Ambilight para nuestro PC


Ambilight es una tecnología diseñada para mejorar la experiencia visual  analizando las señales entrantes y produciendo una  luz lateral ambiental adecuada al contenido que se está visualizando en la pantalla un resultado bastante atractivo , el cual  además de la sensación de estar viendo una pantalla aun mayor.

Hasta hace muy poco este efecto solo se podía conseguir si comprábamos un TV que contara con ese sistema y no había otra opción, pero recientemente  con la aparición de placas con suficiente capacidad computacional, se puede emular gracias al uso por ejemplo de una Raspberry Pi .  Aun mas sencillo  y facil es hacerlo a través una placa Arduino UNO (o incluso Arduino nano), un ordenador,y una tira de 50 leds para iluminar una televisión de 47 pulgadas..!Y todo sin tener que soldar nada!.

 

 

Antes de empezar  con el montaje ,  la tira de  leds   RGB   direccionable es muy importante que este basada en el chip  ws2801 (LEDs WS2801) pues el menos no nos  dará  ningún tipo de problemas usando una Placa Arduino,  siendo ademas la mas utilizada para este tipo de montajes.

Existen tiras basadas en el chips WS2801   en formato “luces de navidad”,pero lo mas habitual es adquirirla en forma de cinta autoadhesiva.

Un ejemplo de tira es  esta  que puede comprarse en Amazon por menos de 27€

tira de leds.png

Una peculiaridad  de esta tiras ,es que se pueden cortar según la longitud que se requieran , así como además que también es posible ampliarlas gracias a  los conectores que llevan en cada extremo, pudiendo  unirse  entre ellas hasta donde se necesite.

conector.png

Asimismo, para alimentar dicha tira  también  necesitaremos aparte  una fuente de alimentación  dimensionada para el números de leds que vayamos a adquirir , como puede ser una fuente de  5v y 2A  (para 50 leds)

La tira de leds por simplicidad la conectaremos a una placa  Arduino UNO , el cual puede adquirirse en Amazon por menos de 10€

Arduino UNO comparado a la versión anterior, usa el  Chip alternativo Atmega 16U2 8U2, lo que quiere decir una tasa más alta de transferencia y memoria.Ademas esta versión cuenta con la interfaz SDA y SCL .

Los datos de LED y las líneas de reloj los conectaremos  a la salida SPI de Arduino,es decir  los datos SPI salen del pin digital 11 y  el reloj es el pin digital 13.

Los LED deben ser alimentados externamente fuera de la linea de +5V de  Arduino 5V, pues podrían estropear el regulador de este . La masa o  tierra, por el contrario, si debe ser conectada a  la masa de Arduino.

Normalmente las tiras de leds WS01  ,suelen tiene 6 cables : tres de ellos lo  conectaremos los pines (11,13 Y GND) del Arduino, y los otros dos  conectaremos  a la fuente de 5V.

La forma de conectarlos todo esto es según el siguiente esquema :

  • El cable VERDE proveniente del pin SD de la tira de leds al pin 11 del Arduino Uno.
  • El cable ROJO proveniente del pin CK  de al tira de leds al  pin 13 del Arduino Uno.
  • El cable NEGRO proveniente del pin  GND de la tira de leds al pin GND del Arduino Uno.
  • El cable AZUL proveniente del pin +5V de al tira de leds lo dejaremos sin conectar
  • El cable Rojo grueso en paralelo con el azul  proveniente de la tira de leds a la conexión +5v de la fuente auxiliar
  • El cable NEGRO en paralelo con el  negro  proveniente del pin  GND de la tira de leds al GND de la fuente auxiliar

arduino.png

Conectamos pues  la tira de leds  por un lado a una fuente de 5V /2amp .  y por el otro a Arduino , por uno de los extremos y las otras 2 o 3 tiras con los adaptadores macho hembra adecuados   a continuación siguiendo la flecha  de las tiras  haciendo un rectángulo que rodeara nuestro monitor o TV .  Evidentemente en uno de los extremos de inicio es donde haremos las conexiones  y todas la demás se harán por medio de los  conectares .

Hemos de tener cuidado ya que uno de los extremos de la tira de luces es pues para conectar la primea tira al arduino y a la fuente :de esta forma, en cada extremo quedan sueltos los cables opuestos (normalmente el cable rojo es el positivo y el azul el negativo.) que conectaremos también entre si para dar alimentación a  los leds ( aunque los conectores también den energía  ya que llevan las 4 conexiones incluida los 5v y GND)

 

 

 SOFTWARE EN EL ARDUINO

Para gobernar , la tira de leds la conectaremos a  un   Arduino   que  ademas  hará de “puente” entre el ordenador host y la tira basado en WS2801 . Los datos de LED se transmiten, y  no se almacenan en búfer, lo que significa que si  hay mas código en Arduino  podrían generar demoras debido a la RAM limitada del Arduino,pero no obstante el algoritmo ejerce cierto esfuerzo para evitar las pérdidas de buffer

 El protocolo de cierre WS2801, basado en retardo, podría desencadenarse inadvertidamente si el bus USB o la CPU  está desbordada con otras tareas. Este código almacena datos entrantes en serie e introduce pausas intencionadas si hay una amenaza del buffer  lleno prematuro.

El costo de esta complejidad es algo que  reduce el rendimiento, pero la ganancia es muy buena  evitando  la mayoría de los fallos visuales  incluso aunque finalmente una función de carga en el bus USB y  host CPU, quede  fuera de  control.

 

Si no lo tenemos, descargaremos el software de arduino (Página oficial de arduino) y lo instalamos.

Conectamos el arduino uno a nuestro pc con el cable usb. Si pide los drivers, se pueden encontrarlo en la carpeta arduino-1.0.4\drivers.

Descargaremos  esta biblioteca:fastled biblioteca descarga, la cual  importaremos  al Arduino IDE.

Ahora toca cargar el sketch para lo cual  descaremos el código Adalight para las luces  aqui 

Descomprimireos el archivo y  añadimos los archivos que acabamos de descargar en la carptea Mis documentos/ Arduino  y ng

Arrancaremos el software de arduino y  configuramos en el ide la placa Arduino en Herramientas –>Placa Arduino Uno ( o la placa que tengamos)   sin  olvidar el puerto de comunicaciones

Iremos a  File> Sketchbook> Arduino> Adalight  y uan vez cargado el sketch debemos ajustar el numero de leds  (88 en nuestro casoo) que  tengamos en la instalación  así como la velocidad máxima (500000 )

 #define NUM_LEDS 88 // Max LED count
#define LED_PIN 11 // arduino output pin – probably not required for WS2801
#define GROUND_PIN 10 // probably not required for WS2801
#define BRIGHTNESS 255 // maximum brightness
#define SPEED 500000 // virtual serial port speed, must be the same in boblight_config

Ahora ya podemos   compilar el software( botón primero que  pone un v de verificar).

 

adalight.PNG

 

Si no ha habido errores ahora podemos subir  el sw pulsando el botón de Upload( flechita a la derecha  en el software de Arduino.

Al contrario de lo que sucede  con el sketch LedlIght donde se iluminan las luces  de 3 colores rojo, verde y azul si todo ha ido bien, si tenemos conectadas los leds al arduino y a la fuente externa, cuando carguemos este  código dentro del Arduino solo lucirá el primer led de la cadena lo cual significará que estamos en buen camino.

IMG_20170221_170329.jpg

 

El código dentro de Arduino es no volátil, así que no se borrará aunque desconecte la tarjeta.

 

Sw en el PC

Una vez tenemos el sw de Adalight en un Arduino, toca instalar  el programa de captura que  envíe las señales correspondiente a nuestro Arduino

Entre los programas de captura  ambibox es el mejor especialmente con  windows 10, ya que no solo  tiene la capacidad para capturar su escritorio  sino de poner un fondo personalizable, convertir la tira en luces psicodelicas en función del audio,fondo variable automático ,plugins, etc

Se  puede encontrar aqui, tanto el software como el add-on para XBMC.

 

Una vez   descargado , durante la instalación se puede seleccionar  la opción de instalación completa ,marcando ademas la opción de descarga e instalación de playclaw.

Empezamos la configuración, pulsamos sobre el botón de mas ajustes :

more

En la parte inferior ,como vemos seleccionaremos como Device  Adalight , elegiremos  el puerto de comunicaciones ( el mismo al que este conectado el Arduino) y en el numero de zonas, coloremos  el numero de leds total que tengamos instalados ( en el ejemplo 88).

Asimismo no olvidar orden de colores,lo cual podemos obtener   fijando un color mediante el selector de Mode:Static Background   ,pinchando en el color ( aparecerá la paleta),pinchando en el check de Use baclight   y seleccionando en el combo order of colors la opción adecuada   hasta que el color de los leds sea similar al de paleta ( en mi caso es BGR)

 

fondo.PNG

IMG_20170221_204134.jpg

En este programa no olvidar  en salvar cada cambio en “Save Setting”  pues si no lo hacemos perderemos cualquier cambio que hagamos

Con las nuevas opciones ya podemos avanzar en la  configuración de nuestra instalación para lo cual seleccionaremos en Mode  :Screen capture

 

capturawindiow.PNG
Acto seguido configuramos la ubicación de los leds, pulsando  sobre SHOW AREAS OF CAPTURE y sobre el asistente de configuración,elegimos si queremos una instalación de 3 lados o 4. También  es importante la cantidad de leds que tenemos en cada lado de la TV especialmente horizontal o verticalmente.
Marcamos asimismo el orden de los leds, de izq->der o de der->izq.
Con esto ultimo ya tenemos nuestro software listo para funcionar

2017-02-21_20h59_23.png.
Este programa además tiene unas opciones muy interesantes, en esta pantalla:

adicional.png

Podemos configurar muchos parámetros de cada led, aplicar correcciones de color y gamma ,brillo ,etc

También podemos activar un servidor web para controlar el software desde el teléfono

servidor

 

El siguiente paso es instalar el add-on para el XBMC.Para ello Lo descompriremo y lo ponemos  en la ruta:”Users/Username/AppData/Roaming/XBMC/addons”

Ahora en el  apartado de add-on ( en el  menú de la izquierda ) se puede configurar un poco el comportamiento, aquí cada cual que lo puede personalizar a su gusto.

Una solución para que funcione a pantalla completa es usando el software playclaw.
Para ello, se pueden  es crear 2 perfiles dentro de ambibox, uno para el escritorio y otro para XBMC.
En este ultimo el sistema de captura que elijo es playclaw de modo que cuando se inicie un video en XBMC  dará la opción de elegir que perfil cargar, de modo que se  puede  elegir el perfil XBMC y asi  cuando se  salga de XBMC se  puede vplber   al perfil de escritorio.
Por supuesto se debe tener corriendo el software playclaw para que esto funcione.

 

Por ultimo  hay  un  modo  que haya las delicias de los que les guste la música  : el modo Color music , el cual permite modular las luces en función  de lo que se este escuchando por el canal de sonido principal.

 

musica.PNG

 

Obviamente si queremos que las luces acompañen a la imagen de video de la pantalla principal el modo de captura de pantalla elegido sera  [Software] Screen capture  y el Método  Windows 8  ( aunque tengamos Windows 10 instalado en nuestro equipo)

windows8.png

Para terminar dejamos dos test de vídeo , que a pantalla completa,  nos pueden servir para testear si nuestro sistema responde correctamente.

 

 

Anuncios

Cómo probar una tira de leds WS2801


Es muy frustrante adquirir  una costosa tira de leds  WS2801 ( ni importa que sea SMD o en formato “luces de navidad”) ,  adherirla y fijarla  con mucho esmero a nuestro TV o monitor ,siguiendo  cuidadosamente los muchísimos tutoriales que hay en Internet (por ejemplo para simular  con esta  el famoso  sistema ambilight ),   y al final no conseguimos obtener nada  quizás porque nuestro hardware esta mal conectado (o tenemos algo estropeado)  o bien no hemos  configurado el sw ,o una mezcla de ambas cosas.

Antes de abandonar veamos  con la ayuda de una placa Arduino Uno conectada a nuestro PC  , vamos  a ver algunas pautas que seguro  nos resuelven el misterio:

 

En primer lugar usaremos una  placa Arduino UNO , para lo cual usaremos sólo  tres cables para  conectar a uno de los  extremos de la tira de leds a Arduino . Las conexiones estandarizadas que haremos sea cual sea la modalidad de la tira de leds son las siguientes:

  • CK de la tira WS2801  al pin GPIO 13(reloj del SPI)
  • SD de la tira WS2801  al pin GPIO11 (SPI MOSI).
  • GND de la tira WS2801 al GND de Arduino
  • +5v   de la tira WS2801  a  una fuente de alimentación aparte de mínimo 2Amp ,5VDC

En algunas tiras formato “luces de navidad” el hilo azul es  GND , el . Verde  es CK  y amarillo es SD ,y el cable rojo es +5V ,  pero esto no es norma porque las tiras SMD   suelen tener un cable rojo para CK, otro verde para SD , el negro para GND  y un violeta para +5V  , lo cual como vemos no sigue para nada la pauta anterior

Aunque no es necesario  también se puede utilizar un Arduino Mega, conectando  reloj del SPI al pin 52   ,  conectando SD al   pin 51 SPI MOSI  y por supuesto las masas.

Es importante destacar que los cables extra rojo y azul son para conectar  5V DC   de al menos 2 Amp ( en función del numero de leds que vayamos a conectar)  lo cual no deberíamos extraer de la placa Arduino sino de una fuente auxiliar DC de 5V    no  olvidando de unir ambas masas ( la de Arduino y de la fuente externa).

En el siguiente esquema podemos ver claramente este montaje.
led_pixels_wiring-diagram.png

Para probar   la tira  de leds    necesitamos si aun no lo tenemos dos herramientas :

  • El IDE de Arduino :Si no lo tiene ya instalado , descargar el Arduino IDE (entorno de desarrollo integrado) de la Web de Arduino. Seleccione la versión del software para su tipo de computadora: Windows, Mac o Linux   Es un poco diferente para cada uno de los tres sistemas operativos.
  • El IDE de Processing:A continuación, descargue el IDE de processing del sitio de procesamiento.Descomprima el fichero y cópielo al  directorio  c:\archivos de programa\ . Es importante que descargue la versión processing 2.2 pues la  versión 3.0  con el codigo Adalight  tendra  errores con él.
El IDE de Arduino y Processing  son  muy similares pero son dos programa muy distintos para diferentes funciones como vamos a  ver

Descargar Adalight ZIP

Por último, visite la página Adalight en Github y descargue el archivo ZIP. El botón de descarga está cerca de la parte superior izquierda de la página:

Después de descomprimir el archivo ZIP, necesitará mover algunos archivos en su lugar.

Si ha ejecutado el Arduino o el IDE de processing  debería haber  dos  correspondientes carpetas llamadas “Arduino” y de “Procesing” dentro de su carpeta personal de “Documents” (o “Mis documentos” en Windows). En ese caso, mover el contenido de la Arduino y procesando carpetas desde el archivo ZIP de Adalight en las carpetas correspondientes de documentos.

Si las carpetas de Arduino y Processing todavía no existen en el sistema,  puede copiar estas desde el archivo ZIP de Adalight a la carpeta de documentos.

Los otros archivos y carpetas en el archivo ZIP pueden ser ignoradas ya  que son para usuarios avanzados y no son esenciales para su uso.

Salga del Arduino y Processing  si se están ejecutando  pues las carpetas recién instaladas no serán visibles hasta la siguiente vez que inicien  estos programas.

Programar Arduino

Para  probar la tira de leds  en caso de que no lo tenga instalado deberá instalar  el IDE de Arduino.Si no lo tiene instalado el IDE de Arduino conecte la placa Arduino al ordenador con un cable USB A-B. Cuando conecta por primera vez, Windows los usuarios le pedirá que para instalar a un controlador.

Iniciar el IDE de Arduino. Después de un momento, debería ver una ventana azul y blanca simple con algunos botones.

En el menú archivo , seleccione Sketchbook,   y elegir  LEDstream. .

En el menú herramientas , seleccione la  placa  luego Arduino Uno (o tipo de cualquier placa Arduino que está usando).

En el menú herramientas , seleccione el Puerto Serial y luego el puerto correspondiente a su placa de Arduino.

Haga clic en el botón de subir cerca de la parte superior izquierda de la ventana:

ledsstreamarduino

Después de que el código sea cargado, si los LEDs están conectados correctamente conectados y la fuente de alimentación está conectada, todos  los LEDs deben encenderse en una secuencia  primero todo todos en flash rojo, luego  verde y después en azul aproximadamente un segundo cada uno, y luego se apagan todos. Se trata de un diagnóstico que indica el LED Arduino están trabajando correctamente y ahora están en espera de datos de que se  envíen desde nuestro ordenador con otro sw.

Gracias    a que el Arduino almacena el programa en memoria no volátil, sólo necesita hacer este proceso de carga una vez, no cada vez que desee utilizar Adalight.

Si los LED no parpadean, asegúrese de que el cableado coincide con la página anterior, y que la fuente de alimentación está conectada.
Si persiste el error  deberíamos probar la salida digital de los  pines 11 y 13 por si estuviesen defectuosas, para lo cual conecte dos leds normales  entre GND  y los pines 11 y 13  y cargue en Arduino el siguiente código de ejemplo:
void setup(){
pinMode(13, OUTPUT);
pinMode(11, OUTPUT);//10 ok 11 ok
}void loop(){digitalWrite(13,HIGH);
digitalWrite(11,LOW);delay(1000);

digitalWrite(13,LOW);
digitalWrite(11,HIGH);

delay(1000);

Al subir el código anterior en nuestro Arduino ,  ya deberían parpadear ambos leds , lo cual sera un claro indicio que la placa Arduino esta bien:

led13

 

Una vez hayamos probado que la placa Arduino esta correcta  con el simple test anterior,  lo que nos queda es volver a cargar el sketch de  probar LedStream cargado inicialmente pues  hay evidencias  de que algún (o algunos) modulo(s)  mal que esta bloqueando el resto de módulos

En el caso de que sólo los primeros pocos LEDs respondan  y ,el resto permanece apagado o parpadea aleatoriamente o incluso no se encienda ninguno, tendrá que estudiar cual de  los módulos esta mal  .

Dentro de cada píxel  hay  una pequeña placa de circuito con el CI WS2801   el led RGB   y algunos componentes adicionales . Si no funciona  el primer píxel apretar las conexiones  donde el cable de cinta se une a la placa  e intente comprobar la conexión ,Si no  funcionase , puede recortar  ese modulo , conectando las conexiones al siguiente  píxel   y seguir la  dirección de conexión ( en el montaje SMD  llevan una flecha  que indica claramente el orden de conexiones)

ws2801

Si consigue que algunos  leds  funcionen pero aún así  algún  led posterior  parpadea ,y fallan después todos los siguientes en la cadena ,también  es muy  posible que ademas  haya algún  otro chip defectuoso  más ,  así que el proceso  anterior lo  deberá repetir  cortando el  led asignado a ese  IC defectuoso y restituyendo las conexiones soldando cablecillos entre el modulo anterior y el siguiente .

img_20170219_222107

Obviamente este proceso tendrá  que repetirlo  hasta que  el test de leds ejecutado desde el  sketch de ledstream haga que se enciendan completamente todos los ledss de un color en las tres secuencias.

Ejecutar el Software de Processing

Este paso debe realizarlo solo cuando el  test de ledStram muestre la secuencia de arranque de rojo, verde y azul apagándose todos después.

Inicie  el programa Processing ejecutando el archivo “C:\Program Files\processing-2.2.1-windows64\processing-2.2.1\processing.exe”. Después de un momento, debería ver una ventana simple de blanca y gris  muy similar al IDE de Arduino.

En el menú archivo , seleccione carpeta de bocetos,  y seleccionar el último primero: Colorswirl.

 

color
Es muy importante anotar el numero de leds( en el ejemplo 88)   tras el primer import:

import processing.serial.*;int N_LEDS = 88; // Max of 65536

Haga clic en el botón Ejecutar cerca de la parte superior izquierda de la ventana: si el Arduino esta arrancado con el sketch (LedStram ) y por supuesto conectada la tira de leds a este  y alimentada con la tensión de 5V  se  debería ver un arco iris colorido de animación sobre los LED.

Si  no pasa nada , entonces usted tendrá que editar el código alrededor de la línea 26, buscando esta declaración:

myPort = serie new (this, Serial.list() [0], 115200);

Necesitaremos cambiar el código  que abre la conexión serie con el Arduino. Una ruta es a través de ensayo y error: tratar  Serial.list() [1], entonces Serial.list() [2]y así sucesivamente, volver a arrancar el programa cada vez para ver si funciona.

Para un enfoque más científico, añadir una nueva línea de código antes de ejecutar el sketch:

println(Serial.list());

Cuando se ejecuta, muestra una lista de todos los puertos serie o dispositivos. Si sabe que dispositivo o puerto COM corresponde al Arduino, puede cambiar la línea original para incluir estos datos.

Por ejemplo, ahora se puede leer:

myPort = serie new (this, “COM6”, 115200);

Obviamente esto será diferente en cada sistema, por lo que dependerá de cada situación..

Si aun tiene dudas ,otra manera de localizar el nombre del puerto, es en el IDE de Arduino, pues  el puerto seleccionado se ve  en el menú Tools→Serial Port antes de programar el chip.

Una vez conseguido este efecto sobre los leds , este resultado es sinónimo que absolutamente todos los leds son direccionables por lo que ya puede usar su conjunto de tiras de leds  para cualquier aplicación con la certeza de que ya  le debería funcionar.
Si planea organizar los LEDs de manera similar a los ejemplos  entonces tendrá nada más que cambiar  el software. Si utiliza un diseño diferente, necesitará realizar algunos ajustes en el código  para identificar su distribución concreta

Como nota ultima :Antes de montar los LEDs detrás del monitor o TV , nunca se olvide de ejecutar el software con los LEDs sueltos en su escritorio para confirmar que todo funciona. !Esto ahorrará tiempo y angustia en el raro evento que un led vuelva a estar mal  tenga que sustituirlo!.

img_20170219_225945

 

Regalos para apasionados de la tecnologia


En  la actualidad  se pueden encontrar todo tipo de artilugios tecnológicos a cualquier precio y para todos los gustos, pero a veces queremos llegar más lejos  construyendo nosotros mismos muestras propias creaciones . En esta linea, tanto para  potenciar nuestra creatividad ,como ayudarnos en nuestros proyectos hemos pensado en una lista de regalos tecnológicos que  quizás puedan servir de inspiración  .

Raspberri Pi 3

Actualmente es una de las placas mas potentes que existe (incluso mucho mas que Arduino y todos sus clones) gracias a su potente chipset Broadcom a 1.2 GHz con procesador ARM Cortex-A53 de 64 bits y cuatro núcleos,coprocesador multimedia de doble núcleo Videocore IV, memoria de 1 GB LPDDR2 y Bluetooth v4.1 así como sus conexiones :

  • Ethernet,
  • HDMI
  • VGA
  •  CSI,
  •  USB ( 4 puertos)
Esta nueva versión  integra un chip que la dota con conectividad Wifi y Bluetooth 4.1 de bajo consumo y cuenta con administración de energía mejorada que permite trabajar con más dispositivos USB,Permite usar más energía a los puertos USB. Podrás conectar más dispositivos a los puertos USB sin necesidad de usar hubs USB alimentados. También al no necesitar usar adaptadores WiFi por USB, tendrá más energía disponible en los puertos.
Raspberry pi 3
Para empezar a usar esta estupenda placa  tendremos que crear la imagen del SO en una SD  como describimos en este post. En cuanto a periféricos ,podemos conectar un ratón o teclado convencional con conexión usb ,  o la mejor opción ,optar por  un mini teclado y ratón  inalambricos a 2.4GHz que se pueden comprar por 15€ .Esta opción alimentada por baterías de litio , simplificará las conexiones al usar un sólo puerto usb para el dongle  y nos permitirá interactuar con la RPIII con mayor libertad.
raton y teclado en dongle
En cuanto a  la alimentación  podemos usar  un  cargador de móvil  convencional siempre que suministre al menos 1Amp (5VDC)  y si se pregunta por la caja , aunque se puede comprar lo mejor es construirnosla nosotros mismos ,al puro estilo maker.
La RPI como podemos ver en este blog , permite desde crear un ordenador económico  con Pixel (Debian) hasta un emulador de juegos clásicos ,un NAS, un hub domótico ,aplicaciones de IoT o el centro multimedia definitivo. Sale por 40 euros.

 

Kuman K11 Arduino

Para aquellas personas que opte por Arduino , exite un Kit de iniciación para Arduino con 31 componentes donde se incluye como no podia ser otra manera el corazón :na placa compatible con Arduino UNO R3.

Ademas por supuesto ,si le e gusta puede ir ampliando con más componentes. El precio del kit  básico incluido el Ardunino Uno R3 cuesta 46 euros.

 

 

Kit de inicacion para Arduino

Los componentes que incluye este kit son los siguientes;

  •  UNO R3 + cable USB x1
  •  Desarrollo Junta de Expansión x1
  • Mini tabla de pan x1
  •  Placa de pan 830 Point Solderless x1
  •  Caja de componentes SMD x1
  • LED (rojo) x5
  •  LED (amarillo) x5
  •  LED (verde) x5
  •  Buzzer activo x1
  •  Buzzer pasivo x1
  •  Mini botón x4
  •  Displays LED de siete segmentos (1 dígito) x2
  • Interruptores de bola x2
  • LDR (Resistencia dependientes de la luz) x3
  •  Potenciómetro x1
  •  Sensor de temperatura LM35 x1
  •  Sensor de llama x1
  • Sensor infrarrojo x1
  •  Resistencias de 220 ohmios x8
  • Resistencias de 1k ohmio x5
  • Resistencia de 10k ohmios x5
  • Cabezal de 40 pines x1
  • Hembra de 4pcs los 20cm al cable femenino x1 de Dupont
  •  Cables de puente x20
  • Batería 9V x1
  •  Clip de batería de 9V x1
  •  Control Remoto IR x1
  •  1602 Módulos LCD x1
  •  Servomotores SG90 9G x1
  •  Tarjeta de conductor ULN2003 x1
  •  Motor paso a paso 5V x1
  •  Caja de almacenaje x1

Este es un Super Starter Kit actualizado, desarrollado especialmente para aquellos principiantes que estén interesados en Arduino  con componentes de alta calidad,  pues como vemos, incluye un conjunto completo de componentes electrónicos útiles para Arduino conteniendo todos los componentes que necesita para comenzar su aprendizaje de programación para Arduino .

Es perfecto para las personas que desean iniciarse en el mundo del arduino o tengan alguna asignatura en sus estudios, ya que tiene una gran variedad de accesorios que le permiten “trastear” en el increíble mundo de Arduino ( la verdad no he visto que fuera necesario comprar nada mas). Todos los componentes ademas están organizados en una caja de plástico con separadores ,lo cual   se agradece para tenerlo todo recogido.

Los tutoriales detallados incluyendo la introducción del proyecto y el código fuente, contactando con el vendedor,   aunque en este humilde blog, o en Internet, encontrará miles de ejemplos para sacarle el máximo partido a este kit.

 

 

Memoria diminuta

Si su televisor o centro multimedia tiene capacidad para reproducir contenido desde una memoria USB, este modelo de Sandisk es USB 3.0 para una transferencia rápida de archivos desde su ordenador, y a la vez muy pequeño para que pase desapercibido en el puerto de su televisor.

El modelo de  64GB  sale por unos  17€  ,pero las hay de  128 GB  por  30€. ( o de capacidades inferiores de 16GB o 32GB rondando los precios entre 6€ y 10€)

 

memoria diminuta

SSD de 120 GB

Gracias a un disco sólido se  puede ampliar la vida útil de un ordenador y maximizar la inversión actual al sustituir la unidad de disco duro convencional ( que podrá seguir usando gracias a una económica  caja )   por una unidad de estado sólido (SSD) Kingston.

Esta es  la forma más rentable de mejorar de manera espectacular la capacidad de respuesta del sistema mejorando machismo el tiempo de arranque y en general el rendimiento  ya que el tiempo de acceso a disco  es espectacularmente mejor que en los discos convencionales.

Este modelo  incluyen una controladora LSI SandForce optimizada para memoria Flash de nueva generación con la que ofrecen el súmmum de la calidad y la fiabilidad de dos marcas líder de SSD. Al estar constituidas por componentes de estado sólido y no tener piezas móviles, son resistentes a los golpes y las caídas. Las unidades de estado sólido Kingston están respaldadas por soporte técnico gratuito y la legendaria fiabilidad Kingston

Este modelo de  SSD  con una capacidad de 120GB ( mas que suficiente para contener Windows 10) o de 2.5 pulgadas para potenciar su PC o para incluirlo en un NAS, sale por por poco dinero: 48 euros.

ssd de 12GB

Kit de herramientas

Ya sea para montar la última gráfica que le ha llegado ,así como para cambiar la pantalla rota de su smarthone ,la verdad es que  uno nunca sabe cuándo necesitará un set de herramientas tan completo pues incluye diferentes puntas para diferentes propósitos: puntiaguda para alta precisión, curvada para exactitud ergonómica y redondeada para levantar componentes más pesados

Son perfectas para tareas que requieran coger, sujetar, extraer y/o apretar con componentes .Incluye capa protectora contra la ESD para evitar dañar los componentes electrónicos sensibles

 

De iFixit y cuesta 55 euros. quizás un poco alto pero es sabido que esta marca destaca por su alta calidad ,asi que deberíamos  sopesar esta importante característica pues a veces nuestras herramientas no están a la altura de lo que esperamos de  ellas.

Clon de hromecast

La manera más sencilla y con más compatibilidad para ver contenido en un televisor controlando la fuente desde un smartphone. El original de Google cuesta sobre los 40€  pero hay  muchas versiones clónicas que hacen prácticamente la misma función  , por muchísimo  menos coste como por ejemplo el MiraScreen que cuesta sólo  14 euros. 

Este dispositivo soporta compartir Pantalla pudiendo usar Airplay, miracast o  DLNA (DLNA: Estándar) y la conectividad apoyada es  Wi-Fi: 802.11b / g / n inalámbrica de 2.4GHz WiFi 150Mbps  y  lleva  antena externa  WiFi para proporcionar 10M cobertura

La salida de vídeo es hasta 1080p HDMI de salida soportando  los formatos :

  • Video :AVI / DIVX / MKV / TS / DAT / MPG / MPRG / MOV / MP4 / RM / RMVB / WMV. Soporte de formatos de audio: MP1 / MP2 / MP3 / WMA / OGG / ADPCM-WAV / PCM-WAV / AAC.
  • Audio : .MP3, WAV.
  • Fotos : JPEG / BMP.

 

 

Mirascreen

El consumo de energía ultra bajo, consumiendo  pocas mA y es portátil compacto  para facilitar su transporte.

Hay  personas que lo usan en el coche  pues muchos reproductores de coche cuentan con soporte HDMI, de esta forma desde un teléfono inalámbrico podemos conectarlo  a la pantalla del coche convirtiendo su coche al instante en vehículo inteligente. Otras utilidad  de  est dispositivo es el  E-learning, reunión de negocios pues  nos liberamos de las ataduras de cable, siendo  las reuniones en inteligentes y eficientes. Tambien son perfectas para disfrutar de la gran pantalla como  Ver películas, jugar, crear su propio cine exclusivo,ver fotos juegos ,etc  .

Por cierto el mando a distancia se hace desde el propio  Teléfono ,Labtop o Tablet PC.

 

Sable electrónico Kylo Ren

Para terminar para los mas pequeños   ( o no ) , para practicar de cara a nuevos juegos de Star Wars o simplemente porque quiere ser  como un niño con zapatos nuevos. Este sable se ilumina y lo componen diferentes piezas teniendo el  mismo aspecto que la película.Incluye daga de luz  simulando clásicos sonidos y luces. Es ademas combinable con otros sables Master Jedi (se venden por separado)

Cuesta 30 euros.

sable laser

 

 

Construcción de un droide casero


Para los amantes de Star Wars, si se tienen las ganas  y el tiempo suficiente  también es posible  crear su propia versión de un BB8 en tamaño real usando materiales reciclados.De hecho debido a la limitación de materiales, el autor recurrió a su ingenio usando muchos materiales que encontró a su alrededor como por ejemplo desodorantes roll-on como rodamientos de bolas, de lona como fibra de vidrio, bolas de Navidad como el ojo & etc ..).

Puede parecer poco ortodoxo pero haciendo uso de estos materiales el enfoque en la construcción del proyecto no requiere  impresoras 3D,  CNC o fresadoras.

El androide puede ser controlado por cualquier smartphone y ademas también habla . El diseño del conjunto además el autor decidió limitarlo a $ 120, para que sea más barato que el juguete esfero .

Mas concretamente el autor uso para el cuerpo  del  droide los siguientes materiales:

  • Pelota de playa inflable ( diámetro: 50 cm)
  •  Antiguo Periódico
  •  Llanura de tela de lona
  •  2 botellas de cola blanca ( a.k.a pegamento Elmer )
  • 1 Botella de Woodglue
  •  Negro, gris y naranja ( mandarina ) pintura de aerosol
  •  Roll-on Desodorantes

Y para la cabeza de BB8  los siguientes:

  • Espuma de poliestireno de la bola ( diámetro: 300 mm / 12 pulgadas )
  • Bola de Navidad ( tamaño de un ojo BB8 )
  • Una  antena de WiFi ( Prop solamente)
  • Paños Percha
  • Roll-on Desodorantes
  • Negro, gris y naranja ( mandarina ) pintura de aerosol
  •  Super pegamento
  • Imanes de neodimio

Por supuesto también  hará falta de una mínima  electrónica para gobernar el droide :

  • Arduino Uno
  • Pololu Dual VNH5019 Motor Shield
  • 2x Pololu (19:1) 37D Metal Gearbox
  • Módulo Bluetooth HC05
  • Pack de 4 Cell batería de litio ( 2x )
  • Interruptor,jack  DC  , cable s , estaño para soldar,tec

Aparte de ser muy espectacular  BB8 también tiene un diseño muy interesante de construcción  de modo que uno  no puede dejar de preguntarse cómo funciona este droide

Realmente tomó un poco de ingeniería avanzada y una mente creativa para inventar una cosa así. La idea de cómo funciona el mecanismo, implica en gran medida los conceptos de la física y la electrónica. Todo es cuestión de mantener simpre estable el  centro de gravedad. El diseño BB8 original que se utilizó forma la película, utiliza un diseño de rueda de hámster. Básicamente, hay un robot de dos ruedas rodando dentro de una esfera. La cabeza se mantiene pegada  gracias  a la presencia de imanes.

 

Además, este sitio web explica muy bien, cómo funciona BB8! (http://www.howbb8works.com/ )

Para el cuerpo el autor coloco tiras de papel de periódico en la superficie de la pelota de playa  con su mezcla de pegamento. Básicamente es como una enorme piñata utilizando  la pelota de playa como  molde para el papel maché.

Para acelerar el proceso  adema se puede  utilizar un secador de pelo para acelerar el proceso de secado. O tal vez encender  un ventilador eléctrico para el papel maché y  dejar secar durante la noche.

Sobre el papel ya seco se pude poner  fibra de vidrio o lienzo normal en lugar de la fibra de vidrio. El lienzo se endurece muy bien y funciona como un buen papel maché. (Cartón tela)

Para el proceso de alisado se hace con una multiherramienta con el accesorio de lijar y  una lata de masilla de madera cuidadosamente aplicándolo sobre la superficie exterior del cuerpo de BB8 usando un aplicador de metal para hacer el trabajo. La masilla llena los vacíos.Cualquier exceso de masilla será eliminada después del proceso de lijado.

Una vez seca la masilla el autor lijo  la superficie del cuerpo del BB8 utilizando  un grano grueso (100-400 grit) de papel de lija.

Lijado el cuerpo utilizando videos e imágenes de la red como nuestra referencia dibujo formas circulares mediante el uso de una brújula. Mientras que las líneas rectas que cae sobre la superficie curva del cuerpo pueden ser rastreados con cinta métrica de sastre. Una vez perfilado el autor pintó el cuerpo de BB8 con 3 colores diferentes de pintura en aerosol: blanco, gris y naranja.

Respecto a la cabeza, mide  30 cm de diámetro. Básicamente se trata de una cabeza semicircular con un borde biselado, un poco fuera de la mediana. Se pude utilizar un contenedor de basura como una plantilla, a continuación, utilizar un marcador para marcar su recorte y una sierra para cortar la pelota de espuma de poliestireno en la mitad (casi la mitad).Puede reducir el peso de ahuecamiento la parte interna de la pelota o mediante la fusión / quema de la espuma de poliestireno usando un soplete o un encendedor.Una vez aplicada masilla el autor también pintó la cabeza de BB8 con 3 colores diferentes de pintura en aerosol: blanco, gris y naranja.

BB8  tiene dos antenas: Una es una antena inopertiva de WiFi caliente pegada a la cabeza. Por la otra antena, se utilizó un alambre sólido blanco.

BB8 tiene un mecanismo magnético que mantiene la cabeza erguida. Él tiene una interna y externa. En este  diseño, el autor ha pegado en caliente de cuatro desodorantes roll-on (como  improvisadas rodillos) en una placa de madera redonda. A continuación se adjunta un servo con dos grandes imanes que se le atribuye. La placa está montada a la base con cuatro árboles de madera alargados.

Mecanismo 

Se utiliza una madera MDF de 1/4 del grosor de la base del mecanismo robótico dentro del cuerpo de BB8.

En cuanto a la  batería es una de 4 celdas construida en base de  cuatro baterías 18650 (3.7v 2000 mAh) de iones de litio en serie. 18650 baterías recargables son muy baratos y comunes hoy en día. Hizo dos conjuntos de éstos y los conectó en paralelo que dan un total de 14,4 V (4,000mAh)

Ya solo queda montar la caja de engranajes de metal junto con los soportes en la plataforma de MDF / madera utilizando tuercas y tornillos .

Gracias a una aplicación de teléfono a través de Bluetooth se envían caracteres cada vez que se pulsa un botón. El módulo Bluetooth recibe los datos mientras que el Arduino interpreta y procesa estos datos. El Arduino envía señales al blindaje del conductor del motor para dar una señal de ir por la conmutación de los motores.

Solo nos queda montar el Arduino a la plataforma, enchufar el controlador del motor Escudo encima del Arduino,conectar los cables del motor izquierda a M1A y M1b,conectar los cables del motor derecho de M2A y M2B y finalmente las   baterías Ion-Litio

Para terminar tenemos que conectar el modulo de bluetooth al escudo de Arduino:

 

bluettooth

Y  solo queda programar Arduino . Antes de cargar el código / programa para la placa Arduino Uno, asegúrese de instalar el controlador de biblioteca de Pololu motor. También, por favor no se olvide de desconectar las líneas TX-RX del módulo Bluetooth desde el Arduino. Esto se hace para evitar que el módulo Bluetooth de interferir con el Arduino durante el proceso de programación.

No sabe cómo instalar una biblioteca de Arduino? Encontrar las instrucciones aquí! ( Haga clic en mí ).

 

El autor ha usado  una  aplicación de teléfono  llamada  ‘Arduino Bluetooth RC Car’. Es una aplicación muy fácil de usar.

Cómo usarlo:

  • Descargar la aplicación de la forma de Play Store / itunes.
  •  Poner en marcha la aplicación
  • Abra la ventana de configuración (icono de llave inglesa)
  • Toque; conectar.
  • Seleccione HC-05 (El nombre del módulo Bluetooth)
  •  La luz roja cambiará a verde una vez que se establece la comunicación BT.

 

!Y con esto ya estaría listo el droide!

Si quiere ver el proceso completo puede ver el siguiente vídeo de construcción de droide:

 

 

Es un proyecto grande pero todo está explicado gracias a Instructables y el vídeo anterior  de YouTube . Si cree que no es posible, en el siguiente vídeo puede verlo en acción:

 

Fuente   aqui 

LLega al mercado un MiniArduino


En muchos proyectos ocurre que no es necesario utilizar muchos pines o se necesita una placa lo más reducida en tamaño posible, de modo que Adafruit ha diseñado el Trinket, que es la primera placa programable con el IDE de Arduino que utiliza un ATtiny85.

Este pequeño microcontrolador está lleno de sorpresas con sólo 9gr de peso   y medidas  12 x 7,5 x 1 cm

2016-04-06_23h51_27

No se deje engañar por su pequeño tamaño pues Trinket, tiene 8K de memoria flash, 512 bytes de SRAM y 5 pines I/O incluyendo pines PWM. Puede funcionar a 8 y 16 MHz modificando su oscilador por software.

Se puede programar directamente desde el entorno IDE de Arduino haciendo una simple modificación (ver documentación), aunque tenga en cuenta que debido a que tiene un microcontrolador diferente no es 100% compatible, sino que hay algunas variaciones, como por ejemplo la cantidad de pines disponibles. Por todo lo demás es una placa a un precio muy reducido llena de posibilidades para su proximo proyecto.

Otra peculariedad es que como incluye los pines  sin soldar,puede soldar cables directamente sobre los pads o montar los pines.

Características:

  • Microcontrolador: ATtiny85 (8K flash, 512 byte SRAM, 512 bytes EEPROM)
  • Oscilador interno de 8MHz, puede ajustarse por software a 16MHz
  • USB bootloader con LED indicador. Puede programarse con un USBtinyISP para que pueda programar con AVRdude (con una simple modificación de configuración) y / o el IDE de Arduino (con algunas modificaciones sencillas de configuración)avrdude o desde el IDE de Arduino (con una simple modificación)
  • Conexión Micro-USB para alimentación y programación (no tiene puerto serial)
  • 5.25K bytes disponibles para el programa (2.75K los utiliza el bootloader)
  • Alimentación: 5V ( disponible también en 3V)
  • Regulador interno 3.3V a bordo o regulador de potencia 5.0V con capacidad de salida de 150 mA y ultra-bajo de deserción. Se puede alimentar hasta con 16V
  • Incluye protección de polaridad, protección térmica y limitador de corriente
  • LED a bordo de energía LED verde y rojo pin # 1 LED
  • Botón de reposición para entrar en el gestor de arranque o reinicio del programa. No hay necesidad de desconectar / reconectar el tablero cada vez que desea restablecer o actualizar!
  • 5 GPIO – 2 compartidos con la interfaz USB. Los 3 pines IO independientes tienen 1 entrada analógica y 2 de salida PWM también. Los 2 pines IO compartidos tienen más de 2 entradas analógicas y una salida PWM más.Hardware I2C / SPI capacidad de ruptura y sensor de interconexión.
  • Pulsador de RESET
  • Soporte I2C / SPI
  • Funciona con la mayoría de librerías básicas de Arduino
  • Dimensiones: 31 x 15.5 x 5 mm
  • Peso: 1.85 gramos

 

trinket5.png

trinket_adafruit_products_tour.gif

Hay dos versiones del Trinket: 3V y 5V. Ellos son casi idénticos, pero hay ligeras diferencias en la asignación de señales: uno tiene un pin de salida 3V en la parte inferior derecha, el otro tiene un pin de salida de 5V vez.

Vamos a empezar con los mejores pasadores BAT + y USB + y GND

  • BAT + es el pin de entrada de la batería +. Si desea encender la Trinket de un adaptador de alimentación o batería o panel solar o cualquier otro tipo de fuente de alimentación, conecte el pin + (positivo) aquí! Se pueden conectar hasta 16 V DC. Si usted tiene una Trinket de 3V, querrá al menos de entrada 3.5V para conseguir una buena salida de 3.3V. Si usted tiene una Trinket 5V, se sugiere 5,5 V o superior. Esta entrada está protegida contra polaridad invertida.
  • USB + es el pin de salida USB +. Si desea utilizar la energía de 5V USB para algo, como la carga de una batería, o si necesita más de 150mA de corriente (este pin puede suministrar 500 mA + de puertos USB) o para detectar cuando la Trinket está conectado a USB, esta patilla tener 5V en él si y sólo si su enchufado en algo a través del conector mini-B
  • GND es el terminal de tierra común, que se utiliza para la lógica y el poder. Está conectado con el suelo USB y el regulador de potencia, etc. Este es el pin que querrá utilizar para cualquier y todas las conexiones a tierra

 

A continuación vamos a cubrir los 5   pines GPIO (General Purpose Entrada Salida)Todos los pines GPIO pueden utilizarse como entradas digitales, salidas digitales, para los LED, botones e interruptores, etc. Ellos pueden proporcionar hasta 20 mA de corriente. No conecte un motor u otro componente de alta energía directamente a los pines! En su lugar, utilizar un transistor para alimentar el motor de corriente continua de encendido / apagado

En un Trinket de 3V, el GPIO son 3.3V nivel de salida, y no debe ser utilizado con entradas 5V. En un Trinket de 5V, el GPIO están 5V nivel de salida, y se puede utilizar con entradas de 3V, pero puede dañar los dispositivos electrónicos que se 3V de entrada solo

Los 3 primeros pines  están completamente “libres”, no son utilizados por la conexión USB para que nunca tenga que preocuparse por la interfaz USB interferir con ellos en la programación:

  • GPIO # 0 – este está conectado a PB0 en la ATtiny85. Este perno se puede utilizar como una salida de PWM, y también se utiliza para los datos I2C, y la entrada de datos SPI.
  • GPIO # 1 – esto está conectado a PB1 en la ATtiny85. Este perno se puede utilizar como una salida de PWM, y también se utiliza para la salida de datos SPI. Este perno también está conectado al LED a bordo (como pasador 13 en un Arduino regular).
  • GPIO # 2 – esto está conectado a PB2 en la ATtiny85. Este perno se puede utilizar como una entrada analógica (conocido como analógica A1), y también se utiliza para el reloj I2C y el reloj SPI.

Los próximos 2 pines también se utilizan para la programación USB. Esto significa que cuando la placa está conectada a un ordenador y en modo de arranque o en el medio de la carga de un nuevo programa, que se utilizan para el envío de datos a / desde el ordenador! Es posible compartir estos pines si se tiene cuidado. El mejor uso de estos contactos es como salidas a cosas como LEDs, o ideas para cosas como botones y sólo asegúrese de no presionar los botones mientras está conectado a USB. No queríamos mantener estos pines del tablero pero le recomendamos no utilizarlos a menos que esté seguro de que los necesite, ya que podría tener que desconectar las conexiones de reprogramar la Trinket!

  • GPIO # 3 – esto está conectado a PB3 en el ATtiny85. Este pin se utiliza para la programación USB, pero también es una entrada analógica conoce como analógica A3
    Este perno tiene un pull-up 1.5K a 3.3V incorporado en el Trinket, para comm USB lo que puede ser difícil de utilizar para entrada analógica o digital.
  • GPIO # 4 – esto está conectado a PB4 en el ATtiny85. Este pin se utiliza para la programación de USB, pero también se puede utilizar como una salida analógica PWM y una entrada analógica conocida como Analog A2

Tenga en cuenta la numeración de los pines analógicos: Pin 2 es analógica 1, Pin 3 es analógica 3, Pin 4 es analógica 2. Para el Uno, los términos A1, A2 y A3 se asignan para usted. Para la ATtiny85, no lo son. Así que para el pinMode llama, utilice el número de pines (estarcido sobre la Trinket), para analogRead, utilice el número analógico.

Las últimas dos pines están en la parte inferior del tablero. En primer lugar es el pin de reset Rst. Esto está directamente conectado con pin de reset del ATtiny85 y también el botón de reinicio que se encuentra justo al lado de él. El pin de reset se utiliza para entrar en el gestor de arranque y poner a cero el tablero en caso de que desee reiniciarlo. También es posible utilizar este pin  para reprogramar el gestor de arranque o eliminar por completo el cargador de arranque si tiene un programador AVR como un AVR dragón, MKII o USBtinyISP. Si desea volver a programar el tablero cuando su en un recinto o caja, o de otro modo difíciles de alcanzar, alambre de un simple botón desde el pin RST al suelo y presione para entrar en el gestor de arranque durante 10 segundos. El LED # 1 pulsará para hacerle saber. El botón de reinicio no se puede utilizar como un GPIO, pero creemos que su mucho más útil como un botón de reinicio adecuado!

Por último tenemos el pin de salida del regulador. Hay un mini-regulador de potencia a bordo que se llevará hasta 16V DC de la conexión BAT + o USB y regular hacia abajo a una constante de 3,3 V o 5,0 V DC por lo que es seguro para usar con sus sensores y LEDs. En una Trinket de 3V, esta salida será de aproximadamente 3.3V. En una Trinket de 5V, la salida será 5V por lo tenga en cuenta en caso de que desee cambiar uno con el otro. Puede consumir hasta 150mA de salida de este pin. Si necesita más corriente, es posible que desee obtener directamente desde el USB + pasador, que suministra 5V 500 mA desde un ordenador o adaptador de pared

Ya   que conocemos   los pines del Trinket  , nos toca antes de empezar  instalar los drivers.  Si está utilizando Windows, antes de enchufar su tablero, tendrá que instalar un controlador posiblemente. Haga clic a continuación para descargar el instalador de controladores desde la pagina de Github( controlador de Windows para instalar los controladores adecuados para su placa . )

Descargue  y ejecute el instalador

flora_1download.png

Ejecutar el instalador! Como nos agrupamos los conductores SiLabs y FTDI así, tendrá que hacer clic a través de la licencia

flora_2lic.png

Seleccione los controladores que desea instalar:

flora_3select.png

De forma predeterminada, instalamos el 32u4 Pluma, Pluma M0, Flora y conductores Gemma / USBtinyISP Trinket / Pro / Trinket.

También puede, opcionalmente, instalar el Arduino Gemma (diferente de la Adafruit Gemma!), Conductores HUZZAH y Metro

Haga clic en Instalar para continuar la instalación

flora_4complete.png

 

Para Mac OS X o Linux no es necesario instalar ningún controlador.

¿Cómo iniciar el gestor de arranque?  

Antes de intentar cargar el código de la placa que debe estar en el modo de arranque. Eso significa que su escucha para un sketch o un programa que se enviará a ella

Cuando la placa  está en modo de arranque, el LED rojo se enciende . Una vez que el LED rojo se detiene pulsante, se debe presionar el botón de reinicio para volver a entrar en modo de arranque

La placa a debe estar conectada a un ordenador mediante un cable USB para entrar en modo de arranque. Puede entrar en el modo de arranque pulsando el pequeño botón en el tablero con la uña. El gestor de arranque ‘tiempo fuera’ después de 10 segundos, por lo que volver a entrar en el modo de arranque simplemente vuelva a presionar el botón!

!No presionar y mantener pulsado el botón de reinicio, y asegúrese de presionar y soltar!

 

 

Configuración con Arduino IDE

Lo más probable es, es si adquiere un placa  Trinket,  que quiera programarla  con el IDE de Arduino. Tenga en cuenta que la Trinket no es un completo compatible con Arduino, que utiliza un chip diferente (menor) que el Uno, Mega, Leonardo o de vencimiento. Sin embargo, hay muchos pequeños bocetos y bibliotecas que funcionan muy bien. Algunos ni siquiera puede necesitar otros que los números de pin nada.

A pesar de que la placa Trinket tiene un conector USB, no tiene una capacidad de “consola serie”, por lo que no se puede utilizar de serie para enviar y recibir datos a /desde un ordenador!

Cuando esté listo para cargar, asegúrese de que el “programador” en el menú Herramientas se establece en USBtinyISP!Configuración Arduino IDE
Sólo tiene que seguir los pasos de los pasos de la guía de configuración Adafruit Arduino IDE para agregar fácilmente el apoyo a la Trinket, Gemma, Pro Trinket y más al IDE de Arduino.Cuando haya terminado de instalar el gestor de IDE y tabla de poner en volver a esta página para continuar con la guía de la Trinket.Ejemplo  de Hello World  ( Parpadeo de un led)Después de instalar el IDE Arduino con soporte para tablas de Adafruit puede cargar un parpadeo ejemplo simple para probar la carga de la Trinket funciona como se espera LED. Abra el IDE de Arduino y reemplaze el código de sketch  con el código del led intermitente:

Si está utilizando Linux puede que tenga que ser “root” de ejecutar el programa de Arduino para tener acceso al puerto USB (o añadir excepciones udev)

En el siguiente ejemplo de  parpadeo  se enciende un LED durante un segundo y  luego se apaga durante un segundo , ejecutándose en un bucle indefinido.

 

  1. /*
  2. Blink
  3. */
  4. int led = 1; // blink ‘digital’ pin 1 – AKA the built in red LED
  5.  
  6. // the setup routine runs once when you press reset:
  7. void setup() {
  8. // initialize the digital pin as an output.
  9. pinMode(led, OUTPUT);
  10.  
  11. }
  12.  
  13. // the loop routine runs over and over again forever:
  14. void loop() {
  15. digitalWrite(led, HIGH);
  16. delay(1000);
  17. digitalWrite(led, LOW);
  18. delay(1000);
  19. }

 

Para subir el código a la placa trinket siga los siguientes sencillos pasos:

  •   Seleccionar la placa adecuada desde el menú Herramientas-> Placa  ->Adafruit Trinket 8Mhzadafruit_products_selecttrinket.gif
  •  Seleccionar USBtinyISP desde el Herramientas- > Programador   –>UsbtinyISP

trinket_adafruit_products_selectusbtiny.gif

 

 

A continuación, seleccione USBtinyISP desde  Tools-> Programmer submenú

Enchufe la  placa , asegúranadose   de ver pulsante el LED verde encendido (potencia bueno) y el LED rojo.

Pulse el botón si el LED rojo no está latiendo, para entrar en modo de arranque.

Haga clic en el botón Upload (o seleccione Archivo-> Cargar)

trinket_adafruit_products_upload.gif
Si todo va bien debería ver lo siguiente (no hay mensajes de error de color rojo) y, por supuesto, el LED rojo de la Trinket parpadeará de encendido / apagado una vez por segundo
trinket_adafruit_products_blinkOK.gif

¿Algo salió mal?  Si obtiene el mensaje de error avrdude: Error: No se pudo encontrar el dispositivo USBtiny (0x1781 / 0xc9f)
Eso significa que el gestor de arranque no estaba activo. Asegúrese de presionar el botón de la Trinket para activar el gestor de arranque antes de hacer clic en el botón Cargar.

trinket_adafruit_products_idecouldntfind.gif

Si se obtiene una gran cantidad de texto en rojo, errores y también una advertencia sobre Verificación frustrada, compruebe que ha actualizado el archivo anterior avrdude.conf – si no actualiza la descripción de la ATtiny85 en el archivo de configuración mediante su sustitución, el IDE no sabrá que ser paciente con el gestor de arranque de la Trinket y tendrá muchos errores de carga

trinket_adafruit_products_verifcationfail.gif

En Linux si obtiene el mensaje de error “usbtiny_receive: error al enviar mensaje de control: Error de protocolo (esperado 4, conseguido -71)”
Estos por lo general pueden ser ignorados y no deben interferir con la carga del programa. Desafortunadamente núcleo de Linux USB es un poco raro que comunica con el procesador ATtiny85 en la Trinket / Gemma y puede causar estos errores. Si una carga falla, inténtelo de nuevo ya que probablemente es un problema intermitente.

Programación con Arduino IDE

Una vez que haya recibido el ejemplo básico de parpadeo para trabajar, puede probar algunas de las otras funciones de Arduino y bibliotecas. Vamos a ver  más ejemplos de código  con  pinMode () , digitalWrite () y digitalRead ()

pinMode()
Puede utilizar pinMode () para realizar entradas y salidas en cualquiera de los pines digitales 0 # a través de # 4
digitalWrite también funciona bien, y también se puede utilizar con pinMode (INPUT) para activar la resistencia pull-up en un perno

Por ejemplo, para establecer digital # 0 como entrada, con un pull-up interna, y luego comprobar si se está tirando a tierra a través de un botón o interruptor y encender el LED rojo cuando se pulsa:

  1. /*
  2. Button
  3. Turns on an LED when a switch connected from #0 to ground is pressed
  4.  
  5. #define SWITCH 0
  6. #define LED 1
  7.  
  8. // the setup routine runs once when you press reset:
  9. void setup() {
  10. // initialize the LED pin as an output.
  11. pinMode(LED, OUTPUT);
  12. // initialize the SWITCH pin as an input.
  13. pinMode(SWITCH, INPUT);
  14. // …with a pullup
  15. digitalWrite(SWITCH, HIGH);
  16. }
  17.  
  18. // the loop routine runs over and over again forever:
  19. void loop() {
  20. if (! digitalRead(SWITCH)) { // if the button is pressed
  21. digitalWrite(LED, HIGH); // light up the LED
  22. } else {
  23. digitalWrite(LED, LOW); // otherwise, turn it off
  24. }
  25. }

analogRead ()

 Usted puede leer un voltaje analógico de digital # 2 (llamada analógica 1), digital # 3 (llamada analógica 3) y digital # 4 (llamadaanalógica 2)

Por ejemplo, para leer un voltaje analógico en el pin # 2, que llamarían analogRead (1) para leer un voltaje analógico enanalogRead pin # 4 de llamadas (2)

Esto es un poco confuso porque los pines analógicos están numerados de manera diferente que los pines digitales!

analogWrite ()

Hay algunas salidas PWM en la Trinket, puede llamar analogWrite () en digital # 0, # 1 y # 4.

Por ejemplo, para pulsar el built-in LED lentamente, subir este código:

Asegúrese de que está utilizando la última IDE Trinket para que pueda acceder a las capacidades de PWM pin de 4. Si no está utilizando la última IDE es necesario añadir manualmente las funciones como la siguiente en init y escribir valores analógicos al pin # 4. Sin embargo, si usted tiene la última IDE que incluye correcciones para hacer el pin # 4 se puede utilizar con la función de analogWrite Arduino!

  1. /*
  2. Pulse
  3. Pulses the internal LED to demonstrate the analogWrite function
  4. */
  5. int led = 1; // pulse ‘digital’ pin 1 – AKA the built in red LED
  6.  
  7. // the setup routine runs once when you press reset:
  8. void setup() {
  9. // initialize the digital pin as an output.
  10. pinMode(led, OUTPUT);
  11. }
  12.  
  13. // the loop routine runs over and over again forever:
  14. void loop() {
  15. for (int i=0; i<256; i++) {
  16. analogWrite(led, i); // PWM the LED from 0 to 255 (max)
  17. delay(5);
  18. }
  19. for (int i=255; i>=0; i–) {
  20. analogWrite(led, i); // PWM the LED from 255 (max) to 0
  21. delay(5);
  22. }
  23. }

 

I2C

Puede utilizar I2C con la Trinket! Si usted tiene nuestra v1.6.4 bordo gestor de paquetes o posterior (esa es la versión del paquete de soporte de Trinket, no IDE) y luego alambre trabajará en ATtiny85

En los tablones de la Trinket, el pin # 0 es la SDA (datos del bus I2C), el pin # 2 es SCK (reloj I2C).

Sabemos también las siguientes bibliotecas funcionan:

  • Adafruit NeoPixel – Control de hasta ~ 150 Neopixels a través de una Trinket!
  • SoftwareSerial – construido en la biblioteca SoftSerial puede (al menos) transmitir datos en cualquier pin digital.
  • Más como lo hacemos más pruebas y verificación!

La velocidad de reloj de 16 MHz por sólo Trinket de 5V!

El ATtiny85 se especifica solamente para funcionar a 16 MHz cuando se alimenta a 5V – que significa que oficialmente sólo se puede ejecutar la Trinket de 5V a 16 MHz.
Sin embargo, la serie AVR es bastante indulgente para el overclocking,
por lo que puede ser capaz de ejecutar la Trinket de 3V a 16 MHz. Tenga en cuenta que esto todavía está overclocking, el código puede funcionar escamosa o nada en absoluto! Overclocking no debe dañar el AVR, pero aun así, recomendaría quedarse con 8 MHz sólo para la versión de 3V, y 8 o 16 MHz sólo en la versión 5V.
soluciones de compromiso en potencia
La duplicación de la velocidad aumentará el consumo de energía sólo un poco. A las 8 MHz, la corriente extraída es alrededor de 9 miliamperios. Esa cifra incluye el LED de alimentación verde, que consume alrededor de 3 mA de modo que sea 6mA para el propio microcontrolador.

A los 16 MHz del sorteo es 12mA total. Restando el LED verde de corriente, que significa 9mA para el propio microcontrolador.

Cómo activar el reloj de 16 MHz

 En AVR-GCC :Podemos activar el reloj 16MHz ‘en el software’ simplemente pidiendo el chip para ajustar el reloj preescalar. Si está utilizando prima avr-gcc, ejecutar esta como la primera línea en main ()

clock_prescale_set (clock_div_1);

Es posible que tenga que añadir # include al archivo de modo que se reconocen los comandos. A continuación, asegúrese de compilar el código con F_CPU = 16000000
 IDE Arduino:Usando el modo de 16 MHz es muy similar cuando se utiliza el IDE de Arduino. Agregue la línea siguiente a la parte superior de su boceto Arduino (como la primera línea)

#include <avr / power.h>

Luego, en la configuración () – añadir lo siguiente como primera línea de la función:

si (== F_CPU 16000000) clock_prescale_set (clock_div_1);

A continuación, seleccione la Trinket de 16MHz en el menú Herramientas> Junta. Su código se compila y ejecuta a 16 MHz!

trinket_adafruit_products_select16.gif

Gestor de arranque de la reparación

 

El ATtiny85 no tiene una sección-cargador de arranque protegido. Esto significa que es posible sobrescribir accidentalmente el cargador de arranque (o incluso si desconecta la Trinket durante la carga que podría tener dificultades a partir de entonces)

Se puede utilizar un Arduino UNO para reprogramar el gestor de arranque en su Trinket (o Gemma). Este cargador no se ha probado para funcionar con cualquier otro tipo de Arduino.

Conectar:

  • Trinket VBAT + pin de Arduino 5V (o simplemente el poder que a través de un cable de la batería o USB)
  • Trinket GND pines a GND Arduino
  • RST Trinket para Arduino # 10
  • Trinket # 0 pinr para Arduino # 11
  • Trinket # 1 pin de Arduino # 12
  • Trinket # 2 pines de Arduino # 13

En un Gemma, pinzas de cocodrilo funcionan bien. la clavija de Reset se encuentra debajo del MiniUSB Jack. Puede que tenga que soldar un cable de forma temporal. Por otra parte, a veces sólo puede mantener pulsado el botón de reset mientras se ejecuta el boceto (tipo “G” para comenzar) y que podría funcionar. Soldar un alambre funciona mejor.

A continuación, descargar, descomprimir y ejecutar el boceto Trinketloader, escoger el que se adapte a su versión Arduino!

trinketloader_2015-06-09.zip

Descomprimir y abierto en el IDE de Arduino, seleccione la ONU y el puerto serie a la placa Arduino UNO que está subiendo demasiado y subirlo a la ONU.

Abre la consola serie a 9600 baudios y cuando se le dice que haga, pulse el botón de miniatura de la Trinket (o Gemma) o escribe en G en la consola de serie y haga clic en Enviar

Debería ver lo siguiente, la fusibles, firmware quemado y verificados! Se requiere de 2 segundos

trinketload.png
Mas información:

 

 

Por cierto puede comprar el Trinket lo en Amazon desde el siguinte enlace Adafruit Trinket – Mini Microcontroller – 3.3V Logic

Un coche RC que aparca sólo basado en Arduino


 

La mayor parte de las piezas utilizadas deben ser familiar para los fans de Arduino

El vehículo es una creación de la Universidad de Gotemburgo  de un estudiante llamado Dimitris Platis asi como de su equipo de Makers – Yilmaz Caglar, Aurélien Hontabat, David Jensen, Simeón Ivanov, Ibtissam Karouach, Jiaxin Li y Petroula Theodoridou – que en conjunto utilizan el nombre del equipo de Pegaso. El trabajo del equipo es impresionante, utilizando licencia GPLv3 , y una completa  documentación . De hecho el proyecto está maduro para que otros fabricantes interesados usen esta tecnología en sus propios del proyecto.

Originalmente, las direcciones de asignación de clase Platis ‘sugeria utilizar una placa computadora, una webcam, y un elaborado paquete de software de simulación llamado OpenDaVinci, y un chasis estéticamente poco atractivo, todo lo cual no era del entusiasmado  de estos makers. Así, él y su equipo decidió volcar los componentes propuestos y resolver el conjunto de problemas usando su propio enfoque.

He aquí un resumen del proyecto.

Disposición del sistema electrónico del coche

El diseño de la electrónica dentro del coche debe ser muy familiar para cualquiera que haya usado Arduino al prototipo de un proyecto. El Arduino MEGA conecta con tres sensores ultrasónicos, dos de los cuales están montados en la parte delantera del coche y uno en el parachoques trasero.Tres IR sensores también se conectan e a la MEGA y se despliegan de una manera similar. Un giroscopio y 9 tableros de medición inercial grado de libertad completan el paquete de sensores, pero se colocan dentro del chasis del vehículo.

Teléfono Android montado en el coche se encarga de cálculo de datos de los sensores que se le pasan a través de Bluetooth

Direcciones de dirección se transmiten de un procesamiento Android bordo visión teléfono en funcionamiento y se transmiten a través de Bluetooth, y el control electrónico de velocidad (ESC) maneja  la aceleración del coche (no se muestra).

Este vehículo * no * utiliza un protector de motor (sólo un ESC) o la biblioteca Smartcar Core. La biblioteca Smartcar Core, fue utilizado en un vehículo diferente (que a su vez de hecho utiliza un escudo de motor), de otro grupo de estudiantes, “.

Por último, y que tampoco se muestra en el diseño, se usa  un microcontrolador ATtiny85 que está programado con su propio boceto para manejar el control de LEDs para tales cosas son como romper, torneado, y la iluminación de la calzada.

 

 

El código aprovecha AndroidCar.h, una biblioteca hecha a la medida por el equipo de Pegaso, y los datos del sensor encuestas en el coche, que se envía a través de Bluetooth para el teléfono móvil a bordo.

La API se encarga de la transmisión de comandos de dirección de cómputos del teléfono y altera la posición del servo. Para conocer más sobre el API, eche un vistazo a los Smartcar Core ejemplos bocetos. Para obtener documentación sobre el código que encola el código de Arduino con el teléfono Android, que desea comprobar el Android-Car-duino repositorio. Y para un enfoque global de la adaptación de este conjunto de bibliotecas para su propio vehículo este wiki es para usted.

La información de dichos sensores es enviada a un smartphone con Andorid, que con ayuda de un software que analiza esos datos, envía en tiempo real las instrucciones adecuadas vía bluetooth al control de velocidad y la dirección del vehículo. Dependiendo de dicho software, el coche RC puede también moverse sin cambiar de carril o detectar y esquivar de forma muy precisa obstáculosque se encuentre en su camino, como podemos ver en el vídeo siguiente.

 

Los responsables del mismo son unos estudiantes de la Universidad de Gotemburgo que forman el grupo Team Pegasus, y que ofrecen su proyecto con licencia GPLv3 para que pueda hacerlo suyo y personalizarlo o mejorarlo si así lo desea.

Fuente aqui

Importación de librerias en Arduino parte 2de 2


 Importación de una biblioteca .zip

Las bibliotecas a menudo se distribuyen como un archivo ZIP o carpeta. El nombre de la carpeta es el nombre de la biblioteca.  Dentro de la carpeta será un archivo .cpp, un archivo .h ya menudo un archivo keywords.txt, carpeta de ejemplos, y otros archivos requeridos por la biblioteca.

Desde la versión 1.0.5, puede instalar las bibliotecas 3 ª parte en el IDE.

No descomprima la biblioteca descargada, dejarla como está.

En el Arduino IDE, vaya a Sketch> Incluir Biblioteca.  En la parte superior de la lista desplegable, seleccione la opción “Añadir .ZIP Biblioteca ”(“Add .ZIP Library”).

Se le pedirá que seleccione la biblioteca que desea agregar. Navegue hasta la ubicación del archivo .zip y abrirlo.

Regrese al menú Sketch> Import Library. Ahora debería ver la biblioteca en la parte inferior del menú desplegable. Está listo para ser utilizado en su sketch.

El archivo zip se habrá ampliado en la carpeta de bibliotecas en su Arduino esboza directorio.

Nota: la biblioteca estará disponible para su uso en bocetos, pero los ejemplos de la biblioteca no será expuesta en el Archivo> Ejemplos hasta después de la IDE se ha reiniciado.

Instalación manual

Para instalar la biblioteca, primero salir de la aplicación Arduino.

Luego descomprimir el archivo ZIP que contiene la biblioteca.  Por ejemplo, si va a instalar una biblioteca llamada “ArduinoParty”, descomprimir el fichero .zip ArduinoParty .  Debe contener una carpeta llamada ArduinoParty, con archivos como ArduinoParty .cpp y en el interior ArduinoParty .h. (Si los archivos .cpp y .h no se encuentran en una carpeta, tendrá que crear uno:en este caso, sería una carpeta llamada “ArduinoParty” y hay que  mueven a ella todos los archivos que estaban en el  archivo, como ArduinoParty .cpp y .h ArduinoParty.)

Arrastre la carpeta ArduinoParty en esta carpeta (carpeta de bibliotecas).  En Windows, es probable que se llama “Mis documentos \ Arduino \ bibliotecas”.  Para usuarios de Mac, es probable que se llama “Documentos / Arduino / bibliotecas”.  En Linux, será la carpeta “bibliotecas” en su cuaderno de dibujo.

Su carpeta de la biblioteca de Arduino ahora debería tener este aspecto (en Windows):

 My Documents\Arduino\libraries\ ArduinoParty \ ArduinoParty .cpp Mis documentos \ Arduino \ bibliotecas \ ArduinoParty \ ArduinoParty .cpp
  >My Documents\Arduino\libraries\ ArduinoParty \ ArduinoParty .h Mis documentos \ Arduino \ bibliotecas \ ArduinoParty \ ArduinoParty .h
  >My Documents\Arduino\libraries\ ArduinoParty \examples Mis documentos \ Arduino \ bibliotecas \ ArduinoParty \ ejemplos
  >.... ....

o así (en Mac):

 Documents/Arduino/ libraries/ArduinoParty / ArduinoParty .cpp Documentos / Arduino / bibliotecas / ArduinoParty / ArduinoParty .cpp
  >Documents/Arduino/ libraries/ArduinoParty / ArduinoParty .h Documentos / Arduino / bibliotecas / ArduinoParty / ArduinoParty .h
  >Documents/Arduino/ libraries/ArduinoParty /examples Documentos / Arduino / bibliotecas / ArduinoParty / Ejemplos
  >... ...

o de manera similar para Linux.

Es posible que haya más archivos que sólo el .cpp y .h, sólo asegúrese de que están todos allí. De ser asi la biblioteca no funcionará si pone el .cpp y .h directamente en las bibliotecas de carpeta o si están anidados en una carpeta adicional. Por ejemplo: No funcionará   esta combinación:

 Documents\Arduino\libraries\ ArduinoParty .cpp and Documentos \ Arduino \ bibliotecas \ ArduinoParty .cpp y
  >Documents\Arduino\libraries\ ArduinoParty \ ArduinoParty \ ArduinoParty .cpp Documentos \ Arduino \ bibliotecas \ ArduinoParty \ ArduinoParty \ ArduinoParty .cpp

 

Reinicie la aplicación Arduino.  Asegúrese de que la nueva biblioteca aparece en el elemento de menú para bosquejos> Importar biblioteca del software.

Usted ha instalado una biblioteca!