Ha llegado el sustituto de los fusibles y es un componente de toda la vida

Usos innovadores o poco habituales de uno de los componentes electronicos mas sencillos : las resistencias tradicionales


Seguro que querido lector  se han cuestionado porque  en algún circuito  comercial   en la serigrafía  marcaba un componente como   un fusible  pero en su  lugar se ha colocado  una resistencia de muy bajo valor (ente 0.5 y 10 Ohms)   y de baja disipación ( 1/4 Watio  o  menos)  ocupando  el mismo  lugar del fusible.

Lo primero que se nos ocurre,es contradictorio , pero en cierta forma tiene sentido, pues una resistencia muy baja realmente actúa  casi como un fusible común, siendo ademas también muy  fácil de sustituir  (si va soldado ) , pero,  ademas, existen 2 motivos  de peso para usar resistencias como fusibles, en equipos electrónicos:

        • En primer lugar  motivos intrínsecos al propio  diseño en las nuevas fuentes de alimentación 
        • En segundo lugar  , y no menos importante,por la  economía de medios

Veamos   mas  detalladamente de lo que estamos hablando:

Razones basada en el nuevo diseño de fuentes de baja potencia 

En las  nuevas fuentes “no aisladas de baja potencia”  cuyo diseño estudiamos en un post anterior , se de la circunstancia de que en el momento de conectarlas  al suministro eléctrico de c.a.   tienden a generar un alto flujo de corriente por fracciones de segundo, comportándose casi como un corto-circuito, circunstancia  que puede quemar  perfectamente los fusibles convencionales  razón por la que justificaría  usar resistencias como fusibles “especiales”.

Precisamente estas  fuentes de alimentación no aisladas de baja potencia  de las que ya hemos hablado en este blog  son las que se usan  intensivamente por sus dimensiones  y bajo pecio en cargadores de teléfonos móviles, rectancias, fuentes conmutadas de baja potencia y fuentes de iluminación LED, etc . 

 

Todas estas nuevas fuentes de alimentación como se ve en el diseño anterior,  ya no usan el voluminoso y caro transformador , usando en su lugar a la entrada de corriente alterna condensadores en corriente alterna, razón por la que se  las conoce como “no aisladas” porque usan y rectifican la tensión alterna  procedente de la red de suministro a corriente continua  directamente, razón por lo que  todos sus componentes deben soportar esos grandes valores de voltaje :220-380v AC.

 

Como esta tensión se aplica a un puente de diodos  y de ahí a un condensador, precisamente por causa de estos condensadores electrolíticos que se usan a la salida del puente de diodos  filtrando las AC , como  manejan altos valores de tensión; arriba de 140v y hasta 360v , debemos saber que cuando estos condensadores electrolíticos están descargados completamente, tienen una resistencia interna muy baja , lo cual hace  que  se comporten como como si estuvieran en “corto circuito”  en el momento de arranque , lo cual debido a la  gran intensidad en algunos casos podría  fundir un fusible convencional , intensidad que por cierto  sera mayor   cuanto  mas grande sea el voltaje que maneje el condensador ( y en las fuentes no aisladas, los condensadores son de 160 volts como mínimo  hasta 450 volts )

 

Un componente que actué como “amortiguador”  que impida el corto circuito por esos breves instantes  mientras el condensador se carga y alcanza el umbral para dejar de consumir mucha corriente, y al mismo tiempo permita pasar la tensión necesaria, para que el todo el circuito funcione estable,lo  cumple precisamente  las resistencias de bajo valor , si bien en en fuentes conmutadas de voltaje de potencias altas y medias,  se usa también las NTC.

Pasar por alto el corto circuito temporal, en un condensador descargado, e instalar solo un fusible, lo fundirá tarde o temprano debido a un “falso positivo”,  abriendo el circuito e impidiendo el flujo de corriente completamente, aun estando todos los componentes en buen estado .

Ademas sin el uso de esta resistencia,  el condensador se degradará mas rápido, así que esta mas que justificado  el eso de estas resistencias.

Algunos argumentarían que se puede poner un fusible antes de esta resistencia “anti corto circuito”, como en la versión con fuentes de voltaje conmutadas de mayor potencia, pero  bien calculada, la resistencia actuará de ambas maneras.

Para terminar ,no  obstante puede ser justificado  la configuración “fusible-resistencia amortiguadora” en circuitos de media potencia  ( no  en fuentes de baja potencia donde  si se podría fundir)  ,pues  en fuentes de alimentación no aisladas de grandes potencias, usar un fusible y resistencias en los condensadores electrolíticos  filtraran los  altos voltajes protegiendo así el circuito   por lo que   según los diseños  y la corriente que pueda circular la solución puede venir  de la asociación de ambos componentes 

 

Economía y reducción de costos de producción.

Para los fabricantes de equipos que requieran este tipo de fuentes no aisladas con condensadores de voltajes altos y potencias bajas, u otro tipo de circuitos donde sea factible el uso de una resistencia en lugar de un fusible, les resulta muy beneficioso minimizar costos  (por pequeños que sean) ademas sin sacrificar la calidad por lo que  prefieren perfeccionar y mejorar estas resistencia-fusible ya que  su uso esta cada vez mas demandado resultando un 40% o 50% mas económico montar resistencias  en lugar usar  fusibles.

Respecto a la naturaleza de estas resistencias de bajo valor aunque para la mayoría de los casos y fabricantes de circuitos, una resistencia común de carbón de bajo valor óhmico es mas que suficiente, algunas veces se requieren diseños de resistencias especialmente pensadas para esta función de fusible, componentes conocidos  como: “FUSISTORES”

Fusistores

   Un tipo de protección interesante de fusistor (fusible + resistor)  se encuentra en algunos aparatos de consumo como televisores, fuentes de alimentación , etc , consiste en colocar una resistencia  de bajo valor (que como hemos visto no cambia la corriente en el circuito) en serie con las principales líneas de alimentación.

Cuando la corriente supera un cierto valor, esta resistencia se sobrecalienta y el calor generado por el terminal que se propaga fundiendo el material de soldadura que tiene un sistema de resorte, como se muestra abajo. 

Hay fabricantes que ofrecen el conjunto  resistencia+fusible encapsulado a  un bajo costo como alternativa a las soluciones tradicionales para aplicaciones que requieren protección contra sobretensiones.

Existen  tres  combinaciones de serie de resistencias / fusibles de resistencia fusible:

  • FRN :Resistencias de metal / carbono, son en esencia  resistencias fusible bobinada
  • FKN :resistencias fusibles recubiertas de cemento. Ideales para aplicaciones de suministro de energía en telecomunicaciones, militares y mercados industriales que requieren un reemplazo para las resistencias de composición de carbono dentro del diseño del circuito
  • FSQ :robustas resistencias con recubrimiento de cemento y bobinado de alambre

Este tipo de componente es usada en  aplicaciones de Telecomunicaciones,electrodomésticos ,protección contra impulsos de arranque,protección contra rayos,protección de entrada para pequeñas fuentes de alimentación y cargadores de baterías,etc

En resumen  ,tanto en fuentes aisladas con características especiales, así como en otros circuitos que las requieren  debemos ser muy cuidadosos  con estas resistencias especiales , pues hay fabricantes de equipos electrónicos que usan fusistores  singulares  de este tipo y si son remplazarlas con una común de carbón, puede poner en riesgo el circuito

 

 

 Shunt

Existen otro tipo deuso de las  resistencias  de muy bajo valor óhmico y  que se pueden encontar en muchos circuitos electrónicos complejos  (especialmente en electronica de potencia) ,  y que muchas veces,  a ojos de inexpertos, aparentan estar ahí para actuar como fusibles.

 

Pero lo cierto es  que esto no es verdad  pues se colocan en circuitos complejos y grandes, básicamente  para que puedan ser usados para  mediciones de corriente y voltaje y no para actuar  como fusibles, pues las características de las resistencias Shunt, impide que se dañen o fundan ante una tensión o corriente alta, lo cual es completamente contrario al de una resistencia fusible .

 

Como vemos  en la imagen anterior , aunque parezcan otra cosa, simplemente este shunt  no es mas que  una  resistencia que se usa para medir corriente .Los tornillos grandes son para conectar los cables principales de alimentación del circuito (quedando en serie con el circuito a alimentar) y los tornillos pequeños son para conectar los hilos que van al  equipo de medida o circuito de control  correspondiente.

 

Precisamente debido a la complejidad, sofisticación , tamaño ultra reducido, costo y difícil manipulación o desarme de muchos circuitos actuales, es muy práctico poder revisar y dar diagnósticos exactos a dichos circuitos y equipos.,y para hacer algo fácil esta labor, los diseñadores e ingenieros agregan estas resistencias SHUNT, y de este modo puedan tomarse mediciones muy precisas que con algunos cálculos,  se conoce certeramente si en el circuito existe flujo de corriente adecuado, valores de voltajes correctos o si de plano ese circuito no está siendo alimentado,pero recuerden: este tipo de resistencias no actúan como fusibles.pues como todos los componentes electrónicos ,( aunque  en raras ocasiones)  puedan dañarse su función principal es ayudar a verificar y obtener mediciones precisas en equipos de alta complejidad y difícil maleabilidad por tamaños ultra reducidos o todo  lo  contrario de  demasiado grandes.

 

 

Fuentes de alimentación sin transformador ( parte 1 de 2)

En este post discutimos circuitos de fuente de alimentación simples y compactos sin transformador. Todos los circuitos presentados aquí se construyen utilizando la teoría de la reactancia capacitiva para reducir la tensión de red de CA de entrada. Todos los diseños presentados aquí funcionan de forma independiente sin ningún transformador, o sin transformador.


El uso de un transformador en fuentes de alimentación de CC tradicionalmente ha sido una solución  bastante común porque son muchas las ventajas que conseguimos  con  él( especialmente  en lo que se refiere al aislamiento ) , pero sin embargo, una gran desventaja de usar un transformador es que  este no se permite  que la unidad sea compacta    añadiendo bastante peso y coste  al dispositivo que lo use ,por ello las  ventajas de usar un circuito de fuente de alimentación sin transformador  se centran en que  se reduce dramáticamente el coste  , tamaño  y peso  siendo ademas  una solución  muy efectiva para aplicaciones que requieren baja potencia para su funcionamiento,  como por ejemplo aplicaciones que requieren corriente por debajo de 100 mA.

 

 

En efecto,  incluso si el requisito actual  de consumo  para su aplicación de circuito es bajo, tradicionalmente teníamos que incluir un transformador pesado y voluminoso haciendo las cosas realmente engorrosas y desordenadas, por lo que en este post vamos a intentar buscar otras soluciones  que intentan prescindir de este caro y voluminoso componente , mas en linea con los nuevos tiempos. 

Como su nombre lo define, un circuito de fuente de alimentación sin transformador,  se aleja  del concepto clásico  de las fuentes de alimentación tradicionales  que poco  a poco  van  reservándose  para  propósitos mas  específicos   donde   básicamente suele haber un voluminoso  transformador  , un rectificador   y un circuito estabilizador ,  quitando  el  transformador(  o por lo menos uno de potencia) .

Con este nuevo enfoque   también es posible proporcionar corriente continua desde  la red de CA de alta tensión   con las ventajas  en reducción   tanto de coste  y de dimensiones  , pero  conllevando  también los   inconvenientes   en relación a  posibles peligros de contactos  de AT  ya que el circuito quedara  expuesto directamente  a la red de ca.

El secreto  de  este concepto   no es otro que  el uso de condensadores de alto voltaje para bajar la corriente de CA de red al nivel inferior requerido , lo cual  puede ser adecuado para el circuito electrónico conectado a la carga. La especificaciones de voltaje de este condensador se selecciona de tal manera que su clasificación de voltaje pico RMS es mucho mayor que el pico de la tensión de red de CA con el fin de garantizar el funcionamiento seguro del condensador.  Este condensador se aplica en serie con una de las entradas de red, preferiblemente la línea de fase de la CA.

Cuando la red AC entra en este condensador, dependiendo del valor del condensador, la reactancia del condensador entra en acción y restringe la corriente de CA de la red de exceder el nivel dado, según lo especificado por el valor del condensador.   

La reactancia capacitiva se representa por  y su valor viene dado por la fórmula:

Donde  es  la  reactancia capacitiva en ohmios., es la capacidad eléctrica en faradios, = Frecuencia en hercios y  = Velocidad angular.

 

Sin embargo, aunque la corriente está restringida la tensión no lo es, por lo tanto, si se mide la salida rectificada de una fuente de alimentación sin transformador, encontrará que la tensión es igual al valor máximo de la red de CA ( alrededor de 310  voltios)  lo cual  podría ser alarmante para cualquier nuevo aficionado,pero dado que la corriente puede ser suficientemente reducidas  por el condensador, este alto voltaje pico podría ser fácilmente abordado y estabilizado mediante el uso de un diodo zener en la salida del rectificador de puente como  vamos  a ver  mas adelante.

Por cierto , no olvidad que la potencia del diodo zener debe seleccionarse adecuadamente de acuerdo con el nivel de corriente permitido del condensador.

La serigrafia  de los condensadores

Dada la importancia del condensador , vamos a  ver como entender al serigrafia de los condensadores  CERÁMICOS y poliester usados tipicamdnte para este tipo de aplicaciones

Los condensadores cerámicos de 10 picofaradios a 82 picofaradios vienen representados con dos cifras, por tanto no tienen problema para diferenciar su capacidad.

Para los valores comprendidos entre 1 y 82, los fabricantes suelen utilizar el punto, es decir, suelen escribir 1.2 – 1.5 – 1.8 o bien situar entre los dos números la letra “p” de picofaradios, es decir, 1p2 – 1p5 – 1p8 que se interpreta como 1 picofaradio y 2 decimas, 1 picofaradio y 5 decimas, etc…

Las dificultades comienzan a partir de los 100 picofaradios, ya que los fabricantes utilizas dispares identificaciones.

  • El primer sistema es el japonés: Las dos primeras cifras indican los dos primeros números de capacidad. El tercer número, al igual que las resistencias, indican el número de ceros que hay que agregar a los dos primeros.Por ejemplo:

100pF   se  muestra como 101 , 120pF  se muestra como 121  o  150 pifofaradios se muestran como  151.

1000pF  se muestra como 102, 1200   se muestra como 122 o  1500 picofaradios se muestran como 152,…

  • Otro sistema es utilizar los nanofaradios: en el caso se 1000 – 1200 – 1800 – 2200 pf se marcan 0´001 – 0´0015 – 0´0018 – 0´0022. Como no siempre hay sitio en las carcasas de los condensadores para tanto número, se elimina el primer cero y se deja el punto, .001 – .0015 – .0018 – .0022.

 

En cambio los condensadores de poliester usados para capacidades mucho mayores que los cerámicos ,además de ir identificado como un sistema que ya hemos visto, pueden marcarse con otro sistema que utiliza la letra griega “µ”. Así pues, un condensador de 100.000 picofaradios, lo podemos encontrar marcado indistintamente como 10nf – .01 – µ10.

En la practica la letra µ sustituye al “0”, por tanto µ01 equivale a 0.01 microfaradios. Entonces, si encontramos condensadores marcados con µ1 – µ47 -µ82, tendremos que leerlo como 0.1µ – 0.47µ -0.82 microfaradios.

También en los condensadores de poliéster, al valor de la capacidad, le siguen otras siglas o números que pudieran despistar. Por ejemplo 1k, se puede interpretar como 1 kilo, es decir, 1000pf, ya que la letra “K” se considera el equivalente a 1000, mientras que su capacidad es en realidad 1 microfaradio.

La sigla .1M50 se puede interpretar erróneamente como 1.5 microfaradios porque la letra “M” se considera equivalente a microfaradios, o bien en presencia del punto, 150.000 picofaradios, mientras que en realidad su capacidad es de 100.000 picofaradios.

Las letras M, K o J presentes tras el valor de la capacidad, indican la tolerancia:

  • M = tolerancia del 20%
  • K = tolerancia del 10%
  • J = tolerancia del 5 %

Tras estas letras, aparecen las cifras que indican la tensión de trabajo.Por ejemplo: .15M50 significa que el condensador tiene una capacidad de 150.000 picofaradios, que su tolerancia es M = 20% y su tensión máxima de trabajo son 50 voltios.

 

 

 

 

El circuito  

A pesar de que vemos ciertas ventajas en este enfoque  de fuente de alimentación sin trafo , también  hay algunas desventajas de un circuito de fuente de alimentación sin transformador:

  • En primer lugar, el circuito no puede producir salidas de alta corriente, pero eso no hará un problema para la mayoría de las aplicaciones .
  • Otro inconveniente que ciertamente necesita cierta consideración es que el concepto no aísla el circuito de las potencialidades peligrosas de la red de CA. Este inconveniente puede tener graves impacto para los diseños que tienen salidas terminadas o partes metálicas de metal, pero no importará para las unidades que tienen todo cubierto en una carcasa no conductora.

Por lo tanto,  debemos trabajar con este circuito con mucho cuidado para evitar cualquier contacto  con toda  la parte eléctrica pues , el circuito anterior permite que las sobre-tensiones de tensión puedan entrar a través de él, lo  que puede causar graves daños al circuito accionado y al propio circuito de suministro. Sin embargo, en el diseño de circuito de fuente de alimentación simple sin transformador propuesto este inconveniente se ha abordado razonablemente mediante la introducción de diferentes tipos de etapas de estabilización después del rectificador de puente  gracias a un diodo zenner  y un condensador electrolítico a la salida dc del puente  diodos.

En el esquema  se utiliza un condensador metalizado de alto voltaje (C1)   que protege de  sobre-tensiones instantáneas de alto voltaje  el circuito  de  utilización,  siendo el  resto del circuito  nada más que  aun típica  configuraciones de puente simple para convertir la tensión de CA escalonada a CC.

Veamos pues la solución usada mas típicamente :

 

El circuito mostrado en el diagrama anterior es un diseño clásico que se puede utilizar como una fuente de alimentación de 12 voltios DC para la mayoría de los circuitos electrónicos.

El funcionamiento de esta fuente de alimentación sin transformación se puede entender con los siguientes puntos:

  1. Cuando la entrada de red de CA está presente, el condensador C1 bloquea la entrada de la corriente de red y la restringe a un nivel inferior según lo determinado por el valor de reactancia combinada de C1  en paralelo   con R1=1Mohmio  y C1=1 microfaradio / 400V AC   .   Con estos valores  la corriente que podría circular sera de  más o menos alrededor de 50mA. Sin embargo, la tensión no está restringida, y por lo tanto la tensión de  220V completa pueda  estar en la entrada pudiendo alcanzar la etapa posterior del rectificador del puente de diodos ( de ahi  el peligro de este tipo de fuentes)  
  2. El rectificador de puente rectifica este 220V C a un más alto 310V DC, debido a la conversión RMS al pico de la forma de onda AC.
  3. Esta tensión de  310V DC se reduce instantáneamente a una tensión de bajo nivel por la siguiente etapa de diodo zener, lo que lo deriva al valor zener. Si se utiliza un zener de 12V, esto se convertirá en 12V y así sucesivamente.
  4. C2 finalmente filtra el 12V DC con ondas, en un relativamente limpio 12V DC.

 

Usando  lo siguientes valores    en el  esquema anterior Podemos obtener una tensión DC de 12V  y como máximo unos 100mA:

  • R1=1Mohmio
  • C1=105 /400   PPC   donde 105=  10 00000 pf o lo que es  lo mismo 1.000.000pF , es decir 1microF. 
  • R2=50ohmios 1Watt
  • Z1= diodo zener de 12v 1W
  • C2=10mF /250V

 

 

Un ejemplo practico

El circuito anterior de fuente de alimentación capacitiva o sin transformador podría utilizarse como un circuito de lámpara LED para iluminar circuitos LED menores de forma segura, como pequeñas tiras o luces de cadena LED.  Por ejemplo para una  tira de  65 a 68 LED de 3 Voltios en serie aproximadamente a una distancia de vamos a decir 20 cm  y  esas tiras unidas para hacer una tira mayor  dando un total de 390 – 408  ledsen la tira  final.

El circuito del controlador que se muestra a continuación es adecuado para conducir cualquier cadena de bombilla LED que tenga menos de 100 LED (para entrada de 220V), cada LED clasificado en 20mA, LED de 3.3V de 5 mm:

Aquí el condensador de entrada 0.33uF/400V decide la cantidad de corriente suministrada a la cadena LED. En este ejemplo será alrededor de 17mA que es casi correcto para la cadena LED seleccionada.

Si se utiliza un solo controlador para un mayor número de cadenas LED 60/70 similares en paralelo, entonces simplemente el valor del condensador mencionado podría aumentarse proporcionalmente para mantener una iluminación óptima en los LED.

Por lo tanto, para 2 cadenas en paralelo, el valor requerido sería 0.68uF/400V, para 3 cadenas podría reemplazarlo con un 1uF/400V. De forma similar para 4 cadenas, esto tendría que actualizarse a 1.33uF/400V, y así sucesivamente.

Importante: Aunque no he mostrado una resistencia limitadora en el diseño, sería una buena idea incluir una resistencia de 33 ohmios y 2 vatios en serie con cada cadena LED para mayor seguridad. Esto se puede insertar en cualquier lugar de la serie con las cadenas individuales.

 

 

Otro ejemplo real

 

En este otro caso vamos  a  ver una bombilla led comercial  cuyo esquema se ha obtenido por ingeniería inversa

Una vez mas    tenemos como pieza clave  a la entrada  de  AC  un condensador de poliester  ( en este caso de 225pf    , 400V  y 5% de tolerancia   con  una resistencia de 603 ohmios en paralelo antes del puente de  diodos

En este caso al  tener perfectamente delimitado el consumo de 10 leds en serie  , sabemos  que aproximadamente  al ser de 1.2V la salida en el puente de diodos deberia rondar los 12V DC y como se puede ver no es preciso  un diodo zenner a la salida del puente

 

Como truco ,por cierto   esta  bombilla si queremos alimentarla con la batería de un coche  de 12V ,  por ejemplo   bastaría conectar  dos hilos de la  batería de 12V  directamente  a la salida del puente , es decir   justo en los dos polos del condensador electrolítico  respetando lógicamente  la polaridad .

 

ADVERTENCIA: AMBOS CIRCUITOS MENCIONADOS EN ESTE ARTICULO NO SON AISLADOS DE  LA TENSIÓN DE AC  POR LO TANTO TODAS LAS SECCIONES EN EL CIRCUITO SON EXTREMADAMENTE PELIGROSAS PARA TOCARLAS CUANDO SE CONECTAN AL SUMINISTRO ELÉCTRICO…

 

 

 

Soldador de puntos en kit

Veremos como estn apareciendo kits de electronica para soldadura de puntos que superan en prestaciones a soldadores comerciales incluso ya montados


Cada dia nos sorprenden soluciones comerciales que intentan hacer accesible la tecnologia  siendo prueba de ello muchos circuitos en kits premontados  donde básicamente el ahorro respecto a una solución  montada  comercial  gira en torno  al montaje final ,  de la carcasa    así como los derechos de la marca  o fabricante .

 

 

En esta línea  de soluciones , el modelo  737G + es una gran mejora sobre la base de 737G. Está específicamente diseñado para soldar baterías 18650, 14500 y cualquier otra batería de litio, etc. pues se puede utilizar para soldar tiras de níquel con un espesor entre 0.05 y 0.35 mm para acero niquelado o entre 0.05 y 0.25 mm para banda de níquel puro.

Esta solución  se puede adquirir ya montada( normalmente de peor calidad ) o en kit ,pero  actualmente  hemos llegado al punto donde desde el punto de vista del costo seria más rentable uno montado  que otro en kit,p  pero antes de realizar un juicio  ,  debemos valorar también la calidad   y las prestaciones porque en efecto  soldador de China basado en un transformador no es realmente mucho más barato si va adquirir un soldador chino de gama baja, pero con este modelo de gama alta  no hay preocupaciones pues el  período de aprendizaje  es  aceptable     siendo el  resultado perfecto cada vez.

 

Prueba de las prestaciones del modelo en kit , destaca  las siguientes características del software (las nuevas características se resaltan en negrita):

  • El algoritmo de control de soldadura central utiliza un enfoque de medición Joule en lugar de un temporizador simple, eliminando la necesidad de disparo de dos pulsos y proporcionando soldaduras más consistentes : la cantidad de energía que se deposita en el punto de soldadura siempre se mantiene constante
  • Protección avanzada contra arcos mediante corte por corriente inferior (800A)
  • Capacidad para detectar una soldadura fallida y retroalimentación acústica al usuario
  • Procedimiento de calibración para cancelar las pérdidas de plomo del electrodo
  • Modo manual, activado desde un interruptor externo
  • Modo automático, acompañado de un sonido de advertencia y activado con un retardo ajustable, una vez que el sistema detecta que ambos electrodos están en contacto constante con el material de soldadura
  • Retroalimentación audible de la finalización del proceso de soldadura
  • Retroalimentación numérica de una soldadura ejecutada, ayudando al usuario a lograr los mejores resultados: recuento de pulsos, cantidad de energía depositada, tiempo de pulso requerido para esta energía, flujo de corriente medido, resistencia óhmica medida del punto de soldadura
  • Interfaz de usuario simple e intiuitiva – sólo tiene que ajustar la energía de soldadura deseada hasta 500 julios con la perilla de marcación; experimentar un control fino a través del uso de un codificador
  • Menús de configuración accesibles a través del pulsador del dial
  • La supervisión de sobrecorriente anula el pulso cuando se activa, protegiendo el interruptor de alimentación
  • Monitoreo de la batería con voltaje de advertencia ajustable
  • Control de la aptitud del fusible
  • Interfaz de actualización de firmware

Las piezas de un kit de este tipo  son  las siguientes :

Electrónica

Este es el cerebro del soldador de la batería kWeld. Usted compra profesionalmente un módulo electrónico soldado, probado y programado. Consulte https://www.keenlab.de/index.php/product/kweld-electronics/ para obtener más detalles.

Cables, soportes de electrodos y electrodos Todos los bits y piezas que se requieren para montar completamente el cableado kWeld, incluyendo un par de soportes de electrodos y un par de electrodos. (Consulte https://www.keenlab.de/index.php/product/kweld-cable-electrode-holders/ y https://www.keenlab.de/index.php/product/kweld-electrode-set/ para obtener más información.) La conexión de entrada de energía consta de extremos de cable sueltos, es necesario agregar un conector que coincida con la fuente de alimentación. Los conectores de alimentación XT150 adecuados están disponibles en la tienda.

Elija la opción de suelta suministrada si tiene el tiempo y las herramientas hacen los pasos de montaje necesarios usted mismo, ahorrando algo de dinero. Consulte el manual de montaje para obtener una visión general del trabajo implicado. Si tiene dudas, elija la opción montada

.

Fusible

Un fusible de alta corriente 300A (tipo ANL) que necesita ser montado en el módulo electrónico kWeld y protege el sistema de las consecuencias de fallas catastróficas improbables

.

Interruptor de pie El interruptor del disparador de pulsos del sistema kWeld. Tiene una construcción robusta, y utiliza un microinterruptor real que también es fácil de reparar. La longitud del cable es de 2,0 m.
Barras de bus mecanizadas CNC Estos necesitan ser atornillados al módulo electrónico y proporcionan una trayectoria de baja impedancia entre los transistores del interruptor y el sistema de cable.
Piezas mecánicas Todos los bits y piezas que se requieren para montar completamente el módulo electrónico kWeld con la pantalla LCD, el cableado, el fusible y las barras de bus. Consulte https://www.keenlab.de/index.php/product/kweld-mechanical-parts/ para obtener más detalles.

Tenga en cuenta que una fuente de alimentación no suele formar parte de  este  tipo de kit. Las siguientes fuentes de alimentación de alta corriente se han probado con el sistema kWeld y se pueden recomendar:

  • Batería de polímero de litio Turnigy nano-tech 3S/5000mAh/130C( La corriente medida es de 1300-1500 amperios.
  • Batería de polímero de litio Turnigy graphene 3S/6000mAh/65C El nivel actual es comparable con el modelo nanotecnológico.
  • Ultracell UXL65-12 . Según los comentarios de un usuario, la corriente reportada por kWeld es aproximadamente 1000A cuando se prueba con tiras de níquel de 0,15 mm.
  • Bosch SMT 31-100 Según los comentarios de un usuario, la corriente de soldadura reportada por kWeld es aproximadamente 1400A.
  • La fuente de alimentación debe ser capaz de entregar al menos 800A (recomendado: al menos 1000A) para garantizar la funcionalidad adecuada del dispositivo.

Las baterías de polímero de litio son potencialmente peligrosas. Si fallan internamente, pueden auto encenderse espontáneamente. Por lo tanto, se recomienda encarecidamente supervisarlos permanentemente durante el uso y también durante la carga, y almacenarlos en un recipiente seguro contra incendios cuando no los use.

Puede construir su batería con el cabezal de soldadura fija de cabezal y pedal. Coordinando manos y pies al mismo tiempo hará que el proceso de soldadura a largo plazo no sea tan agotador, más el uso del pedal durante la soldadura con batería mejora la precisión de la soldadura por puntos. En este modo de soldadura, necesita ajustar el ajustador de presión para que los puntos sean más confiables y elegante

La perilla de presión regula la presión entre las varillas de soldadura de cobre y tira de níquel . En términos generales, cuanto más delgada es la tira de níquel, más pequeña deberia ser la presión. Una presión adecuada entre la tira de níquel y las varillas de soldadura también hara que las manchas sean más fuertes y fiables.

Especificaciones de esta solución  para soldar :

  • Voltaje de entrada: CA 110 V / 220 V ± 10%
  • Corriente de soldadura: 120 ~ 1200 A
  • Tiempo de pulso único: 5 ms
  • Max. cantidad de pulso: 18
  • Max. potencia de salida: 4.3 KW (instantánea)
  • Pieza de soldadura fija:
    • Espesor de soldadura para acero niquelado: 0.15 ~ 0.35 mm
    • Espesor de soldadura para níquel puro: 0.12 ~ 0.25 mm
  • Pieza de soldadura móvil:
    • Espesor de soldadura para acero niquelado: 0.05 ~ 0.2 mm
    • Espesor de soldadura para níquel puro: 0.05 ~ 0.15 mm
    • Especificación para pluma de soldadura móvil:
    • Distancia de la aguja de soldadura (ajustable): 2 – 7 mm
    • Longitud total: aprox. 22.8 ”
    • Área de sección transversal del cable: 16 mm2
    • Dimensión de los pernos de soldadura: 1.5×7 mm

Hay tres formas de solda con esta solución usando  un cabezal de soldadura fijo con pedal:

  • Rango de soldadura: 0.15 ~ 0.35 mm para acero niquelado, 0.12 ~ 0.25 mm para níquel puro tira; Pasos de preparación:
  1.  Coloque el cabezal de soldadura fijo con varillas de soldadura de cobre antes de la máquina se enciende.
  2.  Enchufe el pedal.
  3.  Encienda el botón de encendido principal y luego el interruptor de encendido de soldadura.
  4.  Ajuste la cantidad de pulso y el nivel de corriente de soldadura para hacer los puntos Más confiable y elegante
  5.  Suelde sus baterías con un cabezal de soldadura fijo junto con el pedal Pluma de soldadura móvil con pedal (MT): la pluma de soldadura móvil efectivamente extiende su área de soldadura, y este diseño es popular entre los aficionados a la electricidad, porque pueden construir grandes paquetes de baterías de litio para sus bicicletas eléctricas u otros proyectos
  • Rango de soldadura: 0.05 ~ 0.2 mm para acero niquelado, 0.05 ~ 0.15 mm para níquel puro tira. Pasos de preparación:
  1.  Inserte la pluma de soldadura móvil. (En este caso, no monte el cabezal de soldadura con varillas de soldadura de cobre).
  2.  Enchufe el pedal.
  3. Encienda el botón de encendido principal y luego el interruptor de encendido de soldadura.
  4. Suelde sus baterías con una pluma de soldadura móvil junto con el pedal. Pen Pluma de soldadura móvil sin pedal (AT): en este modo, debe desconectar el pedal primero. Una vez que la pluma de soldadura une la tira de níquel, la pluma de soldadura liberará la energía y soldará automáticamente, solo necesita dar un poco presión sobre el bolígrafo tal como está escribiendo.
  • Rango de soldadura: 0.05 ~ 0.2 mm para acero niquelado, 0.05 ~ 0.15 mm para níquel puro tira;Pasos de preparación:
  1.  Inserte la pluma de soldadura móvil. (En este caso, no coloque el cabezal de soldadura con varillas de soldadura de cobre).
  2.  Encienda el interruptor de alimentación principal y luego encienda la energía de soldadura botón.
  3.  Ajuste la cantidad de pulso y el nivel de corriente de soldadura para hacer los puntos Más confiable y elegante.
  4.  Suelde sus baterías con una pluma de soldadura móvil.

 

En todos los pasos mencionados anteriormente, asegúrese de que las varillas de soldadura de cobre del cabezal fijo y los pasadores de soldadura del móvil la pluma de soldadura no estan en contacto entre sí para evitar cortocircuitos. Cuando los usuarios necesitan ajustar la distancia entre los pasadores de soldadura en soldadura móvil pluma o distancia entre varillas de soldadura de cobre de cabeza fija, apague el soldador primero, no ajuste la distancia cuando el soldador está encendido.

En general, hay dos métodos para mejorar la potencia de salida de spot soldadura: ajustando el nivel de corriente de soldadura a través de la perilla de corriente o ajustando  la cantidad de pulso , pero es posible que tenga que jugar un poco con ambos para obtener lo mejor combinación para su uso específico.

Soldando con este tipo de kits debe tener  estas precauciones:

1. Al construir un paquete de baterías con soldadores Sunkko, si el sistema de circuito doméstico mantiene disparo, reemplace su disyuntor de circuito. Para la máquina de la versión 110V, el circuito El disyuntor de aire en su sistema de circuito debe ser superior a 40 A. Para la versión de 220V máquina, el disyuntor de circuito de su sistema de circuito debe ser superior a 30 A.

2. Póngase guantes y mascarilla durante el proceso de soldadura de la batería para proteger usted mismo (pueden producirse chispas durante el proceso de soldadura).

3. Desenchufe la soldadora cuando no la esté utilizando.

4. Durante su proceso de soldadura, la gran corriente instantánea generada por el soldador puede causar que el equipo de iluminación bajo el mismo sistema de alimentación parpadee y se considerado normal

5. No cortocircuite durante la soldadura por puntos o la carga.

6. No use soldadores Sunkko con un transformador de voltaje ya que los soldadores Sunkko no son compatible con los transformadores de voltaje comunes en el mercado.

7. La soldadura por puntos continúa demasiado rápida acelerará la pérdida de componentes internos del Soldadura por puntos. Recomendamos que el tiempo entre cada soldadura por puntos sea de 3 segundos o más.

 

Por favor, también eche un vistazo : https://endless-sphere.com/forums/viewtopic.php?f=14&t=89039    ,    http://www.eevblog.com/forum/projects/guesses-on-what-i-am-attempting-here

, así como estos videos discutiendo la evolución de este sistema:


Advertencia:

Usted está tratando con niveles de energía muy altos cuando se utiliza este sistema, que puede resultar en lesiones personales o incendio cuando se maneja incorrectamente. Tome las medidas de seguridad adecuadas y utilice este sistema con precaución. Nunca lo deje desatendido mientras está encendido.

Este producto contiene piezas pequeñas, mantener fuera del alcance de los niños!

Este sistema produce campos magnéticos significativos, no lo utilice cuando usted tiene un marcapasos cardíaco!

El spotwelder de la comunidad de KWeld ha estado yendo tan bien que entusiastas de los powerwall han recopilado algo de información sobre dónde comprar y descargar cosas. Los soldadores de lugar 709 AD & Kweldy ambos se mantienen muy bien y se considera que es un requisito para la construcción de su DIYPowerwall.

Siéntase libre de añadir a la lista si puede aportar algo  más (asegúrese de copiar la publicación original para mantener la información fácilmente en comparación). https://www.secondlifestorage.com/kweld

 

 

 

 

 

 

 

 

 

La navegación eléctrica es posible

¿Puede manejar un yate, incluyendo su motor, completamente a partir de energías renovables? pues hay personas que a falta de opciones disponibles en el mercado e están haciendo precisamente eso


Siempre hemos tenido yates capaces de generar su propia electricidad a partir de energías renovables, por supuesto, y a medida que los electrodomésticos a bordo se han multiplicado, también lo han hecho las demandas de energía fuera de la red. Pero el objetivo final de reemplazar de forma fiable el motor diésel por un motor eléctrico equivalente ha resultado hasta ahora esquiva. Aunque un yate a vela  requiere muy poca potencia para lograr la velocidad del casco en condiciones de calma, todavía necesitará alrededor de 3cv por tonelada cuando se navega  en un mar intenso como reserva de potencia , tanto  esa así que de hecho muchos regatistas también prefieren tener un motor en reserva, por lo que un moderno yate de 40 pies (12 m) por lo general equipará un motor  interno entre 55cv y 80hp (72-104kW).

Pero todo eso está cambiando, y ahora es posible un barco libre de combustibles fósiles gracias a los enormes avances en el mercado de los vehículos eléctricos. Los nuevos motores electricos  sin escobillas proporcionan más torsión para menos energía, mientras que las nuevas baterías de litio pueden almacenar una mayor capacidad y, crucialmente, un ciclo profundo repetidamente sin daños. Aprovechando al máximo todos estos activos estamos ante  la nueva generación de controladores digitales, que gestionan el flujo de energía con inteligencia predictiva. Todo esto ha significado que cada amplificador posible se burla del sistema renovable, cuidadosamente almacenado con un mínimo de residuos, y luego utilizado sabiamente por el motor.

Para probar esta tecnologia , un grupo de estudiantes franceses acaba de circunnavegar el mundo en un yate reacondicionado con un sistema de propulsión totalmente eléctrico, y diseñado para recargar principalmente del movimiento a través del agua. Mientras tanto, firmas como Oceanvolt (Finlandia) y Electric Yacht (California) se han creado para proporcionar soluciones totalmente eléctricas para barcos de hasta 60 pies (18 m) de longitud. Decenas de yates ya han sido electrificados, y con cada conversión exitosa, se aprenden más lecciones

Asimismo el constructor de yates austriaco Frauscher fue el primero en aprovechar la pila de combustible para proporcionar un día completo de automovilizado a partir de hidrógeno de origen renovado

Para los propietarios de estos yates convertidos, no se trata realmente de ahorrar dinero. Como reveló el proyecto financiado con fondos europeos Hymar, no hay muchos ahorros de costes relacionados con la instalación de un sistema híbrido, principalmente porque el kit sigue siendo relativamente especializado y todavía bastante caro. En cambio, se trata de las alegría de un crucero suave y silencioso con cero emisiones, un mantenimiento continuo mínimo y una gran reserva de energía eléctrica para cargas domésticas. Otra ventaja es la entrega instantánea de la unidad, que puede tomar un yate de apagado a velocidad de flanco en pocos segundos, útil en situaciones de colisión. También puede ser útil girar el apoyo a sólo unas pocas rpm sin enganchar una caja de cambios torpe para maniobras de precisión.

 

El yate francés de 38 pies Amasia acaba de completar una circunnavegación global de 35.000 millas(incluyendo 500 millas de motor eléctrico) cubriendo todas sus necesidades energéticas enteramente a partir de fuentes renovables , lo cual es ciertamente esperanzador el simple hecho de cómo nos  podemos  imaginar un mundo ya actual  donde podríamos     ser capaces de navegar por los rincones más lejanos de la Tierra sin tener que buscar una bombona  de gas para la cocina, o combustible  para el motor intraborda de gasoil 

Pues en efecto hoy en día, esto  que podría ser  utópico , a dia de hoy  ya es bastante factible, porque su cocina y un potente motor principal pueden ser totalmente eléctricos,   pudiendo  el banco de baterías de iones de litio moderno   recargarse rápidamente mediante una combinación de paneles solares ,  generadores eolicos de viento,  una hélice de giro libre o un hidrogenerador.

Los generadores eólicos, los paneles solares y los hidrogeneradores retorces son las tecnologías clave aquí. Cada uno tiene sus propias fortalezas y debilidades, y un barco de crucero bien configurado tendrá dos o incluso tres opciones. Con, digamos, 240W de energía solar, una generación  eólica de 300W y una generación remolcada, debería ser posible cubrir la mayoría de las demandas de electricidad ‘hotel’ sin aire acondicionado, lavadoras /lavavajillas  y generadores de agua de alto rendimiento.Veamos  con más detalle de lo que estamos hablando

 

Generador eólico

Esta es una manera probada y probada de generar grandes cantidades de energía en el paso. Las unidades marinas suelen tener una clasificación de 300-400W, pero solo generaran ea potencia  a las velocidades de viento en las que preferirías no navegar. Funcionan igual de bien en el ancla o en el puerto deportivo, pero pueden dar problemas  así que elija este cuidadosamente y elija un buen regulador que pueda dosificar  la carga, así como bombear la energía. Eclectic Energy D400, Rutland, Leading Edge y Air Breeze son buenos vendedores.

Mas informacion se puede encontrar en  duogen.co.uk  ,marlec.co.uk  o en leturbines.com

Paneles  solares

Los paneles fijos y flexibles son ahora igualmente eficientes (12-18%) pero el reto esta en  cómo y dónde encajarlos para obtener el máximo efecto. Asimismo se necesita añadir un regulador solar para  la mas minima instalación incluso de  unas pocas decenas de vatios .

Siempre deberemos  optar por uno de potencia  máxima   que exceda  la de la instalación de paneles  y que sea  de buena calidad. Un pequeño panel puede cargar la batería, mientras que las matrices más grandes pueden soportar  10-20A-plus durante el calor del día.

Modernamente  gracias a la evolución de los paneles fotovoltaicos en cuanto a rendimiento , peso y flexibilidad ,   incluso para obtener una superficie más expuesta , hay entusiasmas que  fijan  los paneles  a las propias velas

electric yachts

Por  ejemplo el Arcona 380Z tiene 1000W de paneles solares establecidos en la vela principal, complementados por más en largueros y cubiertas

Más información sobre paneles solares para su uso en nautica  en ecopowershop.com ,marlec.co.uk   o en  barden-uk.com

 

Propulsión híbrida

La mayoría de los sistemas híbridos utilizan un motor diésel con un motor eléctrico reversible conectado a la caja de cambios.  Estos generan grandes cantidades de electricidad mientras que el motor diesel impulsa el barco o  para demandas más cortas de energía, se puede utilizar el motor eléctrico por sí mismo. Algunos llevan este sistema un paso más allá, reemplazando el motor por un generador que se puede usar  a tiempo completo para alimentar el motor si es necesario.

Incluso otros diseñadores  utilizan el sistema como una generación de remolque para producir electricidad a partir del movimiento del barco a vela.

Alimentar un motor eléctrico relativamente potente (10kW/13hp+) durante cualquier período de tiempo requiere un gran banco de baterías, y las cargas altas pueden drenarlas rápidamente. Hasta la fecha, el problema de la propulsión eléctrica dedicada ha sido el almacenamiento , por lo que se ha llegado a un compromiso práctico con una instalación híbrida. Un motor de combustión de tamaño pequeño a mediano se hace cargo del deber de propulsión en períodos de alta demanda, o cuando las baterías se agotan. El motor también gira el motor eléctrico como un generador. Una vez que las baterías están rematadas, los eléctricos están una vez más disponibles para funcionamiento silencioso. Debido a la necesidad de un “extensor de alcance” adicional, la propulsión eléctrica ha sido generalmente un complemento para un yate de crucero, y no el único proveedor.

electric yachts
El sistema eléctrico de transmisión y gestión de energía a bordo del Arcona 380Z permite que el yate motore a 4kt solo con energía solar y un controlador simple proporcione energía instantánea sin necesidad de una caja de cambios torpe,

Mas información sobre populsion hibrida en nautica  en  oceanvolt.com ,bellmarine.nl   o en  hybrid-marine.co.uk

 

Hidrogenador

Relativamentes recién llegados, prometen un excelente poder en el pasaje. A velocidades de crucero, pueden generar hasta 20A de salida constante para la pérdida de típicamente 0.2kt de velocidad del barco. El montaje es una consideración clave: algunos, como el H240 de Save Marine, tienen marcos para subirlos y bajarlos al agua, mientras que el Ampair es una hélice en una cuerda que remolca.

Mas información sobre populsion hibridaen nautica  en wattandsea.com ,save-marine.com ,duogen.co.uk o en seamap.com

 

Desarrollo de la tecnología de la batería

En el mercado marino, el fabricante holandés Mastervolt fue el primero en ser pionero en la batería de iones de litio de tamaño completo, disponible en 12V o 24V, y ahora en su segunda generación, la gama Ultra. Se afirma que estas baterías tienen un ciclo de vida de al menos 2.000 descargas profundas de hasta el 80 por ciento de drenaje, pero con un tercio del peso de un diseño equivalente de plomo-ácido. La electrónica compleja sobre cada célula garantiza un equilibrio perfecto y ningún riesgo de sobrecarga. Mastervolt fue pionero en la batería de iones de litio marina, ofreciendo ligereza con descarga profunda, ideal para la propulsión

En otros lugares, los científicos han hecho un gran avance con la batería de aire de litio, que utiliza oxígeno como uno de los reactivos. La reclamación es una batería que eventualmente se puede hacer por una quinta parte del precio y una quinta parte tan ligera como el litio, pero podría hacer que los teléfonos, coches y barcos operen cinco veces más.

Otras investigaciones están sondeando la física de otros materiales, como magnesio, oro ‘nanohilos’, sodio-ion, y la formulación de carbono, grafeno. La empresa española Graphenano ha desarrollado una batería de polímero de grafeno llamada Grabat, que afirma que es del 33 por ciento del peso del ion de litio y cuatro veces la densidad energética. Mejor aún, las baterías se afirma que se recargan 33 veces más rápido que el ion de litio, y retienen más del 80 por ciento de su capacidad después de miles de ciclos.

Además, la tecnología de pilas de combustible de hidrógeno también ha estado avanzando. La versión ST vio estaba trabajando en una lancha de 5kW, proporcionando 5 nudos para un día completo de conforz.

Avances en motores eléctricos

Los avances continúan en el mundo de los motores eléctricos, siendo uno de los más recientes Siemens. Inusualmente, este motor ha sido diseñado para la industria aeronáutica, y con un peso de sólo 50 kg entrega un continuo 260kW (348cv), aproximadamente cinco veces más potencia que sistemas equivalentes. Además, esto se entrega a sólo 2.500 rpm, por lo que se puede conectar directamente a la hélice sin transmisión.

El mercado del motor fueraborda también ha visto una serie de innovaciones, en particular por parte de la empresa austriaca Torqeedo, que ahora puede ofrecer motores eléctricos sin escobillas (sincrónicos) de hasta 80 cv. Torqueedo lanzó no menos de seis nuevos sistemas de propulsión este año, respondiendo a la creciente demanda de unidades fueraborda y de vainas de baja tensión tanto para embarcaciones de ocio como comerciales

electric yachts
Torqeedo ha desarrollado su gama para incluir motores capaces de planificar velocidades

Algunos motores marinos todavía requieren sus propios sistemas de refrigeración, tanto en modo de accionamiento como de regeneración, pero otros, como los accionamientos de vainas y los accionamientos de llantas, operan fuera del barco, por lo que se enfrían en la caja y, como ventaja, se pueden conducir.

Asimismo tampoco  faltan  usuarios  que sustituyen el motor intraborda  por unos motores DC   de potencia  considerable   manteniendo la hélice original haciendo adaptaciones  bastante ingeniosas   para acoplar el eje de la hélice al eje del motor

 

electric yachts

Cooper Anderson, propietario de Gulfstar Sailmaster 39 sloop Panormos, encontró un motor eléctrico quiettorque de 10 kW (13 cv) era fácil de encajar, y da un alcance notable

¿Que es Marlin?

Un resumen del proceso de modelado, rebanado e impresión de una pieza en 3d


 

What is Marlin?

Marlin es un firmware de código abierto  GRATUITO   para la familia RepRap de replicar prototipos rápidos mediante impresoras 3D derivado de Sprinter y grbl  que  se convirtió en un proyecto de código abierto independiente el 12 de agosto de 2011 con su lanzamiento de Github bajo licencia  GPLv3 

Desde el principio Marlin fue construido por y para los entusiastas de RepRap para ser un controlador de impresora sencillo, confiable y adaptable que “simplemente funciona”. Como testimonio de su calidad, Marlin es utilizado por varias impresoras 3D comerciales respetadas  como  Ultimaker, Printrbot, AlephObjects (Lulzbot) y Prusa Research   etc . Ademas Marlin también es capaz de cotrolar las  famosa maquinas CNC ,asi como grabadores láser ,  pues en realidad  en vez extruir material de diferentes propiedades , como lo haría  una impresora 3d,  son variantes de estas al haberse sustituido el extrusor por un láser o una multiherramienta de fresado , corte,etc.

Una clave de la popularidad del fw  Marlin es que se ejecuta en microcontroladores Atmel AVR de 8 bits de bajo costo siendo en su version  2.x   compatible con  placas de 32 bits,  chips  que como sabemos  son el núcleo  de la popular plataforma de código abierto Arduino/Genuino (de  hecho la plataforma de referencia para Marlin es un Arduino Mega2560 con RAMPS 1.4 y Re-Arm con rampas 1.4).

Como producto comunitario, Marlin tiene como objetivo ser adaptable a tantas placas y configuraciones como sea posible, de modo  que sea  altamente  configurable, personalizable, extensible y económico tanto para aficionados como para proveedores de modo  que una implementación  de  Marlin puede ser muy escueta por ejemplo  para su uso en una impresora sin cabeza con un solo hardware modesto pero que  pueda  ampliarse sus características habilitando  según sea necesario para adaptar Marlin a los componentes añadidos.

Resumidamente estas son las principales características:

  • Código G completo con más de 150 comandos
  • Suite completa de movimiento de código G, que incluye líneas, arcos y curvas Bézier
  • Sistema de movimiento inteligente con movimiento de mirada anticipada, basado en interrupciones, aceleración lineal
  • Soporte para cinemática cartesiana, delta, SCARA y core/H-Bot
  • Control del calentador PID de bucle cerrado con ajuste automático, protección térmica, corte de seguridad
  • Soporte para hasta 5 extrusoras más un estampado calefactado
  • Interfaz de usuario del controlador LCD con más de 30 traducciones de idiomas
  • Impresión de tarjetas SD y basadas en host con inicio automático
  • Compensación de nivelación de cama: con o sin sonda de cama
  • Avance lineal para extrusión a presión
  • Soporte para extrusión volumétrica
  • Soporte para mezcla y multiextrusoras (Cíclope, Quimera, Diamante)
  • Soporte para sensores de ancho/de ejecución de filamentos
  • Temporizador de trabajo de impresión y contador de impresión

FDM

Marlin Firmware se ejecuta en la placa principal de la impresora 3D, gestionando todas las actividades en tiempo real de la máquina coordinando los calentadores, motores paso a paso, sensores, luces, pantalla LCD, botones y todo lo demás involucrado en el proceso de impresión 3D implementando  el famoso  proceso de fabricación aditiva llamado Fused Deposition Modeling (FDM), también conocido como Fused Filament Fabrication (FFF). En este proceso, un motor empuja el filamento de plástico a través de una boquilla caliente que funde y extruye el material mientras la boquilla se mueve bajo control informático. Después de varios minutos (o muchas horas) de colocar finas capas de plástico, el resultado es un objeto físico.

El lenguaje de control para Marlin es un derivado del código G donde los comandos de código G le dicen a una máquina que haga cosas simples como “establecer el calentador de 1 a 180o” o “mover a XY a la velocidad F.” Para imprimir un modelo con Marlin, debe convertirse en código G utilizando un programa llamado “slicer”. Dado que cada impresora es diferente, no encontrará archivos de código G para descargar; tendrá que cortarlo  este el propio usuario  obviamente con unsw de slicing 

A medida que Marlin recibe comandos de movimiento, los agrega a una cola de movimiento para ser ejecutados segun las ordenes recibidas. La “interrupción paso a paso” procesa la cola, convirtiendo los movimientos lineales en pulsos electrónicos con precisión en los motores paso a paso. Incluso a velocidades modestas Marlin necesita generar miles de pulsos paso a paso cada segundo. (p. ej., 80 pasos por mm * 50 mm/s a 4000 pasos por segundo!) Dado que la velocidad de la CPU limita la velocidad con la que la máquina puede moverse, ¡siempre estamos buscando nuevas formas de optimizar la interrupción paso a paso!

Los calentadores y sensores se gestionan en una segunda interrupción que se ejecuta a una velocidad mucho más lenta, mientras que el bucle principal controla el procesamiento de comandos, la actualización de la pantalla y los eventos del controlador. Por razones de seguridad, Marlin realmente se reiniciará si la CPU se sobrecarga demasiado para leer los sensores.

 

Modelado

Mientras Que Marlin solo imprime código G, la mayoría de las segmentaciones solo cortan archivos STL.

Sea lo que sea que utilice para su cadena de herramientas CAD, siempre y cuando pueda exportar un modelo sólido, una segmentación puede “cortar” en código G, y el firmware de Marlin hará todo lo posible para imprimir el resultado final.

Antes de que Marlin pueda soñar con imprimir, primero necesitará un modelo 3D. Puede descargar modelos o crear los suyos propios con uno de los muchos programas CAD gratuitos, como FreeCAD, OpenSCAD, Tinkercad, Autodesk Fusion 360, SketchUp,etc.

Se necesita un alto grado de conocimiento para modelar objetos complejos como un cráneo T-Rex,pero otros objetos pueden ser bastante simples de modelar. Para obtener ideas y probar cosas, explore sitios como Thingiverse y YouMagine e imprima cosas por diversión.

Rebanar

Las segmentaciones preparan un modelo 3D sólido dividiéndolo en rodajas finas (capas). En el proceso se genera el código G que indica a la impresora con minuciosidad cómo reproducir el modelo. Hay muchas segmentaciones de datos para elegir, incluyendo:

Impresión

Marlin se puede controlar por completo desde un host o en modo independiente desde una tarjeta SD. Incluso sin un controlador LCD, una impresión SD independiente todavía se puede iniciar desde un host, por lo que el equipo se puede quitar de la impresora.

El software host está disponible para varias plataformas, incluyendo sistemas de escritorio, Raspberry Pi y tabletas Android. Cualquier dispositivo con un puerto USB y un terminal serie puede actuar técnicamente como host, pero tendrá una mejor experiencia de impresión utilizando software host diseñado específicamente para impresoras 3D.

Las selecciones actuales incluyen:

  • Pronterface es un anfitrión de código abierto de Kliment.
  • Repetier Host es un host de código cerrado de Repetier Software.
  • OctoPrint es un host de código abierto para Raspberry Pi por Gina H-u-ge.
  • Cura es un anfitrión de código abierto de Ultimaker. (ADVERTENCIA: Ya no puede seleccionar manualmente el puerto com y la velocidad, su impresora necesita ser detectada automáticamente por Cura)
  • Simplify3D incluye tanto un host como una segmentación de datos.

Muchas impresoras 3D se envían con una versión personalizada de Repetier o Cura. Si bien esto ayuda a asociar la marca de la impresora con una pieza complementaria de software, estas versiones suelen ser obsoletas y reciben pocas actualizaciones. Le recomendamos que descargue la última versión genérica de su software host preferido en su lugar.

Cómo construir un banco de energía con supercondensadores.

Para ensamblar supercondensadores de forma segura veremos cómo conectar supercondensadores en serie y en paralelo para hacer un banco de energía de forma segura con placas para proteger los supercondensador es de daños por sobretensión.


Recientemente se ha introducido en el mercado los “supercondensadores” o lo que es lo mismo condensadores de gran capacidad pero que mantienen prácticamente el mismo factor de forma que los condensadores electrolíticos que estamos acostumbrados a usar en electronica . 

Un aspecto muy diferenciador  de esta nueva tecnología  es que gracias a esta se puede  almacenar energía sin reacciones químicas , lo cual permite que los súpercondensadores se carguen y descarguen mucho más rápido que las baterías y debido a ello  no sufren el desgaste causado por las reacciones químicas, también durando mucho más tiempo (como sabemos a diferencia de los condensadores ordinarios, las baterías almacenan energía en una reacción química, y debido a esto, los iones se insertan realmente en la estructura atómica de un electrodo : a diferencia de un condensador, los iones simplemente “se adhieren”.)

Normalmente si  descargamos nuestra batería del coche a menudo e intentamos arrancar nuestro coche una vez más ,esto  causará más daño a la batería del coche y eventualmente  no cargará de nuevo , hasta que llegue un tiempo rodando otra vez. Sin embargo esto no es cierto para los super-condensadores: por ejemplo un condensador tradicional del tamaño de una batería de célula 18650  , tiene una capacidad de aproximadamente 20 microfaradios, pero si tomamos un supercondensador  de tamaño similar, este  puede llegar a tener una capacidad de 300 Farads lo que  significa que para la misma tensión, el supercondensador  podría en teoría almacenar hasta 15 millones de veces más energía.

 A pesar  del gran avance ,sin embargo no todo son ventajas en los condensadores pues un condensador típico de 20 microfaradios sería capaz de manejar hasta 300 voltios, mientras que un ultracondensador solo puede llegar  a soportar  2,7 voltios, lo cual significa que  si se usa un voltaje más alto, el electrolito dentro del supercondensador comienza a descomponerse  y podría por tanto llegar a destruirse: por este motivo en realidad un super-condensador tiene la capacidad de almacenar alrededor de 1.500 veces la energía de un condensador de tamaño similar.

Por todo esto los supercondensadores  aunque  el campo de aplicación es muy grande : alimentación de emergencia ideal para CMOS, RAM, VCR, radio, televisión, teléfono, instrumentos inteligentes, datos de conducción, tres ICs, relojes electrónicos, linternas LED, dispositivos inteligentes, motores de juguetes, pantalla DC, USV industrial, válvula magnética, IC, reflectores LED, etc.    deberíamos  tenemos  tener en cuenta algunas consideraciones ya comentadas antes de proceder a  usarlos.

Preparación de un supercondensador

Como hemos ya comentado los supercondensadores deben  ser cargados SIEMPRE con circuitos de carga balanceadas pues sin estos corremos el riesgo de destruirlos .No obstante si piensa que son complejos no es así puesto que  estos, circuitos son asequibles de bajo costo  , sencillos ( en realidad hablamos de  un simple circuito de conmutación que no deja pasar la tensión de carga al condensador por encima del umbral )  y  son  muy fáciles de instalar pues van encima de cada condensador ya que están diseñadas con la misma forma para colocar estos justo encima y dar continuidad eléctrica ( y carga ) al conjunto

Por ejemplo si conectamos 5 supercondensadores en serie a 12v  el  voltaje no se dividirá por igual entre los diferentes terminales de los condensadores (2.2V),lo cual ya no está dando una pista de sus limitaciones especialmente a la hora de cargarlos puesto que en caso de asociación serie ,  hasta que cada supercondensador esté completamente cargado,  el voltaje en los extremos de cada condensador subirá y bajará casi como en vumetro de leds precisamente :es precisamente esta la razón  por la que  debemos usar un circuito de protección que proteja los condensadores labor que realizan las placas balanceadoras las cuales mantiene el voltaje entre los condensadores entre 2.7V o menos , es decir los mantiene en  la zona segura de funcionamiento segura cortando la tensión de carga cuando se supera ese valor protegiendo así de este modo al supercondensador

Estas placas por tanto nos descargan de un  trabajo tedioso  pues para cargar un simple condensador de 2.7V 500F   con 2.4 v de forma segura sin usar una placa balanceadora deberíamos conectar un voltímetro y un amperímetro simultáneamente durante unos 30 minutos para llegar casi a los 2V con una intensidad de unos 0.19Amp controlando en cada  momento que no se supere  el umbral . Una vez cargado aunque baje la tensión estos se comportan manteniendo la corriente casi invariable

 

Vamos a ver como calcular la capacidad  resultante de la asociación mas tipica de 5 supercondensadores  

  • En el caso de dos condensadores serie sabemos que esta es la capacidad resultante  es  1/c= 1/c1+ 1/c2

Por tanto la capacidad resultante será : 1/Cfinal= 1/500+ 1/500  =>  Cfinal =250F  

Asimismo  las tensión final es el sumatorio de las parciales:V=V1+v2

Es decir  V= 2.7 +2.7 =5.4V                                                                                                                                                                                                                          

  • En el caso de  tres  condensadores serie sabemos que esta es la capacidad resultante  es

      1/c=1/c1+1/c2+1/c3    lo que da  Cfinal=  166.67F

        Asimismo  las tensión final es el sumatorio de las parciales:    3x 2.7V 500F =8.1v                                                                                                                                                                                                                                                                                      

  • En el caso de cuatro condensadores serie  1/c=1/c1+1/c2+1/c3 +1/c4

Por tanto la capacidad resultante será Cfinal=125F

Asimismo  las tensión final es el sumatorio de las parciales:4 x 2.7V 500F =10.8V                                                                                                                                                                                         

  • Finalmente en el caso de cinco condensadores serie 1/c=1/c1+1/c2+1/c3 +1/c4+1/c5

Por tanto la capacidad resultante será Cfinal=100F

Asimismo  las tensión final es el sumatorio de las parciales  5* 2.7V 500F =13.5V , que es justo el valor que queremos llegar        

 

 

 

 

 

Calculo final

En el calculo anterior de  5 supercondensadores serie  obtuvimos  una tensión útil de 13.5V d3l conjunto   pero con una capacidad final  muy mermada de 100F  así que para aumentarla  si tomamos dos agrupaciones de 5  condensadores en serie  en  paralelo la  capacidad aumentará manteniéndose la tensión final;

 

 

La  capacidad  de este conjunto  aumenta justo el doble tal y como nos dicen los cálculos

          1/cfinal= 1/c1+1/c2+1/c3 +1/c4+1/c5 + 1/c6+1/c7+1/c8 +1/c9+1/c10  =>

         1/cfinal= 1/500+1/500+1/500 +1/500+1/500 + 1/500+1/500+1/500 +1/500+1/500 =>

          cfinal=200F  

Asimismo  las tensión final es el sumatorio de las parciales de una agrupación al estar ambas en paralelo

Es decir  V= 10 x 2.7V = 13.5V

En resumen    tenemos  con ambas agrupaciones  un supercondensador equivalente   de 3.5V 200F

 

Como C=As/V ( AS=Amperios por segundo) , entonces AS=C+V,

 AS= 200F x 13.5V =2700 Amp/seg   

Vemos   que para nuestra agrupación  serie y paralelo de 10 supercondensadores  obtenemos pues  una capacidad en AS  de 2700 Amp/seg

 

Por otro lado como la capacidad de un acumlador normalmente se mide en  unidades  de tiempo (AH= Amperios hora)  como AH =AS/3600s

C (en Amphora) =2700 (enAmp/seg)   /3600= 0.75Ah

Vemos   que para nuestra agrupación de 10 supercondensadores  una capacidad en AH de 0.75AH  que sería la capacidad de esta agrupación , lo cual  nos hace ver en números  que con estas agrupaciones siguiendo estas fórmulas ya comentadas  necesitamos bastantes elementos (  por ejemplo  para obtener un powerbank de 15AH necesitaríamos  unos 200 supercondensadores de 2.7V 500nf)

Una vez hecho los cálculos  llega el momento de construir el  banco de supercondensadores , para  lo cual lo primero es soldar los condensadores a las placas de  protección respetando escrupulosamente la  polaridad  .

Ya montados los módulos de condensador con las placas toca interconectar estos   para obtener  los 0.75AH    . Debemos   tener en cuenta ,dada la corriente que debe pasar por estos cables  que deberemos hacer   la interconexión   con cables  de cobre   de cierto espesor . En este sentido como un cable de 1.1mm soporta  unos 99 Amp en alterna  lo ideal es usar varios cable juntos para que no haya problemas   de calentamiento de estos

Este es el resultado final del montaje

 

 

Medición  de corriente  y tensión de carga

La mejor manera de monitorear la carga de  un acumulador o una  la agrupación de supercondensadores es usar  un medidor multifuncional de panel , pero !atención !  , porque este debe ser especial  para  corriente continua, lo cual será claramente evidente cuando  sea necesario un shut  que deberemos conectar en serie con la carga  (en nuestro caso el banco de supercondensadores)

Normalmente en estos medidores  el shunt se conecta  en  el polo negativo en serie con la carga   en el que precisamente  en ambos extremos  conectaremos  los hilos de medición  siguiendo el esquema siguiente 

Este tipo de multímetros  DC 4 en 1  suelen tener  una precisión de medición de grado 1.0, combinando  la medición de voltaje, corriente, potencia y energía en un combo, súper compacto y liviano que puede ser portátil y fácil de usar.   También  suelen  tener una  función de alarma mostrando el voltaje parpadeando  la luz de fondo  simultáneamente si el voltaje va más allá del umbral de alarma   que se puede establecer si es necesario( el rango va desde   6 a los 90v ).

Además estos instrumentos almacenan automáticamente los datos de  la última prueba de modo que  cuando se  apagan  el valor energético se puede restablecer por una pulsación corta el botón de función en segundos.

En  concreto este medidor, puede medir voltios, amperios, vatios y energía individualmente contando con un shunt de 100 A / 75 mV, adecuada para mediciones de gran alcance . Cuenta  con una pantalla Digital Súper Grande de  51x30mm de  LCD azul para mostrar la tensión, corriente, potencia y la energía.  Con este medidor, puede medir voltaje 6.5V – 100V DC, amperios 0.0A – 100A y vatios 0.0w – 10Kw.

 

 

Si tiene dudas sobre su uso en este video podemos ver el medidor   en funcionamiento  usando precisamente  est  para monitorizar la carga de nuestro conjunto de 10 supercondensadores

 

Conclusión 

Realmente ya hemos visto como montar  los supercondensadores  para fabricar  un banco de energía de supercondensadores  para uso doméstico utilizando  placas de protección  para ensamblar los condensadores   de 2.7V 500F  montados en una combinación mixta de serie y en paralelo de forma segura.

El valor total de la capacidad de los  10 supercaps resultante de es  de 13.5V ,como hemos calculado es de 200F  que traducido a Ampx hora es de  0.75AH .siendo e tiempo de carga promedio para este paquete de unos 8 minutos  utilizando un  cargador lento  comercial  tradicional  de  batería del automóvil.

No nos cansaremos de repetir que las placas de carga son imprescindibles  porque  protegen los condensadores de daños por sobretensión.

 

Finalmente  en este video podemos ver el montaje de este conjunto   y su utilización practica

 

 

 

Sencillo soldador de puntos

Veremos como realizar un soldador de punto de un modo seguro usando una bateria de automovil


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues está muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ). Además  hay tambien un motivo obvio : si no contamos con un  horno microondas¿  vamos a tener que comprar un transformador de microondas  ( nuevo o no)   y que tendremos que desmontar?

 

 

Bien  en un  post  anterior vimos como una alternativa  a  los soldadores de punto basados en transformadores  de microondas era  usar supercondensadores  , pero   son caros  y dificiles de conseguir , así que es bueno explorar otras alternativas como  pueden ser las  baterias de automovil ( nueva  o usada ) como fuente de energía

Como parte de un proyecto de dotar de un nueva  batería  de litio  a un precio razonable   basada  en celdas 18650  para una bicicleta de montaña eléctrica  el autor de este proyecto (Rory ) necesitaba una gran batería de litio  que encajasen  en su presupuesto según sus  especificaciones:

  • Barato: solo se planea si es a bajo  coste
  • Confiable : deberia  poder ofrecer  más de 500 pares de soldaduras por puntos para hacer
  • Fácil y rápido de hacer -:idealmente usando piezas que se pueda  disponer r
  • Relativamente seguro: No hay altos voltajes presentes

Rory necesitaba ser capaz de soldar la tira de níquel a los terminales celulares 18650 para fabricar   su soldador ocasional  .   Los soldadores  18650  de punto están ampliamente disponibles en la red y probablemente valga la pena la inversión si usted tiene la demanda para ello. Sin embargo, como Rory sólo planeaba construir una batería, realizó su propio soldador de puntos  sin tener que adquirir uno comercial.

Para situarnos ,una búsqueda rápida de YouTube nos ofrece  el canal de darkkevind  donde demuestra su soldador basado  en  una batería de coche estándar conectada a un solenoide motor de arranque de moto. El solenoide se activa mediante un pulsador que cambia la potencia a dos electrodos de soldadura hechos de clavos de cobre. Su diseño es funcional  pero como todo en este mundo  se puede mejorar para  hacer un sistema más confiable  como el que vamos a ver en las líneas siguiente con el diseño de Rory.

 

 

Soldador con bateria de 12V 

El diseño de Rory  cuenta con un solenoide de arranque DELCO 130493  como  interruptor   de potencia para conectar  momentáneamente las bornas de la batería a las puntas de soldadura .Como el lector puede adivinar  en realidad   para este proyecto en realidad   puede usar   cualquier solenoide de motor de arranque de 12V  ( incluso aunque sea para motocicleta) .

En este modelo en concreto es  muy interesante   el diseño de los terminales que pueden  ser vinculados muy bien a una abrazadera de terminal directamente a la batería y además el soporte también permite montar el gabinete de electrónica junto a este  .

Como puede apreciarse en la imagen los terminales laterales  son los de interruptor del relé, es decir las conexiones de potencia que conmutará el solenoide  .Obviamente do las  conexiones centrales  son las de la bobina del solenoide ( de ahí su menor dimensión) 

 

Como se puede apreciar los pernos de terminales solenoide de 8 mm se sujetan muy bien en los terminales de la batería y la bobina solenoide está entre el perno pequeño en el soporte derecho y el soporte de montaje

En el  montaje del Rory el  solenoide es controlado por un circuito de temporizador construido alrededor del multivibrador monoestable dual de precisión  CD14538BE  de Texas Instrument que funciona en modo “no refrigerable”. 

Como rory no ha compartido la configuración del circuito  vemos   abajo  un multivibrador monoestable usando IC CD4538. Es un IC multivibrador monoestable/aestable de precisión libre de activación falsa. Esto se puede utilizar para varias aplicaciones en las que se requiere un ciclo de sincronización preciso.  CD4538 es el IC multivibrador monoestable/estable de precisión que está libre de activación falsa y es más fiable que el popular temporizador IC 555.

Aquí el IC se conecta como temporizador monoestable de corta duración usando el r1 y el C1 como componentes de sincronización. Con los valores dados, la salida de IC1 permanece baja durante tres minutos. Cambiando el valor de C1 o R1 se pueden obtener varios intervalos de tiempo, que  son los valores   que deberemos ajustar para unos 20ms   ( idealmente 10 y 110 ms a través de un potenciómetro) .

A diferencia de 555 IC en el modo monoestable, aquí en CD4530, la salida de IC se vuelve alta en el encendido y se vuelve baja cuando el pin 5 del gatillo consigue un pulso de transición bajo a alto. Cuando se presiona S1, el pulso de alta marcha activa el IC y su salida baja. Esto impulsa la carga a través del transistor PNP T1. La carga puede ser un LED, zumbador, etc.  Lógicamente para cargas más grandes ( como es en este ejemplo) no basta un simple transistor de pequeña  potencia( como en el esquem  de abajo)  pues la bobina solenoide deberia ser  accionada con un transistor de potencia  como por ejemplo  un mosfet FQP30N06L. 

En la solución final basada en el circuito anterior  y que el autor no ha compartido , además   usa algunos  componentes  pasivos adicionales para eliminar el rebote de un interruptor de pie básico . La bobina solenoide es accionada por un mosfet FQP30N06L  ( con su correspondiente diodo en paralelo)  . Además  el temporizador es ajustable entre 10 y 110 ms a través de un potenciómetro estando el circuito  alimentado por una batería separada de 9V aunque podría ser alimentado por la propia  batería del coche con el desacoplamiento adecuado.

De todos modos aunque no sepamos los valores exactos del esquema  del monoestable  que uso Roru ,    este montaje   se puede comprar ya montado  y probado  (buscar 12v DC Delay Relay Timer) por unos 6€  , lo  cual es importante no sustituye  al delco puesto qeu lso contactos del rele   de este tipo de circuitos  no supera 10A con 220V en ac (2200w) , claramente insuficiente para la corriente de soldadura que sera a 12V pero en CC  

A pesar de la conmutación lenta del solenoide, los contactos permanecerán cerrados durante la misma duración que la corriente que se suministró a la bobina. En este caso  el solenoide tarda alrededor de 5 ms para cerrarse, pero el diodo a través de la bobina mantiene el campo magnético activo, permitiendo   enviar  pulsos precisos en el ajuste mínimo de 10 ms del temporizador

Todo esto está montado en una carcasa de aluminio fundido a presión. Tenga en cuenta que la bobina solenoide está conectada entre el terminal de tornillo ‘S’ y el soporte de montaje. El terminal ‘I’ es el contacto NC del solenoide, no una conexión de bobina…

Otros aspectos interesantes constructivos  es  que los electrodos se fabrican utilizando clavos de cobre soldados a longitudes cortas de cable trenzado de 8 awg. Las uñas de cobre se pueden afilar rápidamente utilizando un archivo, por lo tanto, no requieren que sean reemplazables. Unas pocas capas de termorretráctil proporcionan aislamiento térmico y eléctrico.

 

 

Como en las primeras pruebas se hicieron con una batería nueva y la resistencia interna es muy baja, el  resultado fueron  pulsos de corriente muy altos que destruyen las tiras de níquel si el pulso superaba los 20 ms ,  Rory  experimentó con una “resistencia limitante de corriente” formada por una longitud de alambre de relleno de soldadura TIG de 1,6 mm lo cual le  permitia ejecutar pulsos de soldadura de corriente más baja y así encontró que el resultado era una soldadura mucho más fuerte con  un pulso de corriente más corto (  usó un conductor con una longitud aproximada de 50 cm).

Como después del primer pulso la resistencia estaba muy caliente, aumentando la resistencia lo que  hizo que el rendimiento no fuese fiable en las siguientes soldaduras   la solución fue sumergir el cable en agua  mediante un buen vaso de plástico Ikea ( con una base muy gruesa y algunos pernos M8 que aseguraron todo juntos y mantuvieron el agua dentro).

 

 

 

Cabe señalar algunos puntos interesantes de este montaje:

  • Un pulso de alrededor de 40ms produce las mejores soldaduras con esta  configuración. Arrancar la tira de níquel de la 18650 dejaría la parte soldada todavía unida a la batería rasgando el níquel circundante.
  • La batería del coche debe estar conectada a un cargador durante el uso si se hace una gran cantidad de soldaduras. De lo contrario, el voltaje caerá, causando corriente de soldadura poco fiable. Puede usarse  un cargador de corriente constante 5A que se puede dejar conectado durante la soldadura aunque aunque un cargador de 2A más o menos estaría bien.
  • Se requiere una presión uniforme firme en cada electrodo para hacer que cada soldadura por puntos sea de igual resistencia. Los electrodos de soldadura se calientan mucho lo cual debe tener en cuenta para no quemarse .
  • A medida que el agua que enfría la resistencia se calienta hacia su punto de ebullición, no puede eliminar el calor tan rápidamente de la resistencia debido al efecto Leidenfrost (donde las burbujas de vapor aíslan el alambre). Esto permite que la resistencia funcione más caliente, lo que reduce la corriente de soldadura. Suba  el temporizador de pulso a 50mS en este punto. El agua podría ser reemplazada, o un recipiente más grande utilizado para contener el agua de refrigeración.
  • Relativamente el proyecto es  seguro ,aunque es recomendable usar gafas de seguridad debido a las chispas  ocasionales. Guantes también sería una buena idea, así como trabajar fuera lejos de cualquier cosa inflamable.

 

 

Fuente original en  hackaday.io