Google Cloud IoT Core


En post anteriores hemos visto la potencia de Microsft Azure en torno al Universo del Edge Iot Computing  mostrando de una forma clara como es posible con una Raspeberry Pi 3 o un ESP8266   empezar a utilizar con muy buenos resultados dicha plataforma, pues bien como no podía ser de otra forma Google también ha desarrollado su propia plataforma denominada Google Cloud Iot Core

 

Cloud IoT Core es un servicio completamente administrado que le permite conectar, administrar e ingerir datos de manera fácil y segura desde millones de dispositivos dispersos a nivel mundial. Cloud IoT Core, en combinación con otros servicios en la plataforma Google Cloud IoT, proporciona una solución completa para recopilar, procesar, analizar y visualizar datos de IoT en tiempo real para admitir una mejor eficiencia operativa.

loud IoT Core, que utiliza Cloud Pub / Sub debajo, puede agregar datos de dispositivos dispersos en un solo sistema global que se integra perfectamente con los servicios de análisis de datos de Google Cloud. Por ejemplo puede usarse el  flujo de datos de IoT para análisis avanzados, visualizaciones, aprendizaje automático y más para ayudarlo a mejorar la eficiencia operativa, anticipar problemas y crear modelos completos que describan y optimicen mejor su negocio.

Cloud IoT Core es compatible con los protocolos estándar MQTT y HTTP, por lo que se pueden usar dispositivos existentes con mínimos cambios de firmware.Asimismo Google Cloud IoT Core se ejecuta en la infraestructura sin servidores de Google, que se amplía automáticamente en respuesta a los cambios en tiempo real y se adhiere a los estrictos protocolos de seguridad estándar de la industria que protegen los datos de su empresa

 

En este post  veremos  Google Cloud Platform Console para crear un registro de dispositivos Cloud IoT Core y registrar un dispositivo. También veremos  cómo conectar un dispositivo y publicar eventos de telemetría del dispositivo.

Como siempre antes de empezar se requiere cumplir ciertos requisitos:

  • Inicie sesión en su cuenta de Google. (si aún no tiene uno, regístrese para obtener una cuenta nueva) .
  • En la consola de GCP, vaya a la página Administrar recursos y seleccione o cree un nuevo proyecto.Vaya a la página Administrar recursos
  • Asegúrese de que la facturación esté habilitada para su proyecto.Desde aqui se puede  habilitar la facturación
  • Habilite las API Cloud IoT Core y Cloud Pub / Sub.Habilita las API

Configure Google Cloud SDK y gcloud

  1. Instale Google Cloud SDK . Cloud IoT Core requiere la versión 173.0.0 o superior del SDK.
  2. Ejecute el siguiente comando para actualizar la CLI de gcloud que se incluye en el SDK:
    gcloud components update
    

    Si está utilizando una máquina virtual de Compute Engine con la instalación predeterminada de gcloud, no podrá actualizar los componentes. Para habilitar Cloud IoT Core en una máquina virtual de Compute Engine, reinstale gcloud ejecutando los siguientes comandos:

    sudo apt-get remove google-cloud-sdk
        curl https://sdk.cloud.google.com | bash
        exec -l $SHELL
        gcloud init
    

Para obtener más detalles, consulte la documentación de referencia de los comandos de gcloud iot .

Introducción al Cloud IoT Core

Registro del dispositivo

Para que un dispositivo se conecte, primero debe registrarse con Cloud IoT Core. El registro consiste en agregar un dispositivo a una colección (el registro) y definir algunas propiedades esenciales. Puede registrar un dispositivo con Cloud Platform Console, comandos gcloud o la API REST-style.  En conjunto, las funciones que le permiten registrar, monitorear y configurar dispositivos se llaman administrador de dispositivos.

Protocolos (MQTT y HTTP)

Cloud IoT Core admite dos protocolos para la conexión y comunicación del dispositivo: MQTT y HTTP. Los dispositivos se comunican con Cloud IoT Core a través de un “puente”, ya sea el puente MQTT o el puente HTTP. Cuando crea un registro de dispositivo, selecciona protocolos para habilitar: MQTT, HTTP o ambos.

MQTT es un protocolo de publicación / suscripción estándar que los dispositivos integrados usan y soportan con frecuencia, y también es común en las interacciones máquina a máquina.

HTTP es un protocolo “sin conexión”: con el puente HTTP, los dispositivos no mantienen una conexión con el Núcleo Cloud IoT. En cambio, envían solicitudes y reciben respuestas.

Autenticación de dispositivo

Cloud IoT Core utiliza autenticación de clave pública (o asimétrica):

  • El dispositivo usa una clave privada para firmar un JSON Web Token (JWT) . El token se pasa al Cloud IoT Core como prueba de la identidad del dispositivo.
  • El servicio utiliza la clave pública del dispositivo (cargada antes de que se envíe el JWT) para verificar la identidad del dispositivo.

Control del dispositivo desde la nube

Con Cloud IoT Core, puede controlar un dispositivo modificando su configuración. Una configuración de dispositivo es una acumulación arbitraria de datos definidos por el usuario que pueden estructurarse o no. Si sus dispositivos usan MQTT, las configuraciones se propagan automáticamente a ellos. Si sus dispositivos se conectan a través de HTTP, deben solicitar configuraciones explícitamente.

Configurando dispositivos

Con Cloud IoT Core, puede controlar un dispositivo modificando su configuración. La configuración de un dispositivo es una burbuja de datos arbitraria y definida por el usuario. Después de que se haya aplicado una configuración a un dispositivo, el dispositivo puede informar su estado a Cloud IoT Core.

La configuración del dispositivo funciona de manera diferente en los puentes MQTT y HTTP. Ver abajo para más detalles.

Límites

Las actualizaciones de configuración están limitadas a 1 actualización por segundo, por dispositivo. Sin embargo, para obtener los mejores resultados, la configuración del dispositivo debe actualizarse con mucha menos frecuencia, como máximo, una vez cada 10 segundos.

La tasa de actualización se calcula como el tiempo entre el acuse de recibo más reciente del servidor y la próxima solicitud de actualización.

Diferencias de protocolo

MQTT

Los dispositivos que usan MQTT pueden suscribirse a un tema especial de MQTT para actualizaciones de configuración:

 / devices / {device-id} / config

Cuando un dispositivo se suscribe al tema de configuración, el puente MQTT responde con un mensaje SUBACK MQTT, que contiene la QoS concedida para el tema de configuración (0 o 1) o 128 si se produce un error.

Después de suscribirse inicialmente, el dispositivo recibe la configuración más reciente en la carga útil de un mensaje y recibirá actualizaciones de configuración adicionales a medida que se envíen a Cloud IoT Core.

Las siguientes muestras ilustran cómo recuperar las actualizaciones de configuración en un dispositivo a través de MQTT usando Python:

def get_client(
project_id
, cloud_region, registry_id, device_id, private_key_file,
algorithm
, ca_certs, mqtt_bridge_hostname, mqtt_bridge_port):
“””Create our MQTT client. The client_id is a unique string that identifies
this device. For Google Cloud IoT Core, it must be in the format below.”””

client
= mqtt.Client(
client_id
=(‘projects/{}/locations/{}/registries/{}/devices/{}’
.format(
project_id
,
cloud_region
,
registry_id
,
device_id
)))

# With Google Cloud IoT Core, the username field is ignored, and the
# password field is used to transmit a JWT to authorize the device.
client
.username_pw_set(
username
=‘unused’,
password
=create_jwt(
project_id
, private_key_file, algorithm))

# Enable SSL/TLS support.
client
.tls_set(ca_certs=ca_certs, tls_version=ssl.PROTOCOL_TLSv1_2)

# Register message callbacks. https://eclipse.org/paho/clients/python/docs/
# describes additional callbacks that Paho supports. In this example, the
# callbacks just print to standard out.
client
.on_connect = on_connect
client
.on_publish = on_publish
client
.on_disconnect = on_disconnect
client
.on_message = on_message

# Connect to the Google MQTT bridge.
client
.connect(mqtt_bridge_hostname, mqtt_bridge_port)

    # This is the topic that the device will receive configuration updates on.
    mqtt_config_topic = ‘/devices/{}/config’.format(device_id)

    # Subscribe to the config topic.
    client.subscribe(mqtt_config_topic, qos=1)

return client

HTTP

Si está utilizando el puente HTTP , los dispositivos deben solicitar explícitamente nuevas configuraciones .

El  siguiente ejemplo en python ilustran cómo recuperar las actualizaciones de configuración en un dispositivo a través de HTTP:

def get_config(
version
, message_type, base_url, project_id, cloud_region, registry_id,
device_id
, jwt_token):
headers
= {
‘authorization’: ‘Bearer {}’.format(jwt_token),
‘content-type’: ‘application/json’,
‘cache-control’: ‘no-cache’
}

basepath = ‘{}/projects/{}/locations/{}/registries/{}/devices/{}/’
template
= basepath + ‘config?local_version={}’
config_url
= template.format(
base_url
, project_id, cloud_region, registry_id, device_id, version)

resp = requests.get(config_url, headers=headers)

if (resp.status_code != 200):
print(‘Error getting config: {}, retrying’.format(resp.status_code))
raise AssertionError(‘Not OK response: {}’.format(resp.status_code))

return resp

Actualización de la configuración del dispositivo

Puede actualizar la configuración del dispositivo utilizando Cloud Platform Console, Cloud IoT Core API o gcloud.

Por Consola

  1. Vaya a la página Registros del dispositivo en la Consola GCP.
  2. Haga clic en el ID del registro que contiene el dispositivo.
  3. En la página de detalles del registro , haga clic en el ID del dispositivo cuya configuración desea actualizar.
  4. En la parte superior de la página, haz clic en Actualizar config.
  5. Seleccione un formato para la configuración y pegue los datos en el cuadro Configuración .
  6. Haga clic en Enviar al dispositivo .

Usando gcloud

Para actualizar la configuración de un dispositivo, ejecute el gcloud iot devices configs update :

 gcloud iot dispositivos configs update \
   (--config-data = CONFIG_DATA | --config-file = CONFIG_FILE ) \
   --device = DEVICE_ID \
   --registry = REGISY_ID \
   --region = REGION \
   [--version-to-update = VERSION_TO_UPDATE ]

Los dispositivos se actualizarán de acuerdo con el protocolo que usan .

Usando Cloud iot Core API

Para actualizar la configuración del dispositivo a través de la API, use el método Device modifyCloudToDeviceConfig , especificando la nueva configuración en el campo config . También puede especificar una configuración al crear un dispositivo y luego usar modifyCloudToDeviceConfig para cambiarla más tarde.

El siguiente ejemplo en Pythoon  ilustran cómo actualizar la configuración de un dispositivo:

def set_config(
service_account_json
, project_id, cloud_region, registry_id, device_id,
version
, config):
print(‘Set device configuration’)
client
= get_client(service_account_json)
device_path
= ‘projects/{}/locations/{}/registries/{}/devices/{}’.format(
project_id
, cloud_region, registry_id, device_id)

config_body = {
‘versionToUpdate’: version,
‘binaryData’: base64.urlsafe_b64encode(
config
.encode(‘utf-8’)).decode(‘ascii’)
}

return client.projects(
).locations().registries(
).devices().modifyCloudToDeviceConfig(
name
=device_path, body=config_body).execute()

Revisando la configuración del dispositivo

Por ultimo  tambien uede revisar las últimas 10 versiones de la configuración de un dispositivo mediante Cloud Platform Console, la API o gcloud.

Consola

  1. Vaya a la página Registros del dispositivo en la Consola GCP.
  2. Haga clic en el ID del registro que contiene el dispositivo cuya configuración desea actualizar.
  3. En la página de detalles del registro , haga clic en el ID del dispositivo cuya configuración desea actualizar.
  4. Haga clic en Configuración e historial de estado.

Utilice las casillas de verificación para controlar si se muestra el historial de configuración o el historial de estado, o ambos. Haga clic en Comparar para ver si la configuración y el estado coinciden como espera.

gcloud

Para obtener configuraciones recientes, ejecute la gcloud iot devices configs list y describe comandos:

 Configuración de dispositivos de gcloud iot list DEVICE_ID \
   --registry = REGISY_ID \
   --region = REGION \
   [--filter = EXPRESIÓN ]
   [--limit = LIMIT ]
   [--sort-by = [ CAMPO , ...]]
 Las configuraciones de dispositivos gcloud iot describen DEVICE_ID \
   --registry = REGISY_ID \
   --region = REGION

Fuentes:   https://cloud.google.com/iot/docs/how-tos/getting-startedhttps://cloud.google.com/iot/docs/how-tos/config/configuring-devices

Anuncios

Monitorizacion remota de IoT con notificaciones desde Azure en conexión de su hub de IoT


Azure Logic Apps proporciona una forma de automatizar procesos como una serie de pasos. Una aplicación lógica se puede conectar a través de varios servicios y protocolos. Comienza con un activador como ‘Cuando se agrega una cuenta’, y luego una combinación de acciones, una como ‘enviar una notificación de inserción’. Esta característica hace que Logic Apps sea una solución de IoT perfecta para la monitorización de dispositivos IoT, como por ejemplo para alerta ante anomalías, entre otros escenarios de uso.  

 

Resumidamente   estas son las cosas  que necesitaremos  hacer par lograr nuestro objetivo:

  • Crear un espacio de nombres del autobús de servicio y añadir una cola a él.
  • Añadir un punto final y una regla de enrutamiento a su hub de IoT.
  • Crear, configurar y probar una aplicación de la lógica.

Necesitaremos para ello como siempre tener configurado  un dispositivo de Iot enviando mensajes a la nube de Azure de Iot Hub.

 

Crear espacio de nombres de Servicio del Bus y añadirle una cola

Crear un espacio de nombres del bus de servicio

  1. En el portal de Azure, haga clic en crear un recurso >Enterprise Integration(Integración empresarial )> Service Bus.
  2. Proporcione la siguiente información:Nombre: el nombre del bus de servicios.Pricing tier  déjelo en Standard .
  3. En suscripción dejelo  en Evaluación gratuitaGrupo de recursos: utilizar el mismo grupo de recursos que utiliza el hub de IoT.

    Ubicación: utilizar la misma ubicación que utiliza el hub de IoT.

  4. Pinchar Anclar al panel
  5. Haga clic en crear.

Añadir una cola de autobús de servicio

  1. Abrir el espacio de nombres del Bus de servicio y haga clic en + Quue(cola.)
  2. Introduzca un nombre para la cola y haga clic en crear.
  3. Abrir la cola del Bus de servicio(entities-Queues-el nombre del la nueva cola )   y haga clic en CONFIGURACION  –Shared access policies (directivas de acceso compartido) > + añadir.
  4. Introduzca un nombre para la política de controlar administrar y haga clic en create (crear).

Añadir un punto final y una regla de enrutamiento a su hub de IoT

Añadir un punto final

  • Abrir su centro de IoT, haga clic en MensajeriaPuntos de conexión > + Añadir.
  • Introduzca la siguiente información:                                                                                 Nombre: el nombre del extremo.Tipo de punto final: seleccione Cola de autobús servicio.Espacio de nombres del servicio de bús: seleccionar el espacio de nombres que creó.

    Cola de Service Bus: seleccione la cola creada.

  • Haga clic en Aceptar.

Add an endpoint to your IoT hub in the Azure portal

Agregar una regla de enrutamiento

  1. En su centro de Internet, haga clic en  MENSAJERIA  – rutas > + añadir.
  2. Introduzca la siguiente información:Nombre: el nombre de la regla de enrutamiento.Fuente de datos: seleccionar DeviceMessages.Punto final: seleccione el punto final de ha creado.

    Cadena de consulta: entrar.temperatureAlert = "true"

  3. Haga clic en Guardar.

Add a routing rule in the Azure portal

Crear y configurar una aplicación de lógica

Crear una aplicación de lógica

  1. En el portal de Azure, haga clic en crear un recurso >Enterprise Integration( Integración empresarial )> Lógic app.
  2. Introduzca la siguiente información:Nombre: el nombre de la aplicación de la lógica.Grupo de recursos: utilizar el mismo grupo de recursos que utiliza el hub de IoT.Ubicación: utilizar la misma ubicación que utiliza el hub de IoT.
  3. Haga clic en crear.

Configurar la aplicación de la lógica

  1. Abra la lógica de la aplicación que se abre en el diseñador de aplicaciones de la lógica.
  2. En el diseñador de aplicaciones de lógica, haga clic en BlanK Logic App
  3. Haga clic en Service Bus.
  4. Haga clic en el Servicio de Bus cuando uno o varios mensajes en una cola (Autocompletar).
  5. Crear una conexión de bus de servicio.
    1. Introduzca un nombre de conexión.
    2. Haga clic en el espacio de nombres de servicio bus > la política de autobús servicio > crear.
    3. Haga clic en continuar después de la conexión de bus de servicio.
    4. Seleccione la cola que creó e introduzca para recuento de mensajes máximo175
    5. Haga clic en “Guardar” el botón para guardar los cambios.
  6. Crear una conexión de servicio de SMTP.
    1. Haga clic en nuevo paso > Agregar una acción.
    2. Tipo, haga clic en el servicio SMTP en el resultado de la búsqueda y haga clic en SMTP – envíe correo electrónico.SMTP
    3. Introduzca la información de SMTP del buzón y haga clic en crear.Obtenga la información de SMTP para Hotmail/Outlook.com, Gmaily Yahoo Mail. ( Nota :Su proveedor de servicios de correo electrónico necesitará verificar la identidad de remitente para asegurarse de que eres tú quien envía el correo electrónico9.
    4. Introduzca su dirección de correo electrónico para de y ay para asunto y el cuerpo.High temperature detected
    5. Haga clic en Guardar.

 

La aplicación de la lógica estará   en orden de funcionamiento en cuanto se guarde así que ya podemos probar su funcionalidad  así que :

  1. Inicie la aplicación cliente que implementa en el dispositivo en ESP8266 conectar a Azure IoT.
  2. Aumentar la temperatura del ambiente alrededor del Sensor por encima de 30 C.(por ejemplo, encendiendo una vela cerca del sensor ).
  3. Usted debe recibir una notificación por correo electrónico enviada por la aplicación .

     

Hemos visto lo relativamente sencillo que es  crear  una aplicación lógica que conecta el hub de IoT y buzón para monitorizar  temperatura y enviar notificaciones.

Fuente https://docs.microsoft.com/en-gb/azure/iot-hub/iot-hub-monitoring-notifications-with-azure-logic-apps

Como usar la extensión de IoT para Azure CLI 2.0 para gestionar dispositivos de Azure IoT Hub


La Extensión de la IoT para Azure CLI 2.0 es una nueva extensión para IoT en código  abierto que añade a las capacidades de Azure CLI 2.0, la cual como vamos a ver  incluye comandos para interactuar con el administrador de recursos Azure como por ejemplo, puede utilizar Azure CLI 2.0 para crear una VM de Azure o un IoT Hub.

Una extensión CLI permite un servicio de Azure incrementar el Azure CLI dando  acceso a funciones adicionales específicas de servicio como vamos a ver.

La extensión de IoT da IoT permite a los  desarrolladores y aficionados acceso desde línea de comandos a todos los  IoT Hub, IoT Edge, y las capacidades  de  IoT Hub Device Provisioning Service

Algunos ejemplos de posibilidades que ofrece esta extension:

Opción de manejo Tarea
Métodos directos Hacer un dispositivo actuar como arrancar o parar el envío de mensajes o reiniciar el dispositivo.
Propiedades de dos deseadas Poner un dispositivo en algunos estados, tales como poner establecer un LED a verde o establecer el intervalo de enviar telemetría cada 30 minutos.
Doble registrados propiedades Obtener el estado que informó  un dispositivo. Por ejemplo, el dispositivo informa que el LED parpadea ahora.
Etiquetas de doble funcion Almacenar metadatos específicos del dispositivo en la nube. Por ejemplo, la situación de la implementación de una máquina expendedora.
Consultas de doble dispositivo Consulta todos los gemelos de dispositivo para recuperarlas condiciones arbitrarias, tales como identificar los dispositivos que están disponibles para su uso.

Device twins (Gemelos de dispositivo) son documentos JSON que almacenan información de estado del dispositivo (metadatos, configuraciones y condiciones). Eje de IoT persiste a una doble dispositivo de cada dispositivo que se conecta a él.

Extensión de IoT para Azure CLI 2.0

Vamos   a ver  usar  la extensión de IoT para Azure CLI 2.0 con varias opciones de manejo en nuestra máquina de desarrollo ejecutando Azure CLI 2.0 y la extensión de IoT para Azure CLI 2.0 con varias opciones de gestión.

Para poder usar esta extensión necesitaremos  haber configurado el dispositivo completo  de Iot  cubriendo los siguientes requisitos:

    • Una suscripción activa de Azure.
    • Un centro de Azure IoT bajo su suscripción.
    • Una aplicación de cliente que envíe mensajes a su hub de IoT de Azure.

Debemos asegurarnos de que el dispositivo se está ejecutando con la aplicación de cliente .Por ejemplo un método muy cómodo de comprobarlo es usando la herramienta  Microsoft Azure Storage siempre que hayamos vinculado nuestro  Hub de Iot a Azure Storage (como vimos es este post) ,pues desde esta herramienta podremos ver fácilmente el contenido de los mensajes enviados por el dispositivo

azurestorage

Microsoft Azure IoT Extension for Azure CLI 2.0  proporciona nuevos y emocionantes comandos y capacidades de IoT centrados en los servicios IoT Hub y IoT Device Provisioning. La funcionalidad se proporciona como un paquete de extensión CLI de Azure para una integración perfecta con la funcionalidad de línea de comandos existente.

La extensión aumenta el Azure CLI IoT de Azure agregando o modificando el espacio de comando existente. La extensión incluye capacidades en las siguientes categorías:

  • IoT Hub
  • IoT Edge
  • IoT Device Provisioning Service (DPS)

Instalación  

Paso1; Instalación de Python.

Como requisito previo se necesita instalar Python en el equipo de desarrollo. Podemos instalar  Python 2.7 x o Python 3.x. Python 3.65 es la ultima version disponible y que podemos instalar. Simplemente ir a   https://www.python.org/downloads/  pinchar sobre enlace para descargar la ultima version  y después ejecutar el instalable para lanzar la instalación.

Paso 3:Instalar Azure CLI 2.0 

Tambien necesitamos instalar el cliente de Azure CLI 2.0  para  agregar despuesla extensión IoT. Podemos instalar  directamente con un  instalador desde  Windows  el cliente CLI , para ello descargaremos MSI y luego lo  instalaremos en nuestro equipo de desarrollo

azure cli.PNG

Como mínimo, la versión Azure CLI 2.0 debe ser 2.0.24 o superior. Esta versión admite los comandos de extensión az e introduce el marco de comandos knack, es por eso que podemos utilizar para comprobarlo el comando desde linea de comandos (cmd): 

 az --version .

Por ejemplo este el resultado de la ejecución de este comando con la ultima version instalada (2.0.31) del cliente de Azure:

C:\Users\Carlos>az –version
azure-cli (2.0.31)
acr (2.0.23)
acs (2.0.31)
advisor (0.5.1)
appservice (0.1.31)
backup (1.1.1)
batch (3.2.0)
batchai (0.2.0)
billing (0.1.8)
cdn (0.0.14)
cloud (2.0.13)
cognitiveservices (0.1.12)
command-modules-nspkg (2.0.1)
configure (2.0.15)
consumption (0.3.0)
container (0.1.22)
core (2.0.31)
cosmosdb (0.1.20)
dla (0.0.19)
dls (0.0.21)
eventgrid (0.1.12)
eventhubs (0.1.2)
extension (0.0.12)
feedback (2.1.1)
find (0.2.9)
interactive (0.3.19)
iot (0.1.19)
keyvault (2.0.21)
lab (0.0.21)
monitor (0.1.5)
network (2.0.28)
nspkg (3.0.2)
profile (2.0.22)
rdbms (0.2.1)
redis (0.2.12)
reservations (0.1.2)
resource (2.0.27)
role (2.0.22)
servicebus (0.1.2)
servicefabric (0.0.12)
sql (2.0.25)
storage (2.0.31)
vm (2.0.30)
Python location ‘C:\Program Files (x86)\Microsoft SDKs\Azure\CLI2\python.exe’
Extensions directory ‘C:\Users\Carlos\.azure\cliextensions’
Python (Windows) 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]
Legal docs and information: aka.ms/AzureCliLegal

También puede seguir las instrucciones de instalación en Microsoft Docs configurar Azure CLI 2.0 en su entorno.

Paso 4: Instalación  de la extensión de cliente de Azureo pare IoTI

Finalmente también  tenemos que instalar la extensión de la IoT ahora que tiene una extensión de  cliente de Azure compatible instalado.

Cuando se instala una extensión, cualquier dependencia adicional de Python requerida se descarga  y se instala automáticamente.
Hay múltiples opciones para la instalación. Después de instalar la extensión, puede usar una lista de extensiones az para validar las extensiones instaladas actualmente o la extensión az show – nombre azure-cli-iot-ext para ver detalles sobre la extensión IoT.
En todos los casos, asegúrese de que la extensión IoT sea la versión 0.3.2 o superior.

La extensión está diseñada para ser plug-and-play con Azure CLI. Incluso si tiene Azure CLI instalado, asegúrese de que esté actualizado.La forma más sencilla es ejecutar el siguiente comando.

az extension add --name azure-cli-iot-ext

Puede usar el comando  az list list-available para ver todas las extensiones disponibles en el índice y es posible tambien actualizar una extensión en su lugar utilizando la extensión az update –name, Asimismo El IoT extensión archivo Léame describe varias maneras de instalar la extensión.

Paso 5:Inicie sesión  en Azure

Inicie sesión su cuenta Azure ejecutando el siguiente comando:

az login

Ahora  vaya a la  pagina   https://microsoft.com/devicelogin  e    introduzca el código que devuelve el comando    en  la  pagina anterior   para validarse.

 

inicioazure.PNG

Una vez aceptada en la página nos pide nuestro login de la cuenta de Azure  y tras aceptarse  ya  no es necesario continuar en el navegador   y a partir de aqui ya estan disponible los comandos  posibles de Azure  CLI

login.PNG

Una  validado  nos dará un mensaje de finalizacioó

fin.PNG

 

Ahora desde linea de comando tenemos muchas posibilidades :

Hub

Command group: az iot hub

az iot hub query

az iot hub generate-sas-token
az iot hub show-connection-string

az iot hub apply-configuration

az iot hub invoke-device-method
az iot hub invoke-module-method

Hub Device Identity

Command group: az iot hub device-identity

az iot hub device-identity create
az iot hub device-identity show
az iot hub device-identity list
az iot hub device-identity update
az iot hub device-identity delete

az iot hub device-identity show-connection-string

az iot hub device-identity import
az iot hub device-identity export

Hub Device Twin

Command group: az iot hub device-twin

az iot hub device-twin show
az iot hub device-twin replace
az iot hub device-twin update

Hub Module Identity

Command group: az iot hub module-identity

az iot hub module-identity create
az iot hub module-identity show
az iot hub module-identity list
az iot hub module-identity update
az iot hub module-identity delete

az iot hub module-identity show-connection-string

Hub Module Twin

Command group: az iot hub module-twin

az iot hub module-twin show
az iot hub module-twin replace
az iot hub module-twin update

Edge Deployment

Command group: az iot edge deployment

az iot edge deployment create
az iot edge deployment show
az iot edge deployment list
az iot edge deployment update
az iot edge deployment delete

Device

Command group: az iot device

az iot device send-d2c-message
az iot device simulate
az iot device upload-file

Device c2d-message

Command group: az iot device c2d-message

az iot device c2d-message receive

az iot device c2d-message complete
az iot device c2d-message abandon
az iot device c2d-message reject

DPS Enrollment

Command group: az iot dps enrollment

az iot dps enrollment create
az iot dps enrollment show
az iot dps enrollment list
az iot dps enrollment update
az iot dps enrollment delete

DPS Enrollment Group

Command group: az iot dps enrollment-group

az iot dps enrollment-group create
az iot dps enrollment-group show
az iot dps enrollment-group list
az iot dps enrollment-group update
az iot dps enrollment-group delete

DPS Registration

Command group: az iot dps registration

az iot dps registration show
az iot dps registration list
az iot dps registration delete

 

Importante:

Añada –help o -h a un grupo de comandos o comando para obtener más información.
Para grupos de comandos, esto revelará los comandos del grupo objetivo
Para los comandos, esto revelará información sobre los parámetros y puede incluir ejemplos de uso.

 

Algunos ejemplos de uso prácticos:

  • Metodos directos :  Se puede invocar directamente desde linea de comandos:                az iot hub invoke-device-method –device-id –hub-name –method-name –method-payload
  • Propiedades del dispositivo gemelo deseado: Por ejemplo se puede establecer una  propiedad de  intervalo = 3000 ejecutando el siguiente comando: az iot hub device-twin update -n -d –set properties.desired.interval = 3000                                  Esta propiedad  puede ser leída tamnbien  desde  su dispositivo.
  • Propiedades del doble dispositivo registrados : se pueden obtener las propiedades divulgadas del dispositivo ejecutando el siguiente comando: az iot hub device-twin update -n -d –set properties.reported.interval = 3000 .  Una de las propiedades es $metadata. $lastUpdated que muestra la última vez que este dispositivo envía o recibe un mensaje.
  • Etiquetas de doble dispositivo: Se pueden mostrar las etiquetas y propiedades del dispositivo ejecutando el siguiente comando: az iot hub device-twin show –hub-name –device-id                                                                                                            Agregar una función de campo = temperatura & humedad al dispositivo ejecutando el siguiente comando:az iot hub device-twin update –hub-name –device-id –set tags = ‘{“role”:”temperature&humidity”}}’
  • Consultas de doble dispositivo :Consulta de dispositivos con una etiqueta de papel = ‘temperatura & humedad’ ejecutando el siguiente comando:az iot hub query –hub-name –query-command “SELECT * FROM devices WHERE tags.role = ‘temperature&humidity’
  • Consulta todos los dispositivos excepto los que tienen una etiqueta de papel = ‘temperatura & humedad’ ejecutando el siguiente comando:az iot hub query –hub-name –query-command “SELECT * FROM devices WHERE tags.role != ‘temperature&humidity'”

 

 

 

Hemos visto por tanto cómo controlar mensajes de dispositivo a nube y enviar mensajes de dispositivo de nube entre su dispositivo de IoT y Azure IoT Hub.

Fuente https://docs.microsoft.com/en-gb/azure/iot-hub/iot-hub-device-management-iot-extension-azure-cli-2-0

Conversión de una tableta con la pantalla rota en una estación meteorológica


A estas alturas debido al bajo precio así como la rápida obsolescencia de las tabletas  de origen asiático, no  siempre merece la pena reparar una tableta  pues en la mayoría de las ocasiones las piezas de repuesto, casi siempre vienen de Asia, y al precio de compra hay que sumarle el costo del transporte desde allí y no siempre compensará el gasto adicional de piezas para su reparación.

Entre los elementos  que se suelen romper con más frecuencia en una tableta, como se ha comentado ya en este blog, destaca por  su enorme fragilidad  el panel táctil o digitalizador   el cual   en la practica hace inservible la tableta porque impide cualquier interacción con esta.

El digitalizador o panel táctil va superpuesto al  panel  lcd, es decir   pegado con un adhesivo a la pantalla LCD  , así que lo primero que tendremos que hacer es eliminar esta parte  para poder ver claramente la imagen del TFT .  Obviamente  pude sustituirse por otra nueva pero hay  un problema pues normalmente  esta  parte  es  especifica  para cada tableta   de modo que  según marca y modelo puede ser muy  caro conseguir  otro para reemplazarlo.

Afortunadamente aunque  se nos haya roto el digitalizador   normalmente la pantalla TFT  al ir separada debajo no se suele estropear ( a no ser que haya “derrame” del propio liquido del tft)  por lo que todavía puede utilizarse  usando solo la pantalla siempre que  usemos  otro interfaz via OTG , como por ejemplo  un ratón para operar con esta.

Suponiendo que el TFT de la tableta aun funcione  y hayamos descartado reemplazar el digitalizador por otro nuevo, veamos los pasos  a seguir  para darle una nueva vida a su tableta :

 

PASO 1: Desmontaje del digitalizador

Antes de desmontar la tapa de su tableta , NO OLVIDAR  EXTRAER LA MICRO-SD pues de no quitarla  nos arriesgamos a romper esta , y lo peor : que  queden partes en el lector  que luego puedan cortocircuitar  la alimentación  o los pines del lector de la micro-sd  llegando a poder romper la placa madre

Lo siguiente  que tendremos que hacer después de quitar la sd , es desmontar la tableta.   siendo lo más habitual  que la tapa trasera y la parte frontal vayan encajadas con pestañas de plástico.

Para quitar la  tapa  lo mejor es separar las dos partes con  púas de plástico ( como las usadas para tocar la guitarra) , la capucha de un bolígrafo,   o  mucho mejor con  herramientas de desmontaje  de  plástico   especificas para el desmontaje de teléfonos    y   tabletas

 

Una vez abierta la  tapa tenemos que desmontar  toda la electronica  como es la placa madre,la batería ,etc con sumo cuidado   para llegar a la pantalla con el tft (cada uno suelen llevar un  cable de cinta diferenciado)

Una vez hayamos alcanzado el conjunto pantalla y  digitalizador   tenemos  que despegar el digitalizador o sensor táctil del  tft  con mucho cuidado de no cortar

Hay personas  como Posoco que incluso con el cristal roto pueden reciclarlo  mediante un método muy sencillo para que  una  parte que este operativa del panel  utilizarla como sensor capacitivo de un solo canal

En este vídeo podemos ver en detalle como quitar el digitalizador  roto  para dejar visible la propia pantalla y también si aun queremos  usar la parte del digitalizador que no este rota

 

 

 

PASO 2: Adición de un ratón a la tableta por OTG

Gracias a la  tecnología OTG  (USB On-The-Go ) podemos conectar  desde un puerto micro USB 2.0 B hembra o micro USB 2.0 AB hembra  un dispositivo convencional  con conector usb convencional  (ratón,teclado, receptor de ratón y teclado, etc.  )

 

Hablamos  básicamente de un cable adaptador ( unos 2€ en Amazon)   que cuenta pues  por un lado el micro-usb para conectar a la tableta  y por  otro lado un conector hembra USB convencional   permitiendo  usar  dispositivos USB   convencionales que nos permitirán interactuar con la tableta.

No se recomienda  auto-construirse este cable pues para el OTG se necesitan 5 conexiones   y no nos valdrá un conector micro-usb  convencional de los usados para cargar nuestros smartphones.

 

IMG_20180414_133134[1]

Obviamente  la experiencia no sera la misma pero podremos hacer prácticamente lo mismo que desde el interfaz táctil y  gracias al uso   de reloj con previsión del tiempo o le daremos una segunda oportunidad a la tableta

PASO 3: Alimentación  de la tableta

Necesitamos  alimentar la tableta   (eso es una obviedad) para que funcione,  y máxime cuando la idea es tenerla conectado permanentemente.

En el caso de que la tableta no disponga de una conexión aparte para alimentarla no podremos usar el conector micro-usb  ,así que tenemos que buscar algún modo de cargar la batería

Un solución de muy bajo coste puede pasar por conectar  dos cables directamente a la batería  ya que son muy fáciles de identificar   y por medio de un diodo alimentar esta directamente. No es la solución  ideal  y lo purista seria usar un gestor de carga  o capturar el circuito de carga de la tableta ,  pero normalmente con el diodo  funcionará   perfectamente ya que las baterías  suelen ser de 3,8 V    y colocando el diodo en serie  provocara la caída de 0,6V a 0,8V     bajando la tensión  de 5v DC del usb a   unos 4.2 a 4,4V  todavía admisibles por una batería  de litio .

Para realizar la alimentición de la tableta  y la carga de su batería , pues únicamente soldaremos dos cables directamente en el cable  y rojo de la batería  y  nos los llevaremos al exterior por medio de un pequeño orificio que practicaremos en la tapa.

 

IMG_20180414_133020[1]

Una vez  hayamos sacado los cables , podemos reciclar un cable usb  viejo que no gastemos ( por ejemplo el de una impresora)   que  cortaremos  en un extremo  dejando solo  los cables negro   y rojo  de +5v y GND.

Ahora  con un cuidado extremo de no equivocarnos en la polaridad  uniremos   el negativo del conector  usb al cable procedente del negativo de la batería  .

Respectos a los polos positivos interconectaremos un diodo en serie de potencia   (hemos usado un diodo  1N5822) entre el positivo del USB  con el positivo de la  batería con la punta o cátodo apuntando  hacia la tableta:

IMG_20180414_132902[1].jpg

 

Opcionalmente si se deseamos mejorar el audio   de la tableta también  podemos  eliminar el altavoz  interno y  conectar dos cables hacia fuera  conectándolos a  otro altavoz de mejor calidad ,lo cual sin duda mejorara la experiencia.

IMG_20180414_133052[1]

PASO 4:  SOFTWARE

Ahora  que tenemos alimentado  y controlada la tableta  por medio de un ratón externo vía OTG   toca la hora de darle otro uso diferente al tradicional

Hay muchas opciones  de dar una segunda oportunidad  a una tableta, por ejemplo destacar algunas de ellas:

  • Despertador
  • Centro multiemdia
  • Radio por internet
  • Marco de fotos
  • Reloj con estación meteorológica
  • etc

En  el caso de este blog hemos optado por usarla  como reloj  que por  cierto se actualizara automáticamente   juntos con datos  referentes a la previsión del tiempo ( es decir usarla a modo de estación meteorológica)

IMG_20180414_132708[1]

 

Antes de empezar con la personalización del sw con la   que deseemos  dar otro uso a la tableta ,sin embargo tendremos  que superar un ultimo escollo  que es precisamente impedir el apagado el tiempo pasado un tiempo prefijado, lo cual podemos lograr por medio de la app  gratuita Keep Screen ON  ( aunque hay otras que cumplen esta funcionalidad)

KEEP SCREEN ON

Esta aplicación es gratuita y no contiene anuncios lo cual es de gradecer .La aplicación es simple, estable, ultraligera  y se ejecuta en todos los dispositivos Android. Esta aplicación cuenta con una especie de selector  que al estar la aplicación abierta , mediante la  casilla de palanca “Mantener la luz de fondo” se  puede  activar / desactivar la pantalla aplicación( seleccione opciones de iluminación adecuadas)
.
KEEP SCREEN ON.PNG
Características:
• Mantenga su retroiluminación de la pantalla encendida de forma permanente.
• Mantenga la retroiluminación del teclado conectado permanentemente (sólo para algunos modelos de teléfono !!!).

Este ese el link de descarga  en Google Play

 

SENSE FLIP CLOCK WEAHER

Sense flip clock & world weather es una aplicación de reloj digital y pronóstico del tiempo con todas las funciones y totalmente personalizables

Hay muchas mas aplicaciones similares a esta en Google Play  pero hemos usado esta pues puede ser una buena opcion

Esta aplicación contiene lo siguiente:

  •  3 tamaños de widget – 4×1, 4×2 y 5×2
  •  Muchas opciones de widget skins (películas de fondo para el widget)
  •  Diferentes películas de fondo para los iconos de las condiciones climáticas (icon skins)
  •  Diferentes tipos de fuente para la hora
  •  Localización automática (desde móvil/wifi o GPS) o manual (especificada por el usuario) de la ubicación
  •  El tiempo y la hora en el mundo: visualización de información sobre la hora y el tiempo local para cualquier número de ubicaciones diferentes en todo el mundo
  •  Temperatura en Celsius o Fahrenheit
  •  Período de actualización de las condiciones climáticas automático o manual
  •  Pronóstico del tiempo detallado que incluye lo siguiente:Hora local y zona horaria (para la ubicación),Hora de la salida y la puesta del sol, Duración del día, Condiciones actuales y temperatura, temperaturas mínimas y máximas del día
  • Condiciones de humedad y viento
  •  Fase lunar actual (icono)
  •  Pronóstico del tiempo para 4 días
  •  Fondo para el pronóstico del tiempo, en función de las condiciones climáticas y la hora (día/noche)
  •  Varios hotspot widgets (todos ellos definidos por el usuario para iniciar aplicaciones específicas)

 

tiempo.PNG

 

 

Este ese el link de descarga  en Google Play

https://play.google.com/store/apps/details?id=com.droid27.senseflipclockweather

 

¿Se le ocurre alguna otras   utilidad de  nuestra tableta recién reparad?  esperamos ansiosos  sus ideas.

Un paso más hacia el coche autónomo


Telefónica ha presentado esta semana en Talavera de la Reina(Toledo )  el primer caso de uso de 5G con un minibús eléctrico EZ10 de conducción autónoma, lo que supone el hito inicial del proyecto Ciudades Tecnológicas 5G .

En efecto gracias  a la cobertura 5G de una unidad móvil de Telefónica ,donde se ha desplegado una antena 5G de Ericsson  que usa  la banda 3,5 GHz,  se ha podido  demostrar  eel funcionamiento de     un vehículo eléctrico autónomo  sin conductor  de la compañía EasyMile en el que se ha instalado un terminal 5G de Ericsson

easymile

EasyMile EZ10  es un autobús eléctrico autónomo alimentadado  por una batería de 8 kWh Litio LiFePO4 en 48V de tensión  continua que le ofrece unas 14 horas de autonomia .

Este vehículo es bastante pequeño pues tiene unas medidas de 4mt de longitud por 2 metros de ancho  y unos 2.75mt de alto  con 2.8mt de distancia entre ejes pero aun asi tiene capacidad para hasta ocho personas y permite que otros siete pasajeros viajen de pie o puedan acomodar una silla de ruedas, con el objetivo de ayudar a recorrer el primer trayecto a de un viaje como por ejemplo de conexión entre la linea de metro y una terminal de aviación .

Este modelo EZ10  ya se ha desplegado en más de 100 ciudades y 29 países.

El  vehículo eléctrico de EasyMile cuenta con la tecnología más avanzada en conducción autónoma, integrando numerosos sensores :

  • LIDAR
  • GPS
  • Videocámaras
  • Sensores de poroximidad
  • etc

Todos estos , permiten analizar el entorno y crear un mapa tridimensional del mismo.

Este  vehículo autónomo, al estar permanentemente conectado, puede gestionarse remotamente gracias a la tecnología 5G permitiendo el acceso en tiempo real a sus datos de telemetría internos (sensores, localización extremadamente precisa, velocidad, rango de giro, etc)  de modo que se puede actuar sobre él en cualquier instante.Para que nos hagamos una idea del volumen de datos de la información recogida por los sensores puede llegar hasta 4TB de información diaria por lo que se requiere de un gran ancho de banda para transferir estos datos en tiempo real al borde de la red y de una latencia extremadamente baja. Todo ello de cara a procesar conjuntamente los datos recibidos por los vehículos de una determinada área y proceder a la toma de decisiones, aumentado de este modo la seguridad en entornos  donde cobiven  vehiculos y peatoness.

Con esta demostración, dislumbramos  lo que puede ser al futuro mostrando cómo las capacidades del 5G pueden beneficiar a la conducción autónoma, un ejemplo del gran abanico de nuevas posibilidades del 5G, permitiendo a Ericsson y Telefónica posicionarse como líderes en la transformación de España hacia 5G.

Estimaciones indican que en 2022 existirán unos 10 millones de vehículos autónomos, muchos de ellos recogiendo pasajeros 24 horas al día  asi que etste vehiculo es un buen puento de partdia

Lanzadera de EZ10

EasyMile es pues una empresa pionera en tecnología de vehículos autónomos y soluciones inteligentes de movilidad que desarrolla software para automatizar las plataformas de transporte sin necesidad de infraestructura dedicada .Fundada en junio de 2014, EasyMile SAS desarrolla y comercializa vehículos autónomos.

Fue formalmente una empresa conjunta formada por Ligier y Robosoft Technology PTE Ltd (Francia).

EZ10 se desarrolló con la ayuda del proyecto CityMobil2 cofinanciado por el Séptimo Programa Marco de la Unión Europea para investigación y desarrollo tecnológico

En enero de 2017, se anunció que Alstom había invertido € 14 millones en Easymile y las dos compañías habían firmado un acuerdo de asociación comercial.

En julio de 2017, Continental también anunció una inversión en EasyMile.
EasyMile es una de las empresas líderes que se especializa en tecnología de vehículos autónomos y tiene un alcance global con oficinas centrales en Toulouse (Francia) y oficinas regionales en Denver (EE. UU.), Berlín (Alemania), Melbourne (Australia) y Singapur.

Con más de 100 empleados altamente capacitados y apasionados con experiencia en robótica, visión artificial y dinámica de vehículos, EasyMile suministra soluciones de movilidad inteligente y tecnologías autónomas para vehículos sin conductor: desarrollo de software que permite la automatización de diversas plataformas de transporte, una poderosa gestión interna de flotas solución para vehículos autónomos, y suministro de soluciones de movilidad inteligentes para transportar pasajeros o logística en sitios privados, urbanos, suburbanos o rurales en diversos entornos.

La lanzadera sin conductor EZ10 ya se ha desplegado en 20 países de Asia-Pací fi co, Medio Oriente, América del Norte y Europa. Además de los fundadores, Alstom y Continental también son accionistas de EasyMile.

Por su parte, CarMedia Solutions es una startup española creada con la visión de que el coche conectado y autónomo revolucionará la movilidad y se convertirá en esta Quinta Pantalla.

Un resumen estas son algunas de las características del vehiculos:

  •  100% vehículo eléctrico driverless
  •  Viaja hasta 45 km/H
  •  LLeva hasta 15 pasajeros
  •  Rampa de acceso incorporada para pasajeros con movilidad reducida
  • Opera en rutas fijas o bajo demanda
  •  Supervisado por el software de gestión de flotas EASYMILE
  •  Opera en carreteras existentes sin necesidad de infraestructura adicional

El caso de uso en Talavera de la Reina se enmarca en el proyecto Ciudades Tecnológicas 5G, puesto en marcha por Telefónica el pasado mes de enero, para convertir Talavera de la Reina y Segovia en laboratorios vivos 5G donde realizar en paralelo tanto el despliegue tecnológico como los casos de uso que permitan poner en valor las capacidades del 5G.

Fuente https://www.telefonica.com/es/web/sala-de-prensa/-/telefonica-presenta-el-primer-caso-de-uso-5g-con-conduccion-autonoma-y-consumo-de-contenidos

error: pll_cal exceeds 2ms!!!


Programando con el ESP8266 , puede ser habitual que compile correctamente nuestra aplicación e incluso luego empiece a funcionar  transmitiendo datos  a  un servidor  distante  , para luego ,al reiniciar el ESp8266  ya no responda .

Si conectamos al salida del puerto serie  del IDE de Arduino   entonces veremos con asombro  el origen del problema : el  error pll_cal exceeds 2ms.

¿Como resolver el problema ?

Este problema se puede resolver reemplazando el archivo libphy.a  en el SDK que viene en  las bibliotecas de Arduino para ESP8266.
A partir de ahora, las bibliotecas Arduino ESP8266 vienen con SDK versión 1.5.3_16_04_18 y por  lo que sea en determinados ESP8266  da  problemas de la índole comentada.

La documentación de la versión del SDK 2.0.0_16_08_10 del sitio web de Espressif  lo explica mejor   y se   puede ver  aquí: http://bbs.espressif.com/viewtopic.php?f=46&t=2451.

Descargue todo el repositorio  que ocupa  unos 4.94MB del siguinte l link :   https://bbs.espressif.com/download/file.php?id=1690

Descomprima el fichero ESP8266_NONOS_SDK_V2.0.0_16_08_10.zip

Solo nos interesa el archivo libphy.a                                                                                                                                                                                                                                                                                                              

Reemplacé el archivo situado en C:\Users\xxxxxxxs\Documents\ArduinoData\packages\esp8266\hardware\esp8266\2.3.0\tools\sdk\lib\libphy.a (152kb) al nuevo descargado  .Por ejemplo si lo ha descargado en descargas estara en  C:\Users\xxxxxxs\Downloads\ESP8266_NONOS_SDK_V2.0.0_16_08_10\ESP8266_NONOS_SDK\lib\libphy.a (149kb)

Recompilé y cargué el código arduino nuevamente y el problema quedara resuelto!

 

Nota: Si el IDE Arduino vuelve a detectar librerías obsoletas para el ESP8266 ignórelo , pues  si se decide  actualizar justo esta  libreria  se expone a repetir el problema nuevamente

 

 

 

 

 

 

Cómo visualizar datos de sensores en tiempo real desde su hub de IoT Azure


Vimos  en  un post anterior  cómo es  posible usar Power BI de Azure  para visualizar datos de los sensores en tiempo real desde Azure IoT, pues bien,  existe otra posibilidad para  visualizar datos de los sensores en tiempo real que el hub de IoT recibe , que es  ejecutando una aplicación web que está alojada en la nube de Azure .

Para  cumplir con nuestro propósito de ver los datos de telemetría de nuestro dispositivo de Iot conectado a la nube de Iot Azure Edge ,    veremos como crear una aplicación web en el portal de  Azure preparando su hub de IoT para acceso a datos mediante la adición de un grupo de consumidores. Hecho esto configuraremos una aplicación web para leer datos del sensor de su hub de IoT y subiremos  esta aplicación web  a la nube de Azure ,la cual  nos permitirá  ver desde un navegador los datos de telemetría enviados  desde su hub de IoT ¿le interesa el tema? pues si es así empezemos.

Antes de empezar   deberíamos   tener configurado  un dispositivo Iot de Azure como por ejemplo  algunos que hemos visto como puede ser una Raspberry Pi 3  , un ESP8266  o incluso un dispositivo simulado.  Como hemos comentado en otros  posts todos esos  dispositivos de Azure IoT  hub  deben implementar una aplicación de ejemplo la cual  enviará  datos que  los sensores recogen del mundo físico ( humedad , temperatura, presencia, etc  ) a su hub de IoT.

Asimismo  teniendo dispositivos IoT enviando mensajes  de telemetría a la nube de Azure Iot Edge, para lograr persistencia en la nube de Azure  necesitamos una cuenta de Azure storage  así como  una aplicación Azure  para poder almacenar los mensajes de hub de IoT en el almacenamiento blob  como hemos visto en otros posts

Crear una aplicación web

  1. En el portal de Azure, haga clic en Crear un recurso > Web y móvilAplicación Web > Aplicación web
  2. Escriba un nombre único para la aplicacion  y anotar pues nos sera util para acceder a esta
  3. Verificar la suscripción  que para este ejmeplo pude ser “Evaluacion gratuita” si no dispone de otro recurso de este tipo
  4. Especifique un grupo de recursos  pinchando en Usar existente y  pinchando en el disponible
  5. Finalmente  seleccione Anclar al  panel y a continuación, haga clic en Crear.hestiaweb.PNG
  6. Este proceso puede tardar varios minutos dada la complejidad de  su realización ( localizar una máquina virtual disponible , obtener permisos , crear la instancia web ,etc)
  7. En este momento  , copie vaya nuevamente al servidor web –>introducción y copie el valor del campo URL ( sera del tipo   https://xxxx.azurewebsites.net/)    de modo que como debería estar  corriendo  su web se obtendrá una respuesta  parecida  la siguiente si copiamos dicha url en un navegador:azureweb.PNG

 

Añadir un grupo de consumidores a su hub de IoT

Los grupos de consumidores son utilizados por las aplicaciones para extraer datos desde Azure IoT, por ello necesitamos crear un grupo de consumidores para ser utilizado por un servicio de Azure para  leer los  datos de su centro de IoT.

Para agregar un grupo de consumidores a su hub de IoT, siga estos pasos:

  1. En el portal de Azure, abra su hub de IoT.
  2. En el panel izquierdo  casi en la parte más inferior en el apartado Mensajería , seleccione Puntos de conexión y  haga clic en este.
  3. Seleccione en el panel central  events  , introduzca un nombre en grupos de consumidores en el panel derecho y haga clic en Guardar.stream.PNG

Configurar la aplicación web para leer datos de su centro de IoT

  1. Abra en Azure la aplicación web que ha aprovisionado.
  2. Haga clic en el marco izquierdo casi  al final en CONFIGURACION->Configuración de la aplicación, y luego en configuración de la aplicación, agregue los siguientes pares clave/valor:
    Clave Valor
    Azure.IoT.IoTHub.ConnectionString Obtenidos desde el explorador de iothub  en  Azure IOT HUB >xx – Explorador de dispositivos–>OD del Dispositivo xxx –>cadena de conexion clave principal
    Azure.IoT.IoTHub.ConsumerGroup El nombre del grupo de consumidores que se agrega a su hub de IoT cumplimentado en el  apartado anterior

    hestiaweb_configuracion.PNG

  3. Haga clic en configuración de la aplicación, debajo de configuración General, activar la opción de  Web  Sockets  ( esta desactivado por defecto ) y a continuación, haga clic en Guardar.

Subir una aplicación web

En GitHub, Microsoft ha puesto a nuestra disposición muchas aplicaciones web de ejemplo para desplegar en Azure . Nos interesa  el código en node.js  de una aplicación  web completa que puede mostrar los  datos de telemetría  en tiempo real desde su hub de IoT .

Todo lo que se  necesita hacer es configurar la aplicación web para trabajar con un repositorio Git, descargar la aplicación web de GitHub y luego subir a Azure de la aplicación web al host.

El repositorio web-apps-node-iot-hub-data-visualization contiene el código en node para desplegar una aplicación web en la nube de Azure, que puede leer los datos de temperatura y humedad del IoT hub y mostrar los datos en tiempo real en un gráfico de líneas en una página web.

Los navegadores compatibles son

Navegador La menor versión
Internet Explorer 10
Borde 14
Firefox 50
Cromo 49
Safari 10
Ópera 43
iOS Safari 9.3
mini Opera TODAS
Navegador de Android 4.3
Chrome para Android 56

Los pasos  a seguir para desplegar esta aplicación son los siguientes:

  1. En la aplicación web, haga clic en IMPLEMENTACION ->Opciones de implementación > Elegir origen > Repositorio de Git Local y haga clic en Aceptar.Configure your web app deployment to use the local Git repository
  2. Tenga en cuenta que para modificar o eliminar  el origen de implementación  que acaba de crear is fuera el caso , primero necesitara desconectar este origen   por lo si lo hace tendrá  que volver a  ir a  IMPLEMENTACION ->Opciones de implementación   y volver a empezar con el proceso
  3. Haga clic en Credenciales de implementación, crear un nombre de usuario y contraseña para conectarse con el repositorio de Git en Azure y a continuación, haga clic en Guardar.
  4. Haga clic en Introducción y anote el valor de Git clone url (a la izquierda justo debajo de Git/nombre de usuario de implementación).Get the Git clone URL of your web app
  5. Abra una ventana de terminal en el equipo local o un comando.
  6. Descargar la aplicación web de GitHub y subirlo a Azure de la aplicación web al host. Para ello, ejecute los siguientes comandos:

giti clone.PNG

  • cd web-apps-node-iot-hub-data-visualization
  • git remote add webapp uri  (uri es la url del repositorio Git obtenida  en la página de Resumen de la aplicación web que se obtiene al pulsar Introducción).
  • git push webapp master:master  (se pedirán las credenciales  de Git que introdujo en en el apartado anterior en  la página de Overview , tenga en cuenta la Git clone url .)gitmanager
  • En resumen  estos son todos los comandos desde el interfaz  delñinea de comandos (cmd)    lanzados asi como la salida de esta:
C:\Users\Carlos>git clone https://github.com/Azure-Samples/web-apps-node-iot-hub-data-visualization.git
Cloning into ‘web-apps-node-iot-hub-data-visualization’…
remote: Counting objects: 35, done.
remote: Total 35 (delta 0), reused 0 (delta 0), pack-reused 35
Unpacking objects: 100% (35/35), done.
C:\Users\Carlos>cd web-apps-node-iot-hub-data-visualization
C:\Users\Carlos\web-apps-node-iot-hub-data-visualization>git remote add webapp https://[email protected]:443/Webestia.git
C:\Users\Carlos\web-apps-node-iot-hub-data-visualization>git push webapp master:master
Counting objects: 35, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (30/30), done.
Writing objects: 100% (35/35), 77.64 KiB | 3.23 MiB/s, done.
Total 35 (delta 6), reused 0 (delta 0)
remote: Updating branch ‘master’.
remote: Updating submodules.
remote: Preparing deployment for commit id ‘4b9c09be9b’.
remote: Generating deployment script.
remote: Generating deployment script for node.js Web Site
remote: Generated deployment script files
remote: Running deployment command…
remote: Handling node.js deployment.
remote: KuduSync.NET from: ‘D:\home\site\repository’ to: ‘D:\home\site\wwwroot’
remote: Deleting file: ‘hostingstart.html’
remote: Copying file: ‘.eslintignore’
remote: Copying file: ‘.eslintrc’
remote: Copying file: ‘.gitignore’
remote: Copying file: ‘.travis.yml’
remote: Copying file: ‘LICENSE’
remote: Copying file: ‘package.json’
remote: Copying file: ‘README.md’
remote: Copying file: ‘server.js’
remote: Copying file: ‘IoThub\iot-hub.js’
remote: Copying file: ‘public\index.html’
remote: Copying file: ‘public\javascripts\Chart.min.js’
remote: Copying file: ‘public\javascripts\index.js’
remote: Copying file: ‘public\javascripts\jquery-2.1.4.min.js’
remote: Copying file: ‘public\stylesheets\style.css’
remote: Using start-up script server.js from package.json.
remote: Generated web.config.
remote: The package.json file does not specify node.js engine version constraints.
remote: The node.js application will run with the default node.js version 6.9.1.
remote: Selected npm version 3.10.8
remote: ….
remote: npm WARN deprecated [email protected]: This package is no longer supported. It’s now a built-in Node module. If you’ve depended on crypto, you should switch to the one that’s built-in.
remote: …………………………………………..
remote: [email protected] D:\home\site\wwwroot
remote: +– [email protected]
remote: | +– [email protected]
remote: | | +– [email protected]
remote: | | | +– [email protected]
remote: | | | | +– [email protected]
remote: | | | | +– [email protected]
remote: | | | | +– [email protected]
remote: | | | | +– [email protected]
remote: | | | | `– [email protected]
remote: | | | `– [email protected]
remote: | | +– [email protected]
remote: | | +– [email protected]
remote: | | | `– [email protected]
remote: | | +– [email protected]
remote: | | +– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | `– [email protected]
remote: +– [email protected]
remote: | +– [email protected]
remote: | | +– [email protected]
remote: | | | `– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | | +– [email protected]
remote: | | | `– [email protected]
remote: | | +– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | | +– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | | +– [email protected]
remote: | | | `– [email protected]
remote: | | +– [email protected]
remote: | | +– [email protected]
remote: | | | +– [email protected]
remote: | | | `– [email protected]
remote: | | +– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | +– [email protected]
remote: | | `– [email protected]
remote: | +– [email protected]
remote: | `– [email protected]
remote: +– [email protected]
remote: `– [email protected]
remote: +– [email protected]
remote: `– [email protected]
remote:
remote: Finished successfully.
remote: Running post deployment command(s)…
remote: Deployment successful.
To https://webestia.scm.azurewebsites.net:443/Webestia.git
* [new branch] master -> master
C:\Users\Carlos\web-apps-node-iot-hub-data-visualization>
  • Ahora  ya puede abrir la aplicación web para ver los datos de temperatura y humedad en tiempo real desde su hub de IoT. En este momento  ,  vaya nuevamente al servidor web –>introducción y copie el valor del campo URL ( sera del tipo   https://xxxx.azurewebsites.net/)    de modo que como debería estar  corriendo  su web se obtendrá una respuesta  parecida  la siguiente si copiamos dicha url en un navegador:

 

En la página de su aplicación web, haga clic en la URL para abrir la aplicación web.

Get the URL of your web app

Debería ver los datos de temperatura y humedad en tiempo real desde su hub de IoT.

Web app page showing real-time temperature and humidity

Metodo alternativo sin usar los servicios web de Azure

Se necesita tener el  servidor node.js instalado.

  • Necesitara  dos  valores: valor1 y valor2:
    • El valor1 para  Azure.IoT.IoTHub.ConnectionString  se  obtiene  desde el explorador de iothub  en  Azure IOT HUB >CONFIGURACION -Directivas  de acceso compartido  –>cadena de conexión clave principal
    • El valor2 para  Azure.IoT.IoTHub.ConsumerGroup  se obtiene de del nombre del grupo de consumidores que se agrega a su hub de IoT cumplimentado en el  apartado anterior
  • Vaya al interfaz de comandos  , situase en el directorio donde descargo el ejemplo  y ejecute los siguintes comandos:
    • set Azure.IoT.IoTHub.ConnectionString=  valor1
    • set Azure.IoT.IoTHub.ConsumerGroup= valor 2
    • npm install
    • npm start​nodejsiothub
  • En este momento  ,simplemente acceda al fichero html y ejecútelos  de modo que como debería estar  corriendo el servidor node,js  se obtendrá  respuesta en un navegador similar a la anterior

 

 

.

 

Fuente :  https://docs.microsoft.com/en-gb/azure/iot-hub/iot-hub-live-data-visualization-in-web-apps