibujo:

Estos son los puntos de orientación. Cada punto es una lista de coordenadas X, Y, Z que especifica la ubicación de destino de ese punto en el sistema de coordenadas de la impresora. Debe editarlos para que coincidan con la X / Y que encontró en el paso de calibración y establecer la Z (la tercera coordenada) en 0.

Edite el texto en el punto izquierdo y actualícelo para que contenga las coordenadas X / Y que encontró. En mi caso lo fue (47; 40; 0). Para el punto correcto, agregue 100 al valor X, copie el Y / Z del primero, por ejemplo (147; 40; 0):

A continuación, necesitamos generar una herramienta y configurar su velocidad. Este paso es opcional, pero si no lo hace, su impresora se dibujará realmente muy lento. Vaya al menú Extensiones → Gcodetools → Biblioteca de herramientas  y seleccione “predeterminado” en “Tipos de herramientas”:

Haga clic en Aplicar y luego en Cerrar, y debería ver un rectángulo verde con muchas configuraciones agregadas a su dibujo:

Puede alejar este rectángulo (junto con todos los valores) para que no se sobreponga en su dibujo. Luego, desea editar el texto y cambiar los valores de “Alimentación”, “Alimentación de penetración”, “Alimentación de paso” para establecer la velocidad de movimiento de la impresora al dibujar. Yo uso 4500 para todos ellos (la unidad es mm / min, por lo que este valor corresponde a 75 mm / seg).

¡Finalmente estamos listos para generar el GCode! Seleccione todos los elementos en su dibujo (Ctrl + A) y vaya a Extensiones → Gcodetools → Ruta a Gcode…

Allí, vaya a la pestaña Opciones y establezca “Escala a lo largo del eje Z” en 1, y “Desplazamiento a lo largo del eje Z” al valor Z que encontró en el paso de calibración, menos uno (encontré 14.6, así que lo configuré aquí a 13.6):

A continuación, vaya a la pestaña Preferencias y establezca el nombre del archivo de salida y la ruta del directorio cuando desee que se guarde. También puede configurar la altura segura Z en un valor más bajo, para acelerar la impresión (yo uso 5):

Finalmente, cambie a la pestaña Ruta a Gcode , configure la Función de profundidad en 1y haga clic en Aplicar. Tardará unos segundos y es posible que muestre una advertencia acerca de que no se han seleccionado rutas, que puede ignorar con seguridad. Debería ver una nueva capa en la parte superior de su dibujo, mostrando los movimientos del cabezal de impresión en el archivo Gcode generado:

En este punto, sugiero abrir el archivo .gcode en un editor de texto y verificar que se vea legítimo, especialmente que los valores Z coincidan con el valor de calibración que encontró:

¡GCode generado! Tenga en cuenta que el valor Z es 14.60000 aquí

También sugiero editar la primera linea G00 y agregar F4500 al final, de lo contrario, su impresora podría hacer que el movimiento inicial del cabezal sea realmente lento:

¡Eso es! Estás listo para imprimir. Cargue su archivo Gcode en el host de Repetier y debería ver su dibujo en la pantalla:

Diga su oración, haga clic en el botón “Iniciar impresión” y … ¡disfrute del espectáculo!

Fuente :https://urish.medium.com/

¿Porqué están tan de moda las FPGA’s?


Realmente  las FPGA’s  o matriz de puertas programables (del inglés field-programmable gate array) no son un invento reciente  pues fueron inventadas ya hace unos años allá por  el año 1984 por Ross Freeman y Bernard Vonderschmitt, co-fundadores de Xilinx.

Esencialmente internamente están formadas por  una enorme matriz  compuesta  por un gran número de pequeños bloques  formados por puertas lógicas y  biestables síncronos  (de hecho del orden de cientos de miles hasta millones de ellas según el  modelo) y justo en la intersección de esos  hay conmutadores digitales   que  son los que precisamente se  configuran  modificando la   matriz de conexiones  para realizar una determinad tarea tal  y como se haría con un circuito digital

Estos bloques individuales están constituidos por elementos lógicos como puertas AND,OR,NOR   que les permiten adoptar distintas funciones de transferencia.

El inter-conexionado de una FPGA  por tanto esta  cero cuando esta  está sin configurar, de modo que necesitamos  habilitar e puentes de  conexiones  en determinadas partes  y en otras deshabilitarlas , función que hacemos mandándoloe  una ráfaga de bits ( o bit stream )

 

Juntos, los distintos bloques, unidos por las conexiones que programamos, hacen que físicamente se constituya un circuito digital, de forma similar a como haríamos en una placa de prototipos (protobard)  con  elementos discretos  por ejemplo de la serie c-mos y con mucho cableado físico   sujeto a errores y poca fiabilidad.

Estos arreglos de matrices con cientos de miles hasta millones   de puertas programables sencillas como AND,OR,NOR   y  biestables , nos dan una gran ventaja a la hora de implementar un circuito lógico pues en vez de invertir en conexiones físicas susceptibles de fallar , es mucho mas eficiente realizarlo  con una FPGA  donde  pueden estar todas estas puertas pero incluidas en un chip pequeño, el cual lo configuraremos  para realizar esas conexiones  programando  las  compuertas para un determinado fin , y cuando ya no sea necesario  es posible reprogramarlo para otro cometido

Como vemos la enorme libertad  en la interjección de dichos bloques confiere a las FPGA una gran flexibilidad y versatilidad que llega hasta tal punto  que incluso  son  capaces de emular microprocesadores  de varios núcleos ( en función del tipo de FPGA)  ,

Hay proyectos de pequeños procesadores que pueden ser configurados en un FPGA. Ejemplos son MicroBlaze y PicoBlaze de Xlinx, Nios y Nios II de Altera, y los procesadores de código abierto LatticeMicro32 y LatticeMicro8.  !Incluso existen proyectos para emular procesadores históricos en FPGA, como el famos procesador del Apollo 11 Guidance Computer que llevo  el hombre a la Luna.

Todo esto pues puede explicar porque se están poniendo de moda pues permiten sobre una misma pastillas realizar diferentes circuitos   que incluso pueden ser actualizados  para mejorar su rendimiento su necesidad de  cambiar el hardware

Un aspecto a destacar  es  dado que su funcionamiento es básicamente cableado permite  velocidades  altisimas de reloj desde Mhz  hasta Ghz, pudiendo hacer procesamiento de señales de alta frecuencia así como construir circuitos muy rápidos por  lo que vemos ninguna de las placas qeu hay en el mercado  como por ejemplo Ardiuino se aproximan a las FPGA’s

Algunos de los principales fabricantes son Xilinx, Altera (comprado por Intel en 2015), MicroSem, Lattice Semiconductor o Atmel, pero  recientemente otros grandes players como Arduino  también han entrado en este lucrativo negocio del hardware  con el modeloMKR Visor  basada en un chip de Intel , el  modelo  Cyclone 10CL016j,

Programación

Los FPGA no se “programan” en el sentido estricto  como estamos familiarizados usando lenguaje como Processing C, C++,  Python,etc  pues  usan   HDL ( Hardware Description Language. ) ,es decir un tipo diferente de lenguaje descriptivo usado también en el diseño de chips y SoC

Para empeorar las cosas una de las claras  desventajas de las FPGA es que estos lenguajes HDL  son especificos  para cada FPGA por lo que  cada fabricante diseña su propia forma de hacer síntesis sobre esta

Los lenguajes HDL tienen una curva de aprendizaje grande debido a que tiene un grado de abstracción muy bajo pues piensese que  describen diseños de circuitos digitales de modo que los fabricantes proporcionan herramientas comerciales para programar sus propios FPGA. Estas herramientas no son gratuitas, o lo son sólo para algunos modelos de FPGA del fabricante y como vemos están unidos a la arquitectura de un único fabricante.

Con el desarrollo de los FPGA han aparecido otros lenguajes que permiten un mayor nivel de abstracción, similar a C, Java, Matlab. ejemplo son System-C, Handel-C, Impulse-C, Forge, entre otros.

Con la evolución en el desarrollo de las FPGA también han aparecido herramientas centradas en la programación gráfica de las FPGA, como LabVIEW FPGA, o el proyecto Open Source IceStudio  desarrollado por Jesús Arroyo Torrens.

Afortunadamente hace unos  años hubo un investigador   proveniente de la docencia llamado   Clifford Wolf que tras un hercúleo trabajo de ingeniería inversa con su proyecto ice storm a lo largo de tres años. que  liberó un modelo de  FPGA de  Lattice Semiconductor (el modelo iCE40 LP/HX 1K/4K/8K, ) publicando en la comunidad Open Hardware  su diseño y método de programación ,  así que  hay buenas noticias sobre esa desventaja que existía de programar  la FPGA’s pues es posible programar algunos modelos con herramientas abiertas

 

El coste

Como hemos visto , los lenguajes con los que se configuran ka FPGA  dificultaban  su uso ,pero tras la liberación del modelo de Lattice  se camina hacia herramientas abiertas asi  que uno  de os grandes escollos que deben superar el coste   pues e todavía las FPGA’s tienen un costo muy elevado sobre los microcontroladores pues un microcontrolador arduino clónico lo podemos conseguir  por menos de 10 € , y lamentablemente  una FPGA  es imposible conseguirla   por ese precio pero poco a poco esto esta cambiando con placas que vamos a ver a continuación

El  precio de  una FPGA  puede estar en el rango de 20 a 80€  como vemos muchísimo más caro que un Arduino Nano (16Mhz) o un STM32 (160Mhz) que podemos comprar por 1.5€, un Node Mcu ESP8266 (160Mhz + WiFi) que podemos comprar por 3.5€ o incluso, son mucho más caros que una Orange Pi (Quad 800 Mhz + WiFi), que podemos encontrar por unos 20€.

 

Placa Arduino MKR Vidor 400

El Arduino MKR Vidor 4000 es una nueva clase de desarrollo que combina el alto rendimiento  y flexibilidad de una FPGA con la facilidad de uso del Arduino en un pequeño factor de forma que es el rasgo distintivo de la familia MKR

Esta placa contiene el microcontrolador SAMD21 de Microchip y un Ciclón 10 FPGA ( de INTEL) y cuenta  con 8 MB SDRAM,  2 Mbyte QSPI Flash (1MB para las aplicaciones de usuario), conector Micro HDMi  de alta definiciónI, conector de la cámara MIPI, Wifi  alimentado por el módulo de U-BLOX NINA W102, la clásica interfaz MKR en que todos los pernos están conducido por SAMD21 y FPGA y un conector Mini-PCI Express con hasta 25 pines programables del usuario.

El FPGA contiene elementos de la lógica de 16K, 504Kbit de RAM integrado y multiplicadores de 18 x 18 bits HW 56 para DSP de alta velocidad; Cada pin puede cambiar a más de 150 MHz y puede ser configurado para funciones tales como UARTs, SPI (Q), alta resolución / alta frecuencia PWM, encoder de cuadratura, I2C, I2S, Sigma Delta DAC, etcetera. A bordo de FPGA puede también utilizarse para alta velocidad operaciones de DSP para el procesamiento de audio y video.

El Arduino MKR Vidor 4000 puede ser programado usando el Software de Arduino (IDE),  y ejecutar tanto online como offline

 

 

 IceZUM Alhambra

La IceZUM Alhambra incluye una FPGA iCE40 del fabricante Lattice Semiconductor, cuyo diseño y método de programación fue liberado por Clifford Wolf tras un hercúleo trabajo de ingeniería inversa a lo largo de tres años.
La placa de desarrollo IceZUM Alhambra se desarrolló originalmente en BQlabs y ha sido diseñada por Eladio Delgado en colaboración con Juan González, siempre con la idea de que pudiera ser utilizada en educación.

La placa se puede adquirir a través del grupo #FPGA-Wars que conforma la comunidad en torno a esta placa  lanzando tiradas cortas conforme los usuarios se van apuntando. De momento tiene un coste de 65 euros, con una calidad excepcional y todos los controles de calidad gracias al trabajo de Eladio Delgado pero es de suponer que cuando se fabrique a mayor escala podrá bajar el precio.(al ser hardware libre… en principio cualquiera puede lanzarse a su fabricación.) Tambiédsiponen una IceZUM Alhambra “peregrina” que se va enviando de unas personas a otras para que la puedan probar( esto esta en el grupo #FPGA-Wars.)

Para modificar las conexiones internas de una FPGA se utilizan lenguajes de descripción hardware. Para la IceZUM Alhambra dado su carácter libre y abierto se utiliza Verilog, lenguaje de descripción hardware abierto y podríamos decir que estándar hoy en día.

Pero la maravilla que seguro ayudará a que estudiantes puedan entender mejor el diseño de circuitos digitales se llama Icestudio,  creación de Jesús Arroyo y que me atrevo a comparar con lo que ha supuesto Scratch a la programación.

Con Icestudio en vez de utilizar código de descripción hardware diseñamos directamente, gráficamente, el circuito combinacional. Es seguro que con Icestudio se podrá introducir a la electrónica digital a alumnos cada vez más jóvenes.

 

icezum alhambra icestudio

BQ patrocinó el proyecto conjunto de la IceZUM Alhambra junto con Icestudio y Apio en sus inicios a lo largo de 2016 y ahora el proyecto avanza gracias a sus creadores con el apoyo de la comunidad gracias a su concepto abierto y colaborativo.

Ejemplo

El proyecto IceStorm es un toolkit (formado por IceStorm Tools + Archne-pnr + Yosys) que permite la creación del bitstream necesario para programar un FPGA iCE40 con herramientas open Source.

El trabajo de Clifford se realizó un IceStick, una placa de desarrollo con un FPGA iCE40, por su bajo coste y pequeñas características técnicas, que permitían el trabajo de ingeniería inversa.

el proyecto IceStorm y el Lattice ICE fue el inicio de una revolución en el campo de las FPGA similar a la que empezó Arduino con los procesadores AVR de Atmel, y que ha permitido poner al alcance de los usuarios domésticos pues el resro de FPGA’s requieren inversiones elevadisimas tanto en hw como en sw.

Para terminar , vamos a  ver un  sencillo ejemplo de como configurar (Programar) un FPGA de forma fácil usando Icestudio (HDL) y la ICE40 icestick de lattice, para configurar una alarma de indencios

 

 

 

Una nueva de crear placas de circuito impreso


Un circuito impreso no es mas que una placa aislante sobre la cual se dibujan “pistas” e “islas” de cobre las cuales formaran el trazado de dicho circuito, partiendo de un plano  creado normalmente desde un esquema eléctrico que se pasa a pcb con un programa de enrutamiento ,aunque obviamente ese se puede hacer de forma manual.

Para empezar tenemos que decidir que material vamos a precisar  pues si se trata de un circuito donde vayan  a estar señales de radio o de muy alta frecuencia tendremos que usar  placas de  fibra de  vidrio o de pertinax, que es un material poco alterable por la humedad o de lo contrario, para la mayoría de las aplicaciones, con placa de fenólico , baquelita , etc pueden  ser  mas que suficiente.

pcb2.PNG

Tradicionalmente los PCB  se realizaban a partir de un método foto-químico : se exponía con luz una placa de cobre cubierta de emulsión fotosensible  con un acetato  transparente que contenida el diseño de las pistas   , luego se revelaba y finalmente se atacaba con  un ácido , el cual  normalmente era cloruro ferrico(FeCI3)   o una disolución de agua oxigenada de 100 volúmenes y   agua fuerte(H2SO4)

Mas modernamente   con las fotocopiadoras o las impresoras láser  , se ha sustituido la placa fotosensible por simplemente una  fotocopia con el diseño del pcb  que se pone cara abajo con la placa virgen y  se plancha el conjunto

plancha.PNG

Después del planchado  se humedece en agua caliente , se retira el papel (con cuidado  de romper la tiras de tinta ) y luego se ataca  finalmente con  un ácido  que también puede ser una disolución de agua oxigenada de 100 volúmenes y   agua fuerte(H2SO4) o  cloruro ferrico(FeCI3).

Este proceso ultimo por cierto requiere que  pulamos con lana de acero o el estropajo de aluminio hasta que quede brillante pues dependiendo de como quede de limpia se pegará mas o menos el toner (de nuestra fotocopia)  en la placa.

pcb1

Hasta ahora hemos descrito como se hacían ( y/o  se siguen haciendo) muchas placas de circuito impreso para uso personal pero ¿y si existiera algún otro método menos engorroso,limpio, eficiente,profesional   y menos peligroso para hacer una placa de circuito impreso?

Pues en efecto se puede hacer   y gracias a una máquina CNC, que no solo  sirve para  crear piezas de todo tipo, sino que también puede servir para hacer placas PCB caseras en muy poco tiempo (por ejemplo diseñadas com EAGLE y  PCB-gcode)

Un programa  muy famoso es bCNC que nos permite controlar un  CNC que funcione a través de arduino y que usen el firmware grbl.  Este programa es el mas completo en cuanto a funciones,  pero quizás  tenga demasiadas opciones que dificultan  que nos centremos en el proceso que vamos buscando , que es el de creación de pcb mediante el pulido de las zonas que no deben conducir con una herramienta  controlada por control numérico

Precisamente  para superar las dificultades  de  bcnc  surge OpenCNCPilot , que es un sencillo programa creado específicamente para crear placas PCB con una maquina  CNC  .

Este programa es gratuito y esta disponible únicamente para windows desde la pagina de github en https://github.com/martin2250/OpenCNCPilot

Podemos ver una descripción general rápida en YouTube:

 

OpenCNCPilot es un emisor de código G compatible con GRBL.

Su característica principal es su capacidad de explorar áreas definidas por el usuario para alabeo y envolver la trayectoria alrededor de la superficie curva . Esto es especialmente útil para grabar superficies metálicas con cortadores en forma de V donde cualquier desviación en la dirección Z resultará en trazas más anchas o más angostas, por ejemplo, para el aislamiento de PCBs donde el alabeo daría lugar a rastros rotos o en corto.

Está escrito en C # y usa WPF para su interfaz de usuario. Lamentablemente, esto significa que no se ejecutará en Linux, ya que Mono no es compatible con WPF. La ventana gráfica 3D se gestiona con HelixToolkit.

 

Instalación y primeros pasos

Para instalar este programa se requiere   .NET 4.6 ,Vaya a la sección de Versiones y descargue los últimos binarios (o compílelo desde la fuente). Descomprima todos los archivos en su disco duro y ejecute “OpenCNCPilot.exe

Asegúrese de utilizar la versión 1.1f de GRBL (las versiones posteriores pueden funcionar pero aún no han sido probadas)

Antes de la primera ejecución, debe seleccionar un puerto serie, el selector está oculto en el menú de configuración al que puede acceder en la pestaña “Máquina”. Aparte de eso, no es necesario modificar ninguna configuración de modo que seleccionado  podra  conectarte a su máquina.

Abra archivos gcode o height map arrastrándolos a la ventana, o usando los botones correspondientes.

Para crear un nuevo mapa de altura, abra la pestaña “Sonda” y haga clic en “Crear nuevo”. Se le pedirá que ingrese las dimensiones.
Asegúrese de ingresar las coordenadas reales, por ejemplo, cuando su trayectoria esté en la dirección X negativa, ingrese “-50” a “0” en lugar de “0” a “50”. Verá una vista previa del área y los puntos individuales en la ventana principal

Para explorar el área, configure su sistema de coordenadas de trabajo ingresando “G92 X0 Y0 Z0” en su origen seleccionado, asegúrese de conectar el A5 de su Arduino a la herramienta y GND a su superficie , y presione “Ejecutar”.

Una vez que haya terminado de explorar la superficie, cargue el archivo gcode que desea ejecutar y presione el botón “Aplicar mapa de altura” en la pestaña “Editar”. Ahora puede ejecutar el código con el botón “Inicio” en la pestaña “Archivo”.

En la ultima version   hay  una opción muy interesante, casi diría que imprescindible, como el autonivelado por malla. Eso permite que la profundidad de corte siempre sea la misma y el resultado quede perfecto.