Sencillo contador de energía para hogar


Desde que cambió la normativa que regulaba el uso de limitador  de la potencia contratada , gracias a los contadores inteligentes  con tele-gestión que van instalados aparte ( normalmente centralizados en una parte de edificio aparte)y que integran ademas  la habilidad de limitar ( o mejor dicho interrumpir) el suministro la potencia desde estos en función de la potencia contratada , en muchos casos  y  en muchas viviendas ha quedado libre el hueco  donde residía el antiguo  ICP magnetotérmico  que hacia de limitador  y que  instalaba la compañía suministradora

Este hueco  en la caja ICT  que ha quedado vacante normalmente ubicado a  la derecha de la caja de distribución de corriente alterna , es ideal  para instalar  un sencillo panel  muy económico que nos va ayudar muchísimo a concienciarnos de nuestro consumo energético en tiempo real   y por supuesto realizar las acciones correctores

El panel digital ,como se observa en la imagen superior ya montado,   encaja en la parte del hueco dejado por el antiguo magnetotérmico , aunque según el tipo de caja habrá que rebajar algo mas el hueco  con una lima para que encaje perfectamente en el hueco ,   y como se puede  apreciar ,es bastante llamativo visualmente gracias  a su luz de fondo azulada  mostrando en tiempo real   las siguientes medidas:

  • Tensión en voltios de la red de suministro ca
  • Intensidad en amperios del
  • Potencia instantánea consumida en Watios
  • Acumulado de  energía consumida wn Kw/h

 

 

 

El instrumento calcula la potencia activa usando la formula  P = U * I * (Cos ) donde  (Cos ) indica  el factor de potencia .

El factor de potencia o coseno de “fi” (Cos ) representa el valor del ángulo que se forma al representar gráficamente la potencia activa (P) y la potencia aparente (S), es decir, la relación existente entre la potencia real de trabajo y la potencia total consumida por la carga o el consumidor conectado a un circuito eléctrico de corriente alterna. 

En los circuitos inductivos, como ocurre con los motores, transformadores y la mayoría de los dispositivos o aparatos que trabajan con algún tipo de bobinado, el valor del factor de potencia se muestra siempre con una fracción decimal menor que la unidad ,lo cual realmente indica  el retraso o desfase que produce la carga inductiva en la sinusoide correspondiente a la intensidad de la corriente con respecto a la sinusoide de la tensión o voltaje.

Por ejemplo un  motor de corriente alterna con un  factor  de  potencia  o  Cos  = 0,95 ,  por  ejemplo,  será  mucho  más  eficiente  que  otro  que  posea  un  Cos  = 0,85 .

Instalación 

Como panel hemos elegido el modelo  Elegiac AC        de bajo coste (18,99€ )  que  tiene un tamaño muy compacto (90x50x25mm), alimentándose directamente a la red 110V-220V ( frecuencia de trabajo: 45-65Hz) ,y  que  soporta  hasta 100A / 22000W con una precisión de  1.0.

Ademas de  presentar parámetros eléctricos función de medición (tensión, corriente, potencia activa, potencia) cuenta con una función de alarma de sobrecarga cuyo  umbral de alarma se puede preseleccionar.

Una ventaja de este panel es que no necesita  fuente  de alimentación externa al llevarla integrada  en esta , lo  que significa en la practica  que únicamente habrá que alimentarla con 220 V c.a. .

La instalación es muy sencilla :

  • Cortamos la alimentación general ( normalmente desde el mangenetotermico de entrada de la red)
  • Insertaremos el panel digital  bien en la caja ICT en los huecos libres del limitador o bien con un belcro en cualquier punto que nos resulte atractivo visualmente
  • Alimentamos el panel  directamente  con 220oV , eso si , !con mucho cuidado de no equivocarnos donde  se conectan los hilos del  toroide!  (en la foto de bajo los bornes serian los dos inferiores)
  • Se hacer pasar uno de los cables de alimentación  general  ( o circuito  a medir  ,preferiblemente la fase ) por el interior del toroide
  • Se conectan  los dos hilos del toroide a los bornes correspondientes del panel(en la foto de bajo los bornes serian los dos superiores)
  • Restituimos el suministro de ca
  • Ajustaremos los parametros de luz

Conviene recordar que por seguridad cuando trabaje en cuadros de baja tensión siempre trabaje cortando la alimentación general y asegúrese después con un polimetro o un buscapolos que efectivamente no hay tensión

Obviamente si no se tiene experiencia en cableados de baja tensión o no esta seguro de la instalación , le  recomendamos encarecidamente  que este tipo de trabajos lo realice un instalador  o un electricista pues  manejar por error tensiones de ca puede ser peligroso  .

 

 

Ajustes
1. Luz de fondo

El control de luz de fondo se puede ajustarse presionando brevemente el botón para encender o apagar la luz de fondo,de modo que quedara almacenado  el estado de retroiluminación de almacenamiento automático.

2. Reseteo de las lecturas

  • Paso 1: Pulse el botón de encendido durante 5 segundos hasta que la pantalla digital parpadee, luego suelte el botón;
  • Paso 2: Si vuelve a pulsar el botón, los datos de consumo se borran y se borran para dejar de parpadear;
  • Paso 3: Si vuelve a pulsar el botón durante 5 segundos hasta que no parpadee, los datos de carga no se borran y la salida se borra.
  1. Ajustes del valor de la alarma
  • Paso 1: Pulse el botón, cuando la pantalla LCD muestre “SET CLr” después del botón de liberación, ajuste el valor en el informe de estado de energía;
  • Paso 2: El área de potencia muestra el valor actual de la alarma de alimentación y el dígito más bajo comienza a parpadear, entonces puede presionar el botón del +1 digital, cuando no haya operación de tecla más de tres segundos, cambia automáticamente por ajuste digital corto como encima;
  • Paso 3: Después de la configuración, presione el botón más de cinco segundos para guardar y salir automáticamente, el alcance del umbral de potencia activa establecido para el 0.0 ~ 22.0kW.

 

 

 

 

 

 

Anuncios

Soldador de puntos sin transformador


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues esta muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ).

En los últimos años, los supercondensadores han surgido como una alternativa o complemento importante para otros dispositivos de producción o almacenamiento de energía eléctrica como las pilas de combustible o las baterías . La principal virtud del primero frente a los dos últimos es la mayor potencia que es capaz de inyectar, aunque poseen una menor densidad de energía. Otras características de los supercondensadores son la rapidez de carga y descarga, pueden proporcionar corrientes de carga altas, cosa que daña a las baterías, el número de ciclos de vida de los mismos, del orden de millones de veces, no necesitan mantenimiento, trabajan en condiciones de temperatura muy adversas y por último, no presentan en su composición elementos tóxicos, muy común en baterías.
La principal desventaja de los supercondensadores es la limitada capacidad de almacenar energía, y a día de hoy, su mayor precio. En realidad debido a sus diferentes prestaciones, condensadores y baterías no son sistemas que rivalizan entre sí, si no más bien se pueden considerar en muchas aplicaciones como sistemas complementarios donde la batería aporta la energía mientras el supercondensador aporta los picos de potencia

Si Q es la cantidad de carga almacenada cuando el voltaje entero de la batería aparece en los terminales del condensador, entonces la energía almacenada se obtiene de la integral:

Esta expresión de la energía se puede poner en tres formas equivalentes por solo permutaciones de la definición de capacidad C=Q/V.


Los materiales  usados  como electrodos para supercondensadores son principalmente de tres tipos: óxidos de metales de transición, polímeros conductores y materiales de carbono activados.

Se puede decir que, actualmente, sólo los supercondensadores basados en carbono, o también llamados condensadores de doble capa (double-layer capacitors), han conseguido llegar a la etapa de comercialización.

SOLDADOR ELECTRÓNICO  DE PUNTOS

Es la forma mas habitual de  y fácil de construir un soldador de puntos   a un precio bastante asequible.

Estas configuraciones funcionan  durante  mucho tiempo y normalmente  estas configuraciones  son  mucho mas optimas y eficientes  que los soldadores basados en transformadores de microondas modificados.

La alta temperatura destruye las baterías de litio, por lo que la soldadura  tradicional térmica no es una opción, así que esta configuración  es perfecta  , (es por eso  que hay personas que la llaman “soldadura fria” )

El circuito propuesto es el siguiente:

soldador de puntos

Como vemos en el siguiente circuito,  el principio es bastante sencillo usando 10  transistores Mosfet del tipo IRF1404 (Vdss=40V, Rds(on)=0.004ohm, Id=162A⑥) en configuración  paralelo para  controlar la descarga de un supercondensador de 120 Faradio de 15V compuesto por la asociación serie de 5 condensadores de 120F /2.7v  , el cual  almacena la energía  suficiente para producir la chispa que permita realizar   la soldadura por puntos.

Las resistencias de 1k  y 10K únicamente sirven para asegurar que pase a conducción los transistores,  motivo  por el cual se usa un pulsador para que conduzca  únicamente durante un breve espacio de tiempo  en el que se mantenga apretando el pulsador

Aunque el IRF1404 soporta hasta 200W de disipación , el motivo por el que se usan 10 transistores en paralelo  es para  evitar usar un voluminoso radiador pues en esta configuración  la disipación por elemento se divide por 10 ,lo cual hacen innecesario cualquier disipador térmico.

Alternativamente  a  los supercondensadores se pueden emplear dos viejas baterías de gel de 12V  /7Ah , aunque el conjunto ya no sera tan liviano ,pero incluso será mas efectivo dado que no es necesario cargar  los condensadores tras cada soldadura  pues las baterías almacenan  suficiente energía para bastantes soldaduras  ( en el montaje de condensadores tras varias descargas si que los es)

El circuito montado, lo podemos ver en la imagen siguiente,donde se observa una peculiaridad importante: dada la gran intensidad que va a pasar por el circuito ,los bornes  de las dos conexiones de los mosfet , deben ser metálicos de buena sección para evitar que esto se quemen por el paso de la corriente:

Asimismo los cables de salida del circuito deben ser de una sección adecuada , y deberían terminar en una punta de cobre macizo para facilitar la soldadura

En la imagen se puede ver como se puede soldar dos pequeñas laminas de níquel

Por ultimo en la siguiente imagen podemos ver una versión   del conjunto ya montado apreciándose claramente el pulsador de pie, y en este caso el uso de las dos baterías  que sustituyen a  los supercondensadores dado su mayor autonomía  y rendimiento:

Componentes

10 X  MOSFET  IRF1404

Resistencia  de  10k 1/4w

Resistencia  de 1k

6  x  Condensador  de 120F , 2.7V   (para el caso de montaje con condensadores) o  2 baterías de 12V  7AH

Pulsador normalmente abierto

Interruptor general

Voltímetro panel (para el caso de montaje con condensadores)

Fuente 15V (para el caso de montaje con condensadores)

2 x puntas de cobre

Construcción de un panel solar


Aunque realmente el precio de los paneles solares ya montados  ha bajado una barbaridad, lo cierto es que no siempre son fáciles de conseguir bien porque no existen para la  tensión  o potencia  que se precisa , o simplemente porque tienen aún un alto coste , de modo   que  es muy interesante  conocer como  podríamos construir nuestro propio panel solar  personalizado  dado que se  precisan  materiales relativamente sencillos de adquirir  en cualquier tienda de bricolaje  exceptuando  claro  las placas fotovoltaicas (las cuales por cierto actualmente ya  tienen un precio irrisorio).

En el proyecto que vamos   a ver  (publicado en instructables.com)   necesitaremos los siguientes componentes:

  • 28 células solares (0,5V 3.1w).
  • 2 láminas de cristal.
  • Diodo rectificador de 6 amperios.
  • Marco de aluminio de 30 x 30 x 3.
  • Cable plano de 5 milímetros.
  • Cinta de 2 milímetros.
  • Silicona.
  • Crucetas para azulejos.
  • Caja de conexión.
  • Soldador.
  • Bloque terminal.
  • Tubo termoretráctil.

 

El precio aproximado  de todo el conjunto  para la construcción de la placa   sorprende:  poco más de 211 dólares. Con esto, un sistema con dos paneles, inversor y medidor saldría por alrededor de 440 dólares  .

 

factura.PNG

 

Antes de describir   el  proceso de montaje, es importante destacar  el tipo de conexión  de las células que puede ser  en combinación serie (respete escrupulosamente la polaridad de cada célula)  consiguiendo una tensión final suma de todas las células , combinación en paralelo ( uniendo todos los positivos entre si  e igualmente con los negativos ) para obtener mas potencia   o un combinación de ambas para conseguir tensiones y/o  potencias finales  mayores,

 

conexiones.png

Como nota aclaratoria normalmente las células de siliciona policristalina  suelen ser casi siempre de  una tensión promedia  0.5V max ,  con una eficiencia en torno al  18%  , de corrientes 0,68Amp max  y por tanto  de una potencia promedia de 0,5×6,68= 0.34W.

 

celula.png

 

 

En el caso de este ejemplo, se ha optado por un módulo de cuatro columnas  con siete células en cada una de ellas. Mas concrétamente, para cada  panel  se  usan 7 filas x 4 columnas , es decir  28 células   en total  serie,  por lo que cada panel  tendrá una tensión de 28* 0.5= 14 Voltios .  En caso de usar varios paneles    lo normal es conectarlos en paralelo   sumándose así las potencias de cada placa .

Obviamente , se  puede adaptar la forma en función de las características del lugar en el que lo vaya a colocar.

Para empezar una vez decidida la combinación ( en este caso serie)    se comenzaría por soldar las células  uniendo el positivos de una placa   con el  negativos de la siguiente placa y así sucesivamente  hasta llegar  a la ultima célula .

Acto seguido, se añade  un poco de silicona en la parte trasera de las células y se debe adherir a una de las láminas de cristal ( se puede añadir pegamento para es reforzar la adherencia).

Una vez se seque bien, se puede colocar el panel por la otra cara e instalar una cruceta para azulejos entre cada una de las células para dotar de mayor rigidez al sistema. Acto seguido, aplicar silicona alrededor del borde del cristal y pegar la otra lámina, de manera que las células queden entre ambas.
Una vez finalizada la fase de construcción se debe esperar a que el panel se seque durante al menos un día. Si ha quedado algún hueco entre ambos cristales, se debe  aprovechar para cerrarlo con más sellador, aunque entonces necesitará prolongar el proceso de secado, que puede alcanzar hasta los tres días.

Finalmente, lo ideal es  proteger los cristales del panel,colocando alrededor un marco de aluminio que fortalecerá aún más la estructura.

 

panel.png

Para que todo marche, necesitarás que el sistema esté conectado. Así, en este paso tendrá que instalar una caja de conexiones en el panel, preferiblemente en su parte trasera. En ella debe estar el positivo y el negativo del módulo, de manera que pueda conectarse con el inversor   o el  regulador de carga en función de la instalación que haya decidido realizar .

Es muy interesare  destacar que para evitar la corriente de retorno cuando esté en producción, se deberia incluir un diodo entre el positivo del panel y la utilización que, precisamente, ayudará en ese objetivo.

 

Ademas de los elementos mencionados ,para tener el sistema completo,  lo ideal seria añadir a la lista un  inversor    que se adapte a la tensión  y potencia de la energía que espera captar( en el el proyecto original bastó con un sistema de 100 W de capacidad para convertir buena parte de la energía captada por los tres paneles diseñados),  asi como   un regulador de carga    y una bateria de gel o del tipo AGM  de ciclo profundo ambas , en caso de que desee almacenar la energia para su uso por la noche

esquema.png

 

 

Si ha seguido todos estos pasos, ya solo quedará poner sus paneles a trabajar en la mejor ubicación de la que disponga y empezar a captar y a convertir energía.

Es interesante revisar  el comportamiento habitualmente de modo que si mide que la tensión máxima de salida de los paneles se ha alcanzado, es que todo marcha y que su sistema casero funciona al nivel de los comerciales.

Quedará por despejar el interrogante de la vida útil del panel, que se irá aclarando con el tiempo. Hasta entonces, el ahorro que ha supuesto la fabricación frente a la compra le ayudará a que recupere la inversión mucho más rápido.

 

Fabricación casera de placas mediante láser


Hay muchas, muchas maneras de hacer una placa de circuito impreso o  en ingles “PCB”(printed circuit board)  . Sin embargo, incluso con la práctica, la calidad del resultado varía mucho con el proceso y el equipo utilizado.

Antiguamente  el diseño se calcaba en un papel de acetato y se usaba placas fotosensibles exponiéndolas a una luz intensa,  pero modernamente se  imprime el diseño con una impresora láser  con tóner negro, o bien se fotocopia el mismo en un papel grueso.

Una vez tenemos la plantilla recortaremos la fotocopia como se indica en la imagen,de esta forma, podremos pegar los bordes a la placa.

recortes.png

Antes de transferir el diseño se recomienda proceder al limpiado de la placa por ejemplo usando lana de acero y acetona (este proceso debe ser llevado lo mejor posible, ya que si la placa no queda bien limpia nunca fijara el tóner el la misma). Al terminar de limpiar secaremos la placa con un paño limpio y volveremos a limpiarla sin poner mas los dedos sobre el cobre, ya que estos dejan grasa:la limpieza de la placa solo será efectiva cuando esta quede brillante y con rayones en circulo para que agarre mejor el tóner.

En el instante que se retira la plancha de la placa, después de 1 o 2 minutos de calor intenso, a veces mas, se coloca la placa en un recipiente con agua para que el papel no tire (suelte) el tóner hacia arriba al enfriarse y se fije a la placa, esta debe mantenerse en el agua durante unos 5 minutos.

Una vez limpia la placa colocaremos la plantilla con el lado de la tinta hacia el cobre y con la plancha a tope de calor, se le aplica a la placa  Es importante insistir con el calor por toda la placa y con vapor humedeciendo el papel para que no se queme pero sin empaparlo. Si se llegase a empapar, cortar la llave de vapor y dar calor seco unos instantes.

Después de haber esperado 5 o 10 minutos en el agua, sacamos la placa y vamos frotando con los dedos para quitarle el papel que no nos sirve, intentando quitarlo todo, hasta que quede una capa muy fina de papel que se retira con un cepillo de dientes que ya no tengan en uso, con cuidado de no partir el tóner que define las pistas.

placa

Una vez repasadas todas las pistas de la placa con un marcador permanente (tipo edding 3000 o superior), se espera un par de minutos para que este fije y seque. Mientras tanto, podemos ir preparando el ácido para atacar la placa consistente en una   mezcla de  2 partes de agua fuerte con 4 de agua oxigenada 110 vol. y 1 de agua ( Atención : sobra decir que se debe tener un cuidado extremo usando guantes y gafas de protección  para  evitar contactos accidentales  en la piel  o en los ojos) .

Una vez tengamos la disolución do meteremos la placa en este . Ahora debemos estar mas atentos, pues si el ácido resultara fuerte podría diluir el tóner. Lo ideal es que cuando coloque la placa en disolución, el cobre coja un color rojizo y empiece a burbujear..

placa2

 

Una vez se saque la placa del ácido hay que enjuagarla con abundante agua para que el acido no  siga atacando el cobre  por lo que conviene secarla con un trapo limpio. Una vez seca, se empapara el toner con acetona y se rascara con un cepillo de dientes o con la lana de acero, eliminando así todo el tóner de la placa y ya solo quedaría hacer los taladros para los componentes con una broca de 1mm.

 

¿Le parece  interesante el proceso de fabricación casera de PCB’s anterior? Pues afortunadamente, los nuevos y mejorados métodos de transferencia de Gerber se han ideado en los últimos años gracias a los hackers en todo el mundo.

Uno de esos hackers, [Henner] está trabajando en un proyecto llamado LDGraphy en un intento de traer el grabado de alta resolución a las masas.

LDGraphy es un dispositivo de láser de litografía que hace uso de un láser y un Beaglebone verde para grabar el diseño en el tablero. La mejor parte es que toda la lista de materiales se dice que cuesta menos de $ 100,o  que hace que sea asequible para las personas con un presupuesto ajustado.

El sistema está diseñado alrededor de un láser de 500 mW y un escáner de espejo de polígono destinado a una impresora láser. La placa con fotorresistencia se acciona linealmente en el eje X utilizando un motor paso a paso y el rayo láser que es rebotado del espejo hexagonal giratorio es responsable del eje Y.

El código de tiempo crítico para la Unidad Programable en Tiempo Real (PRU) del procesador AM335X está escrito en  ensamblador  para la conmutación rápida del láser. El recinto es, naturalmente, un caso de acrílico de corte por láser y está hecho en el espacio de hackers local de [Henner].

[Henner] ha estado trabajando duro calibrando su diseño y compensando las inexactitudes de los componentes utilizados. En el vídeo de demostración a continuación presenta una versión de trabajo con una resolución de 6 mils que es maravilloso teniendo en cuenta el costo de la máquina.

 

Este  proyecto es totalmente Open Source, toda la documentación y código fuente están disponibles en GitHub con un coste total de apenas 100 dólares utilizando mucho material recuperado

 

Esta no es la primera vez que hemos visto un DIY láser PCB exposer, por supuesto, pero es uno de los mejores documentados.

Motorización de forma sostenible de su embarcación de recreo


Por poco razonable  que nos pueda resultar, la movilidad eléctrica ha llegado por sus innegables ventajas frente a los  clásicos motores de combustión interna , como puede ser la ausencia de emisiones contaminantes, nulo mantenimiento  ,altísima  fiabilidad ,ni  una  sóla pieza móvil (nada de correas, filtros, etc que complican la vida), no generan manchas de aceite, no generan gases de escape,sin ruido ni vibraciones, no hay mantenimiento,no hay monóxido de carbono,no hay depósito de combustible ( que  por cierto  seguirá aumentando de precio)  ,etc.   

Dentro de la movilidad marina , es normal  que el “movimiento a lo  eléctrico” también sea seguido con interés   por idénticos motivos , en las que como es normal destaca la mayor fiabilidad y el coste de cada milla recorrida frente a los sistemas  convencionales ,pero sin olvidar  que estaremos ayudando claramente a nuestro planeta  siempre que usemos métodos sostenibles para cargar las baterías .

En efecto las bondades de los motores electricos marinos las conocen bien los aficionados a la pesca  ya que son indispensables para desplazarse con una embarcación sin ruidos que asusten a peces ,pero la tendencia es tan clara  que no solo existen motores para maniobra eléctricos o para pesacar , sino que tambien existen motores marinos completamente operativos para reemplazar  todos los motores marinos( es decir  tanto  intraborda como fueraborda).

Hoy en día  ya de hecho  existen muchos motores  intraborda marinos que se pueden encontrar comercialmente   , normalmente para altas potencias  diseñados para reemplazar los viejos motores de  combustión diesel.

motor

En cuanto a motores intraborda resumidamente estas son algunas de  sus características:

  • Potencias :desde  6  a 100 HP
  • Alimentación : desde 36v hasta 144V
  • Corriente : desde 70 hasta 270Amps

Igualmente también existen motores fueraborda eléctricos en un abanico muchísimo mas amplio que los intraborda  dada su gran versatilidad . Como característica llamativa suelen  incorporar el controlador del motor( normalmente del tipo bruslless )  dentro de la propia carcasa y también suelen ser de menor potencia que los motores  intraborda. Incluso hay modelos que incluyen la bateria dentro del propio cuerpo del motor

La  potencia de propulsión de estos  motores  se suele medir  en empuje (Fuerza sobre el barco x velocidad del barco)   normalmente expresada en libras, siendo lo normal  valores desde  las 20 libras hasta las 90 libras o más.

Ademas del empuje medido en la hélice , es muy interesante  saber otras formas de medir la potencia:

  • Potencia de entrada:es la  potencia consumida por el motor  en watios siguiendo la fórmula de la potencia eléctrica P=V*I (intensidad x tensión) .  Para motores fueraborda de gasolina y motores fueraborda eléctricos convencionales no se suele indicar la potencia de propulsión pero este parámetro también puede determinarse para los motores fueraborda de gasolina (volumen de paso de gasolina x energía contenida en el combustible).
  • Potencia en el eje : es la potencia medida en el eje de la hélice .De hecho una  medida muy parecida usada  para la indicación de potencia de los motores fueraborda de gasolina  es el par motor x velocidad angular que se expresa en CV o en kW. No contempla las pérdidas de la hélice, que pueden oscilar entre el 30 y el 80%
  • Potencia de propulsión:indicación de la potencia en grandes embarcaciones (empuje x velocidad). Se expresa en CV o en kW  y contempla todas las pérdidas(incluidas las de la hélice), por lo que indica la potencia efectiva de un motor.

Una gran diferencia frente a los motores térmicos es que los motores eléctricos son capaces de alcanzar la misma potencia de propulsión que los de combustión con una potencia en el eje considerablemente menor porque  pueden propulsar las hélices de forma más eficiente debido a que ofrecen una excelente curva del par motor  en un intervalo más amplio del régimen de giro , por lo que son ideales para propulsar hélices con eficacia incluso en categorías bajas.
Esta cualidad permite a los motores eléctricos accionar las hélices –incluso en las gamas de potencia más bajas– de manera mucho más eficiente que los motores de combustión. Como consecuencia, es posible que el empuje de la hélice en las categorías bajas de CV sea el triple que el de un fueraborda de gasolina.

Sobre el modo  de calcular   la equivalencia en CV  aplicaremos la   formula de la potencia , dividiendo por el   equivalente a 1CV(763W)   ,multiplicando el resultado pro el rendimiento ( si se conoce)

Es decir por ejemplo para un motor de 12V que consume como máximo 80Amp, su potencia en CV seria:

P= V*I= 12 V x 80 A = 960 W

P(CV)=  960 W / 736 W/CV = 1,3 CV

Ese ultimo resultado se multiplicaría  por el rendimiento del conjunto el cual depende claramente de marca modelo del motor:

  • 44-56%  = motores eléctricos de alta eficiencia
  • 30-35%= motores eléctricos fueraborda convencionales
  • 18-22% =motores de pesca
  • 5-15% =motores fueraborda de gasolina

Elección de  la Batería

No se deben  usar  baterías de arranque de automóvil convencionales con  los  motores eléctricos  fueraborda pues las baterías de arranque están diseñadas para entregar la energía almacenada en breves descargas de alta intensidad  que se realizan de manera muy espaciada (justo en el arranque) . Si a una batería de arranque le solicitamos una entrega de por ejemplo, 25 A de manera continuada, esta batería no será capaz de entregarnos la energía que tiene acumulada (los amperios-hora) ya que esta entrega continuada la “asfixia” al cabo de un rato.

En   lugar  de usar  baterías convencionales de Pb , se deben usar  baterías de gel de plomo  o, mucho mejor de ciclo profundo, a ser posible de tecnología AGM, diseñadas para este tipo de trabajo,las cuales  sí serán capaces de entregar la intensidad     solicitada durante el tiempo previsto y durarán muchos ciclos de carga-descarga, las cuales las hace ideales para instalaciones solares  y para embarcaciones de recreo.

51AO+9H+NTL

Para calcular la intensidad en  amperios que consume su motor, se puede  usar la siguiente fórmula:

Empuje en libras / Voltaje del motor x 12 = Amperios que consume.

Por ejemplo para motores de 55 libras de empuje alimentados  a las tensiones de 12, 24 o 36  voltios  respectivamente  tendremos:

  • 55 libras de empuje /12 Voltios x 12 = 55 Amperios
  • 55 libras de empuje /24 Voltios x 12 = 27,5 Amperios
  • 55 libras de empuje /36 Voltios x 12 = 18,3 Amperios

Observe de estos datos una característica muy  interesante : para igual empuje si usamos tensiones mas altas  de alimentación  el consumo será menor

Es interesante destacar en este punto que aunque tengamos un motor de 55 libras de empuje, probablemente no lo vamos a usar continuamente al 100% de potencia, por lo que deberemos estimar el % de potencia media usada.

Asimismo en función del número de horas continuadas  que desea de autonomía,se puede calcular la batería necesaria siguiendo la siguiente formula:

Batería necesaria = consumo en amperios x % de potencia x horas de funcionamiento x 1,3

Por ejemplo: Con un motor que consume 55 Amperios, que usaremos a una media del 75% de su potencia y deseamos una autonomía de 3 horas necesitaremos una bateria de la siguiente capacidad:.

Capacidad= 55 A x 0,75 x 3 h x 1,3 = 160,88 Ah

Una ultima nota : Para mantener la capacidad de la batería y evitar estropearla, es importante recargar la batería antes de que se haya agotado completamente.

Elección del motor fueraborda electrico

A grandes rasgos , diremos que para mover una pequeña neumática de menos de cuatro metros,   con un motor eléctrico de hasta 40 libras nos bastaría. Podremos movernos con soltura incluso cargando la embarcación. Si la embarcación es mayor  como un velero de 6 o metros  o es una clásica de fibra, necesitamos los de mayores potencias para moverla sin problemas ( a mayor peso, más libras de empuje).

  • Motor de empuje de 18 libras es ideal para kayaks, canoas y bote a 6 ‘y se moverán
    a 3 o 4 mph en la mayoría de las condiciones
  • Motores de  40 libras  son ideales para el pescador en los barcos en lugares protegidos .Moverá la mayoría de los barcos pesqueros del tipo de la pesca en 3 a 4 mph en condiciones razonables
  • Motores  de 55 lb es na opción popular para los pescadores en aguas más grandes y da ese poquito extra de poder que puede ser requerido si el viento pica .Debe mover la mayoría de los barcos de tipo de pesca de tamañol 12 a 16 con una velocidad entre 4 o 5 mph en condiciones razonables
  • Motores de  62  lb es un nuevo tamaño de fueraborda y es  ideal para las aguas más grandes, el mar y la pesca más grande en barcos
  •  Los motores de 86  lb suelen ser de 24 voltios (2 baterias de 12 voltios en serie) y tienen un rango de usos comerciales y puede mover barcos grandes

Jago – Motor fueraborda eléctrico 86 lb – 2.050 kg

Como   ejemplo de motor fueraborda  de gran potencia a  un precio ajustado (140€en   Amazon)destaca  el modelo   86 LBS ETBM04-1BP  del fabricante Jago destacando por una gran  potencia de propulsión de aprox. 2050 kg( 86 libras ) .

La batería con el mismo rendimiento dura más tiempo gracias a la alta eficiencia energética del motor  ,el cual ademas puede ser monitorizado fácilmente gracias a que  lleva integrado un voltímetro con 10 LED .

El motor tiene 5 marchas hacia delante y 3 hacia atrás y se puede usar en aguas saladas pero es necesario limpiarlo minuciosamente después del uso .La hélice con profundidad de inmersión es  regulable y  la presión de la dirección también es regulable (la caja de control giratoria  rota 360º ).

También este motor  incluye sistema de inclinación rápida con  10 niveles de inclinación, ajusta el ángulo o eleva el motor sobre el agua

Resumiendo esta son las características mas destacables:

  • Tamaño (L/An/Alt): aprox. 58/19/130 cm
  • Tamaño del eje (L): aprox. 1016 mm
  • Peso: aprox. 10,27 kg
  • Voltaje: aprox. 24 V  
  • Propulsión/potencia: hasta aprox. 1.164 kW /aprox. 39,4 CV 
  • Potencia de propulsión: aprox. 2.050 kg
  • Caja de control: rota hasta aprox. 360º
  • 5 marchas hacia delante y 3 hacia atrás 
  • la velocidad de este motor se puede ajustar con más precisión que la del motor de combustión

Jilong  ETM 55 LBS 

Hablamos de un  potente motor eléctrico fueraborda   de un precio contenido ( su fabricación china lo delata) ,muy  ligero (unos 9kg ) , ideal para todas las embarcaciones de hasta 1800 kg de peso ( es decir valdria  para embarcacion  de 6 a 7mt)

Funciona con una batería de vehículo de 12 V AGM  (recomendación: mín. 80 Ah)

Cuenta con  5 marchas hacia adelante y 3 hacia atrás

Su punto fuerte es  una fuerza de empuje de 55 lbs (25 kp / 245 N)  con la que alcanzará su objetivo fácilmente

El bloqueo se lleva a cabo con 2 tornillos de tope y 2 tuercas de mariposa grande, de modo que no se precisa de herramientas para el montaje

yilon.png

Aunque puede ser discutible algunos aspectos  lo que es innegable que este modelo para la potencia que desarrollo pocos modelos encontremos en el mercado por ese precio pues este  modelo se puede conseguir  por  unos 250€ con gastos de envio incluidos  en Amazon.

Resumiendo esta son las características mas destacables:

  • Alimentación: 12 voltios
  • Consumo (potencia de entrada): 53 A
  • Potencia (potencia de salida): 636 vatio
  • Línea de producto: Jilong Watercraft
  • Potencia / fuerza de empuje:: 55 lbs
  • Control: One Hand Tiller Twist
  • Marchas: 5 hacia adelante / 3 hacia atrás

vidaXL  P37 86 libras (39 kg)

Este motor de arrastre es casi completamente silencioso y no contamina. Cada vez son más las áreas que permiten sólo a los barcos con motores eléctricos, por lo tanto, un motor eléctrico es la mejor opción.

Este silencioso motor fuera de borda tiene un empuje de 86 libras (39kg)  y una longitud del eje de 101,6 cm.

Se puede conectar fácilmente a la embarcación y conectado a una batería (no incluida) de  2 x 12V / 80A (gel o AGM), que será adecuada para unas 3-4 horas de navegación 

El motor cuenta con luces indicadoras de la batería, pudiendo ver cuando la batería está a punto de descargarse.

Otro aspecto es que el motor puede girar a 360 ° y tiene 8 velocidades diferentes, 3 de ellas inversas. Incluso para evitar problemas en aguas poco profundas, es posible plegar el motor, siendo ademas el mango de dirección ajustable.

vidaxl.png

Este modelo es uno de los mas caros de esta comparativa ( casi 300€) pero es importante destacar el acabado que  es  de los mas  destacado junto con su alta potencia de empuje

Resumiendo esta son las características mas destacables:

  • Longitud del eje: 101,6 cm
  • Fuerza de empuje: 86 libras (39 kg)
  • Motor giratorio a 360 grados: si
  • Número de velocidades de avance: 5
  • Número de velocidades inversas: 3
  • Potencia máx: 1152 W
  • Resistente a aguas saladas: si
  • Indicadores de batería: si
  • Conexión: 24 voltios

Bison –  (62 ft / lb 12v)

Este modelo aunque es de relativa media potencia  destaca  por su calidad  y  por incluir  2 hélices ( es decir lleva una hélice  de repuesto)

Cuenta con 5 marchas adelante y 3 marcha atrás sin engranajes.

Presume de estar fabricado en UK de modo que según el fabricante hablan de que es  prácticamente indestructible gracias a la  composición del eje más fuerte que el acero y que ademas flexiona en caso de impacto

Incluye un tratamiento de anticorrosión

Sobre el soporte del motor lleva e bloqueo de la palanca duradero (NO se   rompe, no se retuerce ni se oxida)  dos veces más fuerte que los soportes convencionales.

Cuenta con la función ” soower Prop”   de  diseño patentado que sirve pora alejar embolsamientos o malas hierbas sin agotar la valiosa energía.bison.png
Resumiendo esta son las características mas destacables

  • Mount: Bloqueo de la palanca soporte espejo de popa ajustable
  • Control: ext Twist timón
  • Empuje Max: 62Lb/28 kg)
  • Max Amp Draw: 58 Amperio
  •  Tension alimentacion s: 12 V
  • Marchas: 5 adelante y 3 marcha atrás
  •  Peso: 12 kg

Y por cierto en este vídeo se puede ver el motor en acción

Como construir una maquina CNC a partir de piezas recicladas


A veces las partes viejas de ordenadores pueden ser muy útiles para muchas cosas pero sobre todo es muy destacable    las fuentes de alimentación (tanto de portátiles como  de ordenadores fijos )  de las que tantas veces hemos hablado en este blog , no solo para  usar la salidas de 12 y 5V , sino incluso para hacer asociaciones de  varias fuentes  para generar fuentes con tensiones o intensidades mayores .
El reciclaje de las piezas de un ordenador  no queda en la fuente,  pues hay un sinfín de  otras piezas  útiles  que podemos  reciclar en un viejo ordenador, como por ejemplo:
  •  Las pantallas de los portátiles  que  pueden usarse  con una controladora barata como un  monitor.
  • Las memorias  que pueden utilizarse para otros aparatos electrónicos.
  • Los ventiladores  y radidadores  usados para refrigerar las CPU  nos pueden servir para refrigerar nuestros circuitos o  incluso para otras aplicaciones con celulas de Peltier
  •  Las cajas ATX  tienen un sinfín de aplicaciones
  • De los lectores de CD / DVD podemos usar los motores,la mecánica  y el láser
  • De las viejas disqueteras   podemos usar los motores,la mecánica
  • Tornillos , herrajes ,etc

En el post de hoy a vamos a  ver como es posible construir una maquina  CNC o una impresora 3D     con la mecánica  de dos  o tres lectores dvd ( o incluso incluyendo una disquetera) invirtiendo muy poco dinero, pues tan solo necesitaríamos una mínima  electronica de control aparte.

Las partes hardware que necesitamos son:
  •  3 lectores de CD o DVD que no usemos
  • 1 Arduino (Uno en nuestro caso)
  • 3 controladras de motor paso  a paso
  • Fuente de alimentación  de 5v DC ( nos vale una vieja fuente de PC)
El sofware necesario seria el siguiente:

Ensamblaje

Para empezar  con este proyecto  lo primero  es desmontar  los  lectores de CD o DVD
disco1
Como vemos  ,en su interior vamos a ver encontrar una placa  metálica con un motor paso paso (compuesto por  dos bobinados independientes ) y cuyo eje es un tornillo sin  fin , lo cual es la pieza clave  para   reciclar . Asimismo necesitaremos las carcasas de dos de ellas  y los componentes necesarios para fijarlos al chasis (  el laser  y los otros motores no son necesarias).
Cada motor va a simular cada uno de los ejes de la maquina (X,Y,Z)  por los que en los contactos de cada motor  soldaremos un cablecillo  a cada contacto para hacer las 4  conexiones  con las controladoras ( podemos eliminar el cable de cinta flexible que suelen llevar pues es muy difícil que den la medida).
En este punto es interesante identificar mediante una sencilla de prueba de continuidad con un polímetro   usándolo en modo  resistencia  para  saber cuales son los dos bobinados  ( entre si   no deben tener continuidad )
 cables.JPG
Una vez tengamos el cableado hecho de los motores nos tocaría la parte mecánica la cual quizás sea la parte mas engorrosa  y difícil de llevar a cabo   pues realmente no existe una única solución  a este problema   a la hora de afrontar el ensamblaje  que básicamente  consiste en  fijar los carros con  los motores paso a paso en los tres ejes x, y , z  para formar un único conjunto.
En primer  lugar  , nos centraremos en lo que será el eje Y  . Usando  una carcasa colocaremos uno de los  carros junto con el motor  por medio de  soportes tratando de alinearlo lo mas cercano a uno de los bordes  y centrándolo sobre este.
Los soportes pueden ser metálicos roscados ( se pueden comprar en ferreterias)  o separadores de plástico de los usadas para las placas madre.
ejey
De un modo similar  también fijaremos otro carro con su motor a otras de las carcasas de manera que crearemos para el eje X (obviamente la idea  es montarlo perpendicularmente al montaje del eje y). Asimismo también debemos fijarlos  a una de los bordes en la parte superior y centrados sobre este cuerpo.
Los soportes usados también  pueden ser metálicos roscados ( se pueden comprar en ferreterias)  o separadores de plástico de los usadas para las placas madre.
ejex.png
Ahora nos toca el eje z  que se diferencia   de los dos anteriores  que debe ir colocado sobre  uno de los ejes: más  concretamente el eje x.
El eje Z a diferencia de los otros dos lo instalaremos en una placa  liviana ( por ejemplo de vaquelita ,plástico, metílica,etc  ) para luego  montarla en los soportes del eje X
ejez.png
Una vez que tenemos los tres ejes es hora de  unir  ambas carcasa  por  las  base del eje Y y X  formando un angulo recto.
Normalmente muchos aficionados usan escuadras metálicas   e incluso pequeños perfiles metálicos entre ambas carcasas  : todo depende de lo solido que haya quedado la unión así que  quizás  no sea tan necesario en función de como queden fijadas ambas partes
escuadras1.png
Una vez que hayamos ensamblados  lso tres ejes , nuestro proyecto ha tomando toda su  forma, por  lo que solo nos queda conectar  los motores paso a paso a  los controladores   y estos a la placa Arduino Uno.
Las conexiones de cada motor irán a cada driver  de motor  paso  a paso y las entradas  de estos  a la placa Arduino Uno según las siguientes  conexiones digitales:
  • Eje x: puertos 3 y 6, GND
  • Eje Y : puertos 4 y 7,GND
  • Eje Z: puertos 5 y  8;GND

Asimismo no debemos olvidar las conexiones de alimentacion de la placas de los drivers (+5V) que se recomienda no se obtengan de Arduino  sino directamente desde  la fuente auxiliar

El esquema electrico final seria el  siguiente:
Diagramas
Cuando hayamos  conectado e instalado, lo que quedaría seria ir configurando el software necesario para hacerla funcionar.
En youtube podemos encontrar  miles de videotutoriales  que explican con detalles estos pasos por lo que no lo vamos a repetir aquí
Como pinceladas  dejamos dos vídeos muy claros al respecto para que sirvan  como guía:
Con eso concluimos  de este proyecto, lo cual es la base para diferentes usos como puede ser un plotter , una fresadora o incluso colocando un extrusor una impresora 3D,una grabadora láser , etc
final.png

Simplisimo soldador de puntos


En esencia la soldadura por  puntos  se usa intensivamente  en aplicaciones electrónicas  muy variadas destacando el ensamblaje de las células de baterías .La tecnología que hay subyacente    no es nada compleja, pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos  es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolo desde  allí , sus precios van entre los 300€ en adelante.

Puestos  a fabricar un soldador de puntos  nosotros mismos , en  youtube  se pueden ver  una gran cantidad de diseños de soldadores de puntos fabricados de forma casera usando casi siempre viejos transformadores de microondas dado  que son fácilmente obtenibles. A estos  transformadores  se les elimina el secundario de AT  y se rodea con   dos vueltas de cable de gran sección ( al menos de 8mm).Obviamente se  debe  tener  cuidado extremos si se decide seguir por ahí, pues  trabajar incluso con las piezas de  un horno de microondas es extremadamente peligroso  sobre todo por el peligro de descarga del condensador de AT. Además el resultado obtenido  aparte de peligroso  (tenga en cuenta que esta conectado  a la red de c.a) , dado el tamaño del trasnformador,   el conjunto es muy voluminoso  ,ruidoso y dificil de controlar .

Veamos un diseño muy sencillo  cuyos resultado  de  soldadura del pulso simple son igual de buenas que muchos soldadores profesionales  pudiendo llegar hasta , 210A para ser exactos.

Soldador un punto

Este diseño destaca por su simplicidad al  usar  como elemento activo únicamente  un tiristor de potencia de al menos 100 Amp para controlar la descarga del supercondensador.

Por mayor simplicidad ,  incluso en esta configuración  se ha optado  por añadir una pequeña batería  unido a un pulsador normalmente abierto para cebar al tiristor   incluyendo ambos componentes en un pedal  para activar el circuito

Obviamente  al activar el pulsador haremos que el SCR  entre en conducion    permitiendo la descarga de  condensador sobre los electrodos desde el momento en  el que el pulsador se cierre.

Claramente este esquema se puede  mejorar  usado la misma tensión de referencia  , pero dado el poquísimo consumo  y que puede ir integrado en el interruptor de pie  no es una mala opción y desde luego el circuito es bastante sencillo de construir.

Los componentes básicos  necesarios:.

  •  Fuente de alimentación de sobremesa  de 15-16v .Su amperaje depende de los rangos de carga de los condensadores (sobre 5A max ). En el esquema falta la resistencia de carga del condensador en serie (puede ser una bombilla en serie )
  •  SCR de 220v/220Amp (tiristor).Sólo  se necesita uno a menos que desee agregar un segundo conjunto de condensadores y un interruptor de láminas para la soldadura de doble pulso, pero esa opción es  mucho más cara
  • Carga resistencia control – se usa una bombilla  en serie de las usadas en un automóvil como luz de niebla (sobre 5A máximo segundo ~ 40 cargas), lo cual hara  de resistencia  de carga de la bateria de condensadores. Hay personas que eoptan por una resistencia clasica de potencia, pero desde luego una bombilla incandescente es mucho mas simple y economica
  •  Pulsador de pie ( ON/off ) para activar el SCR  para  la  soldadura (yo usé la misma fuente de alimentación de 15v para el interruptor, que está muy bien con un trabajo tan pesado SCR.)
  • Cable de tierra trenzado  terminando en Cobre sólido presentando a un punto en los extremos ( debería esta aislado  por los que sólo asegúrese de que su mano no va a estar en peligro de convertirse en parte del circuito !)
  • Condensador de  aproximadamente ~ 21 + faradios capacidad ( por ejemplo puede usar 10F uno, dos 5F y un 1F  de los usados  en  coche  para audio ). Todos los condensadores van en paralelo y con cables de sección adecuados ( mejor  sobre barras de metal)

 

Nota :  Como nos comenta Joaquin , que este diseño tiene un pequeño inconveniente  debido a que al trabajar en corriente continua  el tiristor  , una vez disparado este queda asi hasta que desconectemos la fuente de CC,  por lo que muchos diseños  para controlar  el pulso ,  optan por usar  transitores para descebar el SCR

Versión doble pulso

Basada en  el  principio  de los soldadores  de un punto , la mejora  del  circuito anterior  consiste en primer lugar en hacer una descarga más pequeña para limpiar la superficie del material de impurezas tales como el petróleo y crear una soldadura débil. El segundo impulso con más energía hace  enlace final. Con el fin de tener un pulso estable durante la descarga  se necesita pues  un condensador  mas grande para el segundo pulso.

Por tanto ademas  de los componentes anteriores , necesitara además :

  •  Segunda fuente de alimentación de sobremesa @15-16v / 5A max usando
  • SCR  220v/220A  (tiristor)
  • Rele reed
  • Condensador de  aproximadamente ~ 21 + faradios capacidad ( por ejemplo puede usar 10F uno, dos 5F y un 1F  de los usados  en  coche  para audio ). Todos los condensadores van en paralelo y con cables de sección adecuados ( mejor  sobre barras de metal)  NOTA :para el primer SCR  se usaría  una capacidad muy inferior (por ejemplo un condensador de 1F)
  • Carga resistencia control – se puede  usar tambien  una bombilla  en serie de las usadas en un automóvil como luz de niebla (sobre 5A máximo segundo ~ 40 cargas), lo cual hara  de resistencia  de carga de la bateria de condensadores. Hay personas que eoptan por una resistencia clasica de potencia, pero desde luego una bombilla incandescente es mucho mas simple y economica

En el esquema anterior como vemos se añade un control del  circuito de descarga por condensador  basado en un tiristor  y un supercondensador. La demora entre un pulso y el siguiente se basa en el retardo producido  por el rele reed al detectar la elevada corriente generada en la primera descarga pues la natural inductancia producida por el pulso de soldadura  hará que los contactos del rele reed se cierren activando el segundo SCR

Al ser un circuito tan básico no hay manera de medir el retardo entre ambos pulsos  que es aproximadamente de 1/4 segundo. Evidentemente con un circuito de demora se podría demorar mucho mas la segunda chispa pero para propósitos  caseros este diseño de  circuito es mas que suficiente

Consejos

  • Cómo electrodos de soldadura   elija un alambre  macizo y limados por el extremo. Tenga en cuenta que son muchos los factores que afectarán a la calidad de la soldadura.
  •  Limpie todas las superficies de soldadura con un limpiador no residuo como alcohol de alto %. Debe optimizar el contacto metal a metal, por lo que debe ser libre de aceites y basura
    para mantener las puntas de soldadura limpia regularmente los presentar a un punto redondeado. El tamaño de este punto afectarán su soldadura: si es  demasiado grande un punto  no soldará completamente, y si es demasiado pequeño  probablemente soplara la punta antes de soldar  el material.
  •  Jugar con diferentes  voltaje y capacidad, utilizando los valores citados  como referencia.
  • En caso de soldar células asegúrese de aplicar la presión adecuada a ambos puntos de contacto y que usted suelda  dentro de la zona centro de la batería . Si se desvía  hacia  el borde exterior de la terminal positiva puede fácilmente romper la célula. No es particularmente peligroso, pero el líquido se derramará. Según las hojas de especificaciones de materiales  células a123 , no contienen productos químicos tóxicos o peligrosos.
  •  Siempre use protección para los ojos, voy tirando chispas en tu rostro durante horas!
  •  Se recomienda la ventilación

[