Tipos de tiras de leds RGB


Antes de comenzar un proyecto que involucre tiras de leds SMS como por ejemplo la famosa emulación del sistema Ambilight de Philips , probablemente deberíamos identificar las diferencias entre las tiras de leds  comerciales  , las cuales actualmente están basadas en WS2801, WS2811  o en el  WS2812 (también llamadas “strips”).

La mayoría de los proyectos y las descripciones que circulan por la red  están a veces mezclados, y cuando uno se sumerge en tiras de LED por primera vez, estos números de los modelos puede ser un terreno  bastante confuso.

Realmente los números de modelo WS2801, WS2811 y WS2812 se refieren realmente a diferentes “cosas”. El WS2801 y el WS2811 son circuitos integrados de  gestion de LEDs RGB .Estos IC pueden controlar hasta 3 LEDs, típicamente Rojo, Verde y Azul  de modo que  se colocan  cerca  de cada led , así que usted como espectador verá el resultado del color mezclado. El WS2812 sin embargo es un WS2811 colocado dentro de un paquete 5050 LED.,el cual  es un paquete muy común de 3 LED (rojo, verde, azul), en un compartimento  de 5 mm x 5 mm.Es decir,  un  WS2812 es el mismo paquete pero con un controlador adicional de LED WS2811 IC incluido.Resumiendo :un WS2812 combina un LED RGB 5050 con un controlador WS2811

Otras diferencia bien acusada  de los strips  de leds  , es que mientras  las tiras WS2801 necesitaban 4 hilos, las tiras WS2811 / WS2812 sólo necesitan 3 hilos.

En efecto el WS2801 utiliza una línea de reloj independiente, lo cual puede verse como una ventaja,  puesto que  el WS2811 / WS2812 no lo lo requiren.De hecho los modelos de tiras de leds   WS2811 / WS2812 dependen del envío de datos que coincidan con un tiempo muy ajustado.

Adicionalmente  la ventaja de la WS2812, sin embargo, es que la producción de estos combos en tiras es más fácil y por lo tanto más barato, y cada RGB LED toma mucho menos espacio en tiras lo cual también tiene innegables ventajas.

 

A continuación  mostramos  una lista de  chipsets  así como algunas notas sobre ellos  extraída de las hojas de datos o de la experimentación

 

Chipset Supporte libreria Fastled Conexiones Color Bits Data Rate PWM Rate Chipset Power Draw
APA102/DOTSTAR 4 8 ~24Mbps 20khz [email protected]
WS2811 3 8 800kbps 400Hz 5mw / [email protected]
WS2812B/NEOPIXEL 3 8 800kbps 400Hz 5mw / [email protected]
TM1809/TM1812 3 8 800kbps 400Hz 7.2mw / [email protected]
TM1803 3 8 400kbps 400Hz 7.2mw / [email protected]
TM1804 3 8 800kbps 400Hz 7.2mw / [email protected]
WS2801 4 8 1Mbps 2.5kHz 60mw / [email protected]
UCS1903 3 8 400kbps unknown ?
UCS2903 3 8 800kbps unknown ?
LPD8806 4 7 1-20Mbps 4kHz ?
P9813 4 8 1-15Mbps 4.5kHz ?
SM16716 4 8 ? ? ?
TM1829 X 3 8 1.6Mbps/800kbps 7kHz [email protected]
TLS3001 X ? 12 ? ? ?
TLC5940 X 4 12 ? ? ?
TLC5947 X 4 12 ? ? ?
LPD1886 X 3 12 ? ? ?

Chipset power draw es la cantidad de potencia que un solo chip extrae cuando los leds están apagados, pero la alimentación está conectada

 

Veamos  ahora algunas notas  de sus características :

  • Ws2801 : más antiguo, barato,  pero lento (1Mbps).  Es propenso a fallar en longitudes más largas, y sobre todo si la aplicion usa mayores tasas de datos .   

 

ws2801

  • Tm1809 / 1804/1812 : Es muy similar en el protocolo al ws8211 y el coste similar. Utiliza  un IC por 3 rgb leds.Puede haber interferencia de línea (el 1809 controla 3 rgb píxeles, los 1804 controles 1 )
  • Tm1803 : versión más lenta de la tm1809, vendido principalmente por radio shack.
  •  APA102 – Adafruit  los vende estos como dotstars. La velocidad de datos soportada  es muy rápida (llega a 24Mhz) y son  validos para aplicaciones que requieran  alta tasa de actualización. Recomendados estos sobre casi cualquier otra cosa si se busca  actualizaciones frecuentes.
  • Ws2811 / ws2812 / ws2812B -Adafruit vende estos modulos como “neopixels”.  Muy bien precio:(30 leds / m por $ 6, 60 leds / m por $ 11!).  Velocidad de datos es muy lenta (800Kbps).  También  muchas de las tiras sconstan de  1 led, 1 controlador, por lo que puede cortar cada modulo por  cada led. Incluso mejor, es la variante ws2812, que  el  led y el chip van en un solo paquete por lo que puede ser muy compacto (en algunas sitio en internet  todavía lo venden como ws2811 – pero el protocolo es el mismo). Desafortunadamente, su protocolo de datos requiere interrumpir las interrupciones en el avr mientras se escriben los datos, por lo que el uso de estos leds interferirá en procsos interbnos de la CPU como las bibliotecas de IR ,  el uso de i2c  o serial.
  • Lpd8806’s – menos barato (más cerca de $ 16 / meter enviado por 48 / m), pero súper rápido (!llega  a más de 22Mbps!). Además, están emparejados, por lo que implementa un controlador por 2 rgb píxeles. A tener en cuenta que estos sólo realmente  pueden  mostrar 7 bits por canal, ( y no 8,) por lo que sólo puede mostrar 128 niveles diferentes de luz para cada canal de color. API de programación sigue siendo 8 bits, pero el bit bajo no tiene sentido.
  • P9813 – Éste es el chipset usado en la iluminación de Control Total de Cool Neon.
  • UCS1903 – similar a tm1809 / ws2811.  Muy  lento protocolo, pues opsorta cerca de 400kbps.
  • UCS1904 / 2903 – más cerca en el tiempo de la ws2811. Algunas personas lo encuentran interesante
  • SM16716 – no muy conocido .Usa un protocolo complejo.
  • GW6205 – no muy conocido.
  • LPD1886 – un chipset de 3 hilos que es de 12 bits por píxel en lugar del normalmente 7/8-bit por píxel como  la mayoría de los chipsets restantes vistos  hasta ahora
  • Controladores DMX (DMXSIMPLE o DMXSERIAL) – si controla sus leds usando DMX desde un arduino, esto requerida  DMX usando el resto de la #include <DmxSimple.h> led – Tenfg en cuenta que #include <DmxSimple.h> o #include <DmxSerial.h> antes de #include <FastLED.h> para utilizar la salida DMX.
  • Adafruit Pixie leds (PIXIE) – Son led superpotentes de 3W . Tambien con el fin de utilizar estos leds necesita #include <SoftwareSerial.h> antes de #include <FastLED.h> .
  • TM1829 – similar a la TM1809 / WS2811, pero también permite establecer 32 niveles de corriente base para el control de brillo / uso de energía 
  • TLS3001 – Es de 12 bits por color frente a 8 bits para la mayoría de los chipsets 
  • TI TLC5940 – Soporte de color de 12 bits,  que ayuda la la corrección del color, 16 canales llevados por la placa que hace RGBW con las configuraciones como esto.
  • TI TLC5947 como anteriormente, pero con 24 canales

 

 

En resumen su selección   depende del tipo de microcontrolador que vaya a utilizar y de cuáles son compatibles con la aplicación o biblioteca que va a utilizar.

Por ejemplo, en los proyectos basados en Arduino funcionaran  bien con cualquiera de estas  tiras  de led   ya que todo se ejecuta en tiempo real.
Sin embargo cuando se utiliza una Raspeberry  Pi , con un WS2811 / WS2812 puede ser un poco más difícil debido a las necesidades de tiempo estricto. Un Raspberry Pi normalmente ejecuta Linux, que no es un llamado Sistema Operativo en tiempo real, donde la temporización prevista podría ser interrumpida por otras actividades de fondo.

Aunque el WS2801 solía ser el mas  popular, poco a poco  tanto el WS2812 como el  WS2811 parecen a  ser los mas usados quizás porque son mucho mas económicos y requiren menos conexiones .

Anuncios

Reparar una nike+ sportband


El sensor Nike+ recopila información sobre sesiones de carrera o caminatas  enviando  esa información a un receptor, como pueden ser : un iPod, iPhone o  Nike+ SportBand, que  permiten registrar la distancia, el tiempo, el ritmo y las calorías consumidas.

 

 

El sistema Nike+ se basa en colocar o fijar dicho  sensor correctamente en las zapatillas Nike, fabricadas especialmente para el dispositivo ( es decir con la plantilla preparada para albergar el sensor), o bien de otra marca a través de un soporte(como vamos a ver) : una vez en el lugar, el sensor funcionara de forma automática.

Los pasos para conectar este sensor son los siguientes:

  • Quitar la plantilla del zapato izquierdo de cualquier par de zapatillas Nike para acceder al compartimiento que puede contener el sensor.
  • Colocar el sensor en el compartimento con los logotipos hacia arriba y luego vuelve a colocar la plantilla. De este modo el sensor estará en su lugar y listo para funcionar.
  • Fijar el sensor a una zapatilla que no sea Nike también es posible  usando uno de los muchos métodos caseros:
    •  Cortando un agujero del tamaño del sensor en la suela interior de la zapatilla izquierda, imitando la cavidad que puede encontrar en una zapatilla Nike, desliza el sensor en los cordones en la parte superior de la lengua de la zapatilla o
    • Adhiriendo el sensor a la parte superior de la misma con cinta adhesiva.
    • Comprando un soporte de terceros para mantener el sensor en su lugar en una zapatilla que no sea Nike de modo que el sensor se adapta en una bolsa que se coloca en los cordones de las zapatillas y se mantiene cerrado con Velcro    como el siguiente diseño    que puede comprarse por unos 12€                                                                nikess
    • Las posibilidades son infinitas, pero debe tener varios puntos importantes en mente para garantizar resultados precisos: el sensor debe estar colocado con el logotipo hacia arriba en la zapatilla izquierda, y  debe estar  fijado  firmemente en su lugar, y debe colocarse bastante paralelo al suelo.
  • Moverse  para activar el sensor, el cual automáticamente comenzará a transmitir cuando detecte el movimiento, y dejará de transmitir cuando no lo haga.
  • Apagar la batería del sensor presionando el botón en el lado opuesto del logo y manteniendo pulsado el botón durante tres segundos. Esto sólo debería ser necesario cuando se pasa por la seguridad del aeropuerto y en los aviones, de acuerdo con Nike y Apple, ya que la batería entra en modo de espera automáticamente  cuando no está en uso. Si desconecta la batería, recuerda que deberás activarla antes del próximo uso. Nike y Apple recomiendan hacerlo presionando el mismo botón con un clip o un bolígrafo.

El sensor  Nike +  es pues el elemento que  facilita el seguimiento de  tiempo, distancia, ritmo y más mientras corre  para después al conectarlo al ordenador  sube los datos de ejecución a Nikeplus.com, el club más grande del mundo, donde se puede  supervisar el progreso, unirse a retos, asignar  carreras y conectarse con  amigos.

Inicialmente lanzado para correr en 2006, la comunidad Nike + ha crecido para incluir aproximadamente 7 millones corredores. Desde sus inicios, Nike + ha ampliado en un ecosistema deportivo que incluye baloncesto Nike +, Nike + y el recientemente lanzado Nike + Kinect. Los atletas de cualquier nivel pueden encontrar una gran variedad de productos que incluyen una nueva gama de colores en el Nike + SportWatch GPS Powered by TomTom y el Nike + FuelBand, Nike + Sportband Nike + corriendo aplicaciones y nano iPod con Nike +. Los usuarios deportivos pueden visitar solo destino nikeplus.com para acceder a todos sus datos incluyendo NikeFuel puntos acumulados de todos los dispositivos de Nike +, creando una comunidad globalmente conectada del deporte de por vida (para más información: http://www.nikeinc.com/news/nikeplus-experience)

 

El sensor se vende de forma individual, por lo que es ideal si tiene que reemplazarlo,  o  para un segundo par de zapatos listos para Nike + o necesita conectarlo a su dispositivo Apple.

Este sensor mide ritmo, distancia, tiempo transcurrido y calorías quemadas enviando la información   mediante un enlace  de  radio a un receptor qeu en principio solo puede ser gestionado por dispositivo  compatible con tecnología  Apple como son 

  • Nike + SportWatch GPS alimentado por TomTom (sensor incluido y opcional);
  • Nike + SportBand (sensor incluido);
  • IPod nano ® y receptor Nike +;
  • IPod touch ® 2G;
  • IPhone 3GS ®
  •  iPhone 4 ®

La información pues  se transmite de forma inalámbrica a su dispositivo para obtener una retroalimentación en tiempo real  en alguno de los dispositivos  anteriores ,mientras se entrena.

En teoría se debe adquirir un nuevo sensor de Nike+, cuando se recibe un mensaje de que la batería se está agotando. De acuerdo con Nike, la batería tiene una duración de cerca de 1000 horas de “uso activo”, y enviará una señal de batería baja a su receptor aproximadamente dos semanas antes de que se quede sin energía. Si bien Nike y Apple dicen que la batería no es reemplazable y un nuevo sensor completo debe ser comprado, el proceso  que vamos a describir para la Nike+ sportband  iigualmente ,tambuen   puede ser replicado para este a fin de reemplazar  la batería del propio sensor:

  • Cortar el sensor  entre caja blanca  y la naranja con un cutter
  • Abir finalmente el sensor  con cuidado
  • Medir con un polimetro la tensión de la batería
  • Eliminar la vieja  batería  y reemplazarla por una nueva
  • Pegar para remover y reemplazar la batería.

 

 

Nike +sportand

Anteriormente a este  dispositivo  se necesitaba un Ipod o Iphone  para capturar  y procesar la información procedente del sensor Nike+  ,pero  desde que  Nike saco esta banda deportiva ,  se dejo de necesitar  todo ello , bastando tan solo en esta banda  que  pesa unos 23 gr más el peso de su sensor 6,5 gr así que todo en conjunto 28 gr lo que es muy ligero

Para monitorizar la actividad  basta pulsar el botón de inicio de la Nike+ SportBand y ya se puede correr almacenándose la información de cada carrera en la propia  banda ademas de poder ser visualizada  informando del ritmo o velocidad, los kilómetros, el tiempo transcurrido (crono a modo reloj) y las calorías que se queman y todo para consultar al instante.

La pantalla de la Nike+ SportBand está diseñada para llevarse cómodamente en la parte interior de la muñeca ,lo cual es muy importante porque se tiene visibilidad en cualquier momento de la carrera.

El dispositivo USB está integrado en el frontal de la pantalla, pero se puede extraer a través de la correa de la Nike+ SportBand, de forma que puede conectarse fácilmente a un ordenador como si fuese una memoria extraible o un pen drive  sirviendo tanto para cargar al batería de 60mAh como para enviar la información almacenada al ordenador   que permite  comunicarse con corredores de todo el planeta en nike plus,habiendo herramientas para motivar  ,con un panel que muestra cómo corren los miembros comparándolos con otros del mundo.

 

Después de algunos años de uso , es normal que la batería termine agotándose , llegando incluso el extremo de que al intentar cargarla via usb  , aunque en el display aparezca FULL, lo cierto es que al soltarlo de usb ni siquiera aparezca  nada en pantalla signo de que realmente la batería esta inservibles

 

Aunque el dispositivo en teoría es irreparable al estar sellado herméticamente , lo cierto  si es posible repararlo como vamos a ver  a continuación :

Cortar entre la unión de las partes superior e inferior con un cutter teniendo un cuidado especial de no penetrar en el interior rompiendo la electrónica

img_20161120_1758301

Una vezse  haya conseguido practicar una abertura ,abrir finalmente la caja  con mucho cuidado.

 

 

img_20161120_1759211

Ahora abierta la tapa con mucho cuidado soltar el cuerpo con toda la electrónica

 

 

img_20161120_1800021

 

Nos vamos a centrar ahora en el cuerpo :

img_20161120_1802281

 

En l cuerpo todavía hay 4 tornillos que fijan la placa  al lcd.

img_20161120_1808541

Quitado los 4 tornillos ,tener un cuidado especial con el cable de cinta del lcd

img_20161120_1810231

Ya vemos el modelo de la batería incluida  :251214.

Ahora soltamos la batería por completo y medimos con un polímetro la tensión de la batería (si no se enciende el lcd  habrá una tensión muy baja)

 

img_20161120_1811221

 

Si la tensión es inferior a 3V  debemos eliminar la vieja  batería  y reemplazarla por una nueva del mismo modelo  que podemos localizar por Internet en portales asiáticos.

La  batería  incluida  es de polímero 3.7 V con  tensión de carga: 4.2 V y lo importante para reemplazarlo es utilizar el mismo modelo :251214, Estos modelo  son muy usadas en  MP3/MP4, Bluetooth/GPRS/GPS del teléfono móvil, PDA, juguetes pequeños, cámaras y cámaras digitales y otros productos digitales.

251214

 

Alguna características principales de este modelo:

  • Tensión media es superior a 3.7 V,
  • Tiempo de carga rápida
  • Buena seguridad, con más de protección de la carga, protección de sobre-descarga, sobre la protección actual
  • Protección del IC parámetros de la tecnología: sobrecarga de voltaje 4.20 V 0.05 V
  • Sobre-descarga la protección del voltaje 2.7 V 0.1 V
  • Protección actual 3.0 1.0A (2.7 V ~ 4.25 V)
  • Temperatura de descarga:-20 C ~ + 60 C
  • Alta densidad de energía
  • Largo ciclo de vida
  • Alta capacidad
  • Baja resistencia interna
  • Funcionamiento estable: largo ciclo de vida: 500 continuo de carga y descarga, la capacidad de la batería no es menos del 80% de la capacidad nominal.
  • No tiene efecto memoria: en cualquier momento para cargar y descargar
  • Seguridad: circuito incorporado junta de protección Seiko no tiene fuego en corto circuito, sobrecarga, sobre descarga, choque, vibración, acupuntura, calor, y otros estados, no explosión y así sucesivamente.

 

Una vez conseguida la batería de recambio, desoldaremos la antigua, soldaremos la nueva respetando la polaridad y haremos los mismos pasos descritos anteriormente pero, a la inversa:

  • Ubicaremos la batería dentro de la carcasa,
  • Colocaremos los 4 tornillos
  • Atornillaremos estos a la caja.
  • Fijaremos el mecanismo a la caja inferior  ,
  • Colocaremos la tapa
  • Cerraremos el conjunto ,
  • Debemos volver a sellar la unión con pegamento  o con silicona

Es sorprendente la sensación de volver a ver funcionando un dispositivo que según el fabricante debería desecharse cuando en realidad puede tener una vida aun mas larga

 

Impresoras 3d economicas


Hasta que grandes fabricantes decidan apoyar la impresión 3d ,lo cierto que hoy por hoy , incluso en forma de kit , las impresoras  3d   son máquinas aun muy caras y por tanto poco accesibles a los aficionados en general

No obstante , como en todo en la vida , existe  una  excepción como son  aquellas basadas en la tecnología SLA  donde no se  utilizan en sí mismo piezas impresas en 3D, lo cual es la tónica  habitual empleada en  la mayoría de kits  de impresoras que están construidas con elementos impresos en 3D.

La tecnología SLA, conocida como Estereolitografía, es una de las dos tecnologías usadas en la impresión 3D, un tipo a base de resina para la impresión en 3D, y es generalmente diseñado para imprimir de abajo hacia arriba. De esta manera  necesita mas resina, así que sube el gasto del consumible , aunque en general  el diseño de este al no necesitar tantos  engranajes y motores simplifica mucho el dispositivo  y con ello el precio

En este interesante proyecto su creador ha hecho uso del software de Arduino para hacerlo funcionar creando una impresora que imprime de las dos maneras posibles de abajo hacia arriba o viceversa y que usa en parte algunos materiales reciclados.

La lista de elementos usados es la siguiente:

  1. Motor paso a paso (versión de 4 pines, extraída de la unidad de DVDrom) ejemplo aquí o bien  un motor de pasos NEMA $15
  2. Arduino Uno.
  3. Controlador paso a paso. Ejemplo aquí .a DRV8825 tiene un paso de 1/32 aunque yo también utilizan la original 1/16 paso A4988.
  4. Condensador de 100uF.
  5. Placa de circuito – para su construcción la placa
  6. Fuente de alimentación de 12V a 2A
  7. Florero de cristal
  8. Proyector DLP

 Impulsión del eje Z

Se pueden usar  las viejas unidades de CD-ROM  recicladas  pero algunas  unidades pueden tener motores que sólo tienen cableado positivo y negativo  pero eso no va a funcionar para nosotros. En cambio si serviran la mayoria de las  grabadoras de CD / DVD ,por ejemplo un DVDrom externo modelo  dvd740 de HP.

El trineo que tiene  un motor paso a paso de 4 pin con   impulsión del tornillo en este proyecto   también es útil  a falta de las especificaciones para el motor ( se puede utilizar un multímetro para probar la continuidad y ver qué cables son”pares”.)

Stepper Driver

El utilizado es  el  popular A4988 Stepper Driver. Es una gran opción, pero también buscando  más flexibilidad  y ya que los precios caen continuamente sirve un  par de drivers DRV8825 StepStick  en su lugar. Ambos tienen configuraciones muy similares y cabrán en al regulador de RAMPS . La principal diferencia es que el A4988 baja a un paso de 1/16 mientras que el DRV8825 puede hacer un paso de 1/32.(el paso más lento podría aumentar la resolución  )

3d

Steppers: Determinación de patillas

Digamos que tiene un motor paso a paso, pero no tienen idea de que cables son que, o qué gancho donde. ¿Qué hacer?

Motores Parker todos tienen dos fases, que alternadamente son energizadas por la unidad, haciendo que el motor gire. Un motor 4-pasos o 6 tendrá una bobina por fase; 8-lleva los motores tienen dos. Llamamos arbitrariamente una de estas fases “A + / A-” y el otro “B + / B-“.

Cada alambre en un motor paso a paso de 4 o 8 plomo está asociada a un extremo de una bobina. Lo primero es saber que los cables en la bobina del mismo. Hay una forma sencilla de hacerlo: escoge dos cables al azar, y mida la resistencia entre ellos. Si obtiene un valor finito (del orden de unos pocos ohmios), estos cables son en la misma bobina. Continuar hasta tener los cables emparejados para arriba.

Con un motor de 6 pasos  además de las cuatro puntas al final de las fases, existen dos centro—un cable que brota desde el centro de cada fase. Esto facilita determinar que dos conductores son la centrales: la resistencia de cualquiera de los extremos de la fase al  centro  debe ser la mitad la resistencia, medida a través de la fase entera.

Un motor de ocho pasos tiene dos bobinas de cada fase; estas bobinas pueden conectarse en serie o en paralelo. Por ahora, sólo encontrar que cables son  (usted debe terminar con 4 pares). Luego, averiguar qué pares están en la misma fase . Para ello, necesita el disco de paso a paso. Configurar el disco para ejecutar al 50% actual (si es aplicable, también establecer inductancia 50%). Conecta un par de cables a la A + / A – terminales y otro par al azar que B + / B-. Si el motor gira, han escogido una bobina de cada fase. Buena. De lo contrario, las bobinas están en la misma fase. De esta manera, podrá determinar que las bobinas están en cada fase.
Ahora tiene cada cable con su “compañero de bobina” y cada bobina con su “compañero de fase”). Llame a un par de bobinas “fase A” y la otra una “fase B”. Entonces, llame a una bobina en cada fase de “la bobina 1” y la otra bobina “2.” Ahora tiene 4 bobinas: A1, A2, B1 y B2.

Ahora debemos determinar la polaridad de cada bobina en cada fase. Conecte uno A coil y una bobina B la unidad y el movimiento hacia la derecha del comando. Si gira hacia la izquierda, cambiar el cable en B + con el que está en B-. Ahora, usted sabe el lado positivo de cada uno de estos dos bobinas. Estos alambres A1 +, A1, B1 + y B1 – de la etiqueta. Ahora, quitar bobina B1 e introducir la bobina B2. Otra vez, comando de movimiento hacia la derecha. Si el motor gira hacia la izquierda, cambiar el cable en B + con el que está en B-. Una vez que gira hacia la derecha, identifique el cable en el B + terminal “B2 +” y el cable en la terminal B “B2-“. Por último, retire la bobina A1 e Inserte la bobina A2. Movimiento hacia la derecha del comando; Si el motor gira hacia la izquierda, cambiar el cable de A + con el de A-. Etiqueta en el A + terminal “A2 +” y el otro un “A2-“.
Ahora tienes todos los cables con la etiqueta: A1 +, A1, A2 +, A2, B1 +, B1-, B2 + y B2-. Aquí es el momento de decidir si se va a enlazar en configuración serie o en paralelo. Cableado paralelo ofrece un mayor par motor a altas velocidades, pero límites de generación, ciclo de deber del motor al 50% del calor. Configuración de serie permite que el motor a funcionar constantemente. La serie se utiliza más comúnmente.

Conector de la unidad Cables del motor (paralelo) Cables del motor (serie)
A-centertap x A1-, A2 +
A + A1 +, A2 + A1 +
A- A1-, A2- A2-
B + B1 +, B2 + B1 +
B- -B1, B2- B2-
B-centertap x -B1, B2 +


 

.

y por cierto, aquí está el código de color más común para los cables:

A1 + rojo
A1 – amarillo
A2 + azul
A2 – Negro
B1 + blanco
B1 – naranja
B2 + marrón
B2 – verde

Conexiones 

Comenzando en el Pin superior derecho, tenemos  el lado + de una línea de 12V y un condensador de 100uF conectado. El otro extremo del condensador  de desacoplamiento de 100uF y los lados de la línea de 12V están conectados al pasador por debajo.

 Pins 3,4,5,6 (su paso)

Por debajo de ese pin   negativo va sus conexiones de motor paso a paso. Las conexiones B van primero y luego las conexiones A. E ltexto  anterior le dice cómo decir A1 de A2, e.

El pin FAULT es el siguiente en la lista y es el único pin que no he conectado a nada.
El pin botom en la fila es su tierra y puede conectarlo a la tierra en el tablero de Arduino (o bien lo hará).

Es hora de conectar el otro lado del tablero de controladores (de arriba abajo de nuevo)
El pin  superior está rotulado Habilitar basado en el código de Arduino que se  esta  usando y  esta conectado al pin 7 en el tablero de Arduino Uno.

M0, M1 y M2 están todos conectados a la línea Arduinos 5V (que en mi configuración está realizando la selección de paso 1/32). Puede utilizar la hoja de especificaciones anterior si desea una resolución de paso diferente.

Los siguientes dos clavijas son RESET y SLEEP y he superado los de la línea 5V también.

El segundo al último pin es STEP y lo tengo conectado al pin 6 del Arduino Uno
Y el último pasador es DIR que va al pin 5.

Hay una segundo masa en Arduino y el puente que con la línea negativa del suministro de 12V.

.

SAMPLE CODE

int x;
void setup() {
pinMode(7,OUTPUT); // Enable
pinMode(6,OUTPUT); // Step
pinMode(5,OUTPUT); // Dir
digitalWrite(7,LOW); // Set Enable low
}
void loop() {
digitalWrite(5,HIGH); // Set Dir high

for(x = 0; x < 200; x++) // Loop 200 times
{
digitalWrite(6,HIGH); // Output high
delayMicroseconds(500); // Wait 1/2 a ms
digitalWrite(6,LOW); // Output low
delayMicroseconds(500); // Wait 1/2 a ms
}

delay(1000); // pause one second
digitalWrite(5,LOW); // Set Dir low
for(x = 0; x < 200; x++) // Loop 200 times
{
digitalWrite(6,HIGH); // Output high
delayMicroseconds(500); // Wait 1/2 a ms
digitalWrite(6,LOW); // Output low
delayMicroseconds(500); // Wait 1/2 a ms
}

delay(1000); // pause one second
}

Cuidadosamente tratar de obtener su paso a algún lugar en el centro antes de comenzar con el código. Lo que hará es girar ligeramente el motor en una dirección y luego volver a donde se viene. Es una prueba bastante segura de que no se caerá en los extremos.

For (x = 0; x <200;

200 es un número bastante bajo y puede ser incluso menor que una rotación completa. He ido con seguridad a 3000 o así (que va un poco más de ½ camino y volver creo).

Esto concluye la prueba exitosa de su combinación de CDROM Stepper y Arduino Uno / Driver !!

 

RV8825 TRIMPOT

El pequeño círculo  DRV8825 es un potenciómetro que le permite afinar y ajustar el mA que fluye al motor paso a paso usando un pequeño destornillador de joyas. Si envía mucha energía al stepper puede  quemarlo de modo que lo idea es ajustar e voltaje más bajo que se pueda(  alrededor de 181mA más o menos) y luego conectar  el motor,cargar el código de prueba Arduino y el motor debería funcionar maravillosamente sin calefacción ni zumbido.

 

Al final y gracias a Ebay se puede construirse una impresora que como hemos dicho es barata  pero muy mal  docuemtadas

Aqui dejamos el enlacea a dicho proyecto por si os animáis a montaros una, y ya nos contareis www.buildyourownsla.com/forum/viewtopic.php?f=8&t=2768

Envio de correos con ESP8226


El Módulo ESP8266 WiFi es un SOC autónomo con pila de protocolos TCP / IP integrada que puede dar acceso a cualquier micro-controlador a su red WiFi.  Este modulo  no se limita a poder dar conectividad WIFI a  un Arduino ,pues el ESP8266 es capaz de alojar una aplicación  que incluso puede enviar notificaciones  de correo

Cada módulo ESP8266 viene preprogramado con un firmware de conjunto de comandos AT, lo que significa que simplemente puede conectarlo a su dispositivo Arduino y obtener casi la capacidad Wi-Fi que ofrece Wi-Shield.

Aunque dar conectividad esta muy bien, lo relevante  es que este módulo cuenta con  capacidad de almacenamiento y procesamiento a bordo lo suficientemente potente para permitir  integrarse con los sensores y otros dispositivos específicos a través de sus GPIO con un desarrollo mínimo inicial y una carga mínima durante el tiempo de ejecución.

 

 

Vamos a ver  pues  cómo es posible  enviar correos electrónicos desde cualquier módulo de wifi de ESP8266 usando el servidor de Gmail.

El circuito se basa en base de Arduino para el chip de WiFi ESP8266  pero  haciendo que un microcontrolador sea independiente de él (sin necesidad de comandos y dispositivos maestros)  de modo que se pueden conectar sensores directamente  a este  y obtener notificaciones por correo electrónico  ante cambios  o cuando lo estimemos conveniente) .

Antes de comenzar necesitaremos los siguintes componentes: 

  1.  ESP8266 (puede usar culaquier versión ,por ejemplo ESP8266-07).
  2.  USB UART Board(por ejemplo  FT232RL FTDI Serials Adapter Module. No es necesario este adaptador si la tarjeta ESP8266  ya tiene puerto usb pues es este puerto el que necesitamos para programar el puerto.
  3. Algunos cables de puente.
  4. Router WIFI .

 

Asimismo también necesitaremos el siguiente Software:

  1. Software de Arduino
  2. Núcleo de Arduino para el chip de WiFi ESP8266
  3. Sketch con código de proyecto y de la prueba (ESP8266_Gmail_Sender.zip)ESP8266_Gmail_Sender.zip ESP8266_Gmail_Sender.zip.

 

Paso 1: Configuración de cuentas de Gmail

Vamos a utilizar SMTP para enviar mensajes por lo que mediante la autenticación de SMTP deberemos proporcionar la cuenta de correo electrónico y la contraseña actualizada

Como por defecto Google utiliza métodos de verificación más complejos , necesitamos cambiar esta  configuración, si es que vamos  a usar una cuenta de gmail para enviar las notificaciones.

En caso pues de usar gmail para enviar notificaciones, tendremos que ir a la configuración de la cuenta de Google y activar “Permitir aplicaciones menos seguras:SI” en la parte inferior de la página, lo cual  significa que las  aplicaciones sólo necesitan su email y contraseña cuando inicie sesión en su cuenta de gmail.

Obviamente si le preocupa la seguridad, use al menos  otra cuenta  diferente de su cuenta habitual.

 

contrasenas

Paso 2: Código de ejemplo

El autor escribió  un pequeño ejemplo que envía un mensaje de prueba para comprobar si todo funciona (ESP8266_Gmail_Sender.zip ESP8266_Gmail_Sender.zip.) por los que cuando todo el software descargado e instalado descomprima el fichero ,busque y abra ESP8266_Gmail_Sender.ino   y se debería abrir el IDE de arduino

A continuación algunos detalles de dicho código:

  • Debe establecer su nombre de punto de acceso Wi-Fi (SSID) y su contraseña. Debe ser como esta:
const char* ssid = "MyWiFi";
const char* password = "12345678";
  • En el hallazgo de la función setup() tenemos el condicional que envia el correo  al destinatario especificado (< [email protected]> )  ,quecomo es lógico deberá modificar .Como vemos el primer parámetro de la función de Enviar es email destinatario, segundo texto del mensaje.
if(gsender->Subject(subject)->Send("[email protected]", "Setup test"))

La función asunto es opcional :se pueden enviar los mensajes sin asunto o con este 

gsender->Send(to, message);
  • Ahora Abra  el fichero  Gsender.h  Necesitamos Base64   para codificar la  dirección de correo electrónico y contraseña de la cuenta de gmail que se utilizará para enviar mensajes de correo electrónico.  Usted puede utilizar base64encode.org para la codificación, el resultado debe ser algo como:
const char* EMAILBASE64_LOGIN = "Y29zbWkxMTExMUBnbWFpbC5jb20=";
const char* EMAILBASE64_PASSWORD = "TGFzZGFzZDEyMzI=";
  • Campo de ajuste define  la cuenta de correo que quiere que aparezca como remitente
const char* FROM = "[email protected]";
Finalmente  en las siguientes lineas  puede ver el ejemplo completo:
#include <ESP8266WiFi.h>
#include "Gsender.h"

#pragma region Globals
const char* ssid = ""; // WIFI network name
const char* password = ""; // WIFI network password
uint8_t connection_state = 0; // Connected to WIFI or not
uint16_t reconnect_interval = 10000; // If not connected wait time to try again
#pragma endregion Globals

uint8_t WiFiConnect(const char* nSSID = nullptr, const char* nPassword = nullptr)
{
 static uint16_t attempt = 0;
 Serial.print("Connecting to ");
 if(nSSID) {
 WiFi.begin(nSSID, nPassword); 
 Serial.println(nSSID);
 } else {
 WiFi.begin(ssid, password);
 Serial.println(ssid);
 }

 uint8_t i = 0;
 while(WiFi.status()!= WL_CONNECTED && i++ < 50)
 {
 delay(200);
 Serial.print(".");
 }
 ++attempt;
 Serial.println("");
 if(i == 51) {
 Serial.print("Connection: TIMEOUT on attempt: ");
 Serial.println(attempt);
 if(attempt % 2 == 0)
 Serial.println("Check if access point available or SSID and Password\r\n");
 return false;
 }
 Serial.println("Connection: ESTABLISHED");
 Serial.print("Got IP address: ");
 Serial.println(WiFi.localIP());
 return true;
}

void Awaits()
{
 uint32_t ts = millis();
 while(!connection_state)
 {
 delay(50);
 if(millis() > (ts + reconnect_interval) && !connection_state){
 connection_state = WiFiConnect();
 ts = millis();
 }
 }
}

void setup()
{
 Serial.begin(115200);
 connection_state = WiFiConnect();
 if(!connection_state) // if not connected to WIFI
 Awaits(); // constantly trying to connect

 Gsender *gsender = Gsender::Instance(); // Getting pointer to class instance
 String subject = "Subject is optional!";
 if(gsender->Subject(subject)->Send("[email protected]", "Setup test")) {
 Serial.println("Message send.");
 } else {
 Serial.print("Error sending message: ");
 Serial.println(gsender->getError());
 }
}

void loop(){}

Paso 3: Carga de código y pruebas

Picture of Code uploading and testing

Una vez personalizado el código anterior  debemos  Guardar los cambios.

Para enviar el código a su placa no olvide establecer su placa exacta  en el menú de herramientas del iDE de Arduino

Una vez subido el  sketch a la placa de ESP8266 ,abra el monitor serie y desde ahí podrá  ver los  mensajes de registro similares a la pantalla anterior.

Si ha llegado hasta aquí ya tiene la base : solo tiene que conectar el sensor que necesite( por ejemplo uno magnético)  a la placa y modificar el código anterior para que este responda ante un determinado estado del sensor (por ejemplo puerta abierta) enviando el correo electrónico correspondiente

Fuente aqui

 

Nueva vida para su viejo disco duro por 5€


Es habitual cambiar el viejo duro de un ordenador  portatil por uno del tipo SSD pues  gastan muchísima menos energía , no hacen ruido y sobre todo  mejoran el rendimiento del equipo de forma espectacular   ya que la velocidad de acceso a este es increíblemente mas rápida que un disco tradicional.

Puede que el viejo disco que haya quitado a su ordenador este en un cajón porque probablemente habrá pensado que no merece la pena ponerle una caja, pero con la bajada de precios de hw  por sólo 5€ en Amazon  es posible comprar una caja de aluminio de calidad

También podría ser que haya  jubilado un antiguo portátil por avería  (y, no pueda arrancarlo,) así que una buenísima opción es optar por una caja para conectar el disco duro a su nuevo portátil como si de un pincho USB se tratara !y así de simple funcionara y  no necesitará nada más para recuperar su datos  y darle un nuevo uso!.

 

La caja para disco duro de la que hablamos es  del fabricante TooQ  y es el  modelo 2510B siendo especifica para discos  de 2.5″ SATA   ( y el líder de ventas en Amazon)y   como es habitual en este tipo de cajas no necesita alimentación adicional

Esta caja es compatible  con usb 2.0 ( de ahí su precio ) pero desde  luego  para datos o backup es mas que suficiente o incluso para reproducir contenido multimedia.

Incluso sirve para   conectarlo a su televisión para utilizarlo como grabador( si esta dispone de esa posibilidad) . En este caso es totalmente compatible y graba perfectamente con una velocidad alta de transmisión.

La  caja esta  totalmente adaptada al disco duro,  llevando un cable usb, dos tornillitos de sujeción,manual de instalación  y un pequeño destornillador para apretarlos.

En realidad la instalación es bastante sencilla, una vez que desembale el paquete, sólo tiene  que seguir los 5 siguientes  sencillos  pasos:

1º-Tiene que quitar la tapa de plástico  del lado del conector que viene sin atornillar

img_20161018_201716

2-Ahora enfrente la pequeña plaquita del controlador  de la caja  con su disco SATA  procurando que coincidan ambos conectores

img_20161018_201745

3º-Conecte el disco a la placa del adaptador

img_20161018_201802

4º Ahora meta con cuidado el conjunto atornillando con los dos tornillitos que incluye en una bolsita de plástico   usando  el destornillador philips que trae el propio  kit

img_20161018_201833

5º-Conecte ahora el cable usb mediante el único extremo libre usb que lleva el cable y el extremo que lleva dos conectores a un conector del ordenador

img_20161018_202040

 

A continuación os mostramos alguna  de las  características de esta caja:

Altura: 1,2 cm
Altura de la unidad de almacenamiento: 9,5 mm
Altura del paquete: 4 cm
Ancho: 7,1 cm
Ancho del paquete: 13 cm
Cables incluidos: USB
Capacidad máxima: 0,75 TB
Color del producto: Negro
Conectar y usar (Plug and Play): Si
Conexión USB: Si
Género del conector USB: Femenino
Hot-swap: Si
Indicadores LED: Si
Interfaces de disco de almacenamiento soportados: SATA, Serial ATA II, Serial ATA III
Manual de usuario: Si
Materiales: Aluminio
Número de unidades de almacenamiento compatibles: 1
Peso: 80g
Peso del paquete: 234g
Profundidad: 13,8 cm
Profundidad del paquete: 17,4 cm
Sistemas de archivos soportados: ext2, FAT32, HFS, NTFS
Sistemas operativos compatibles:  Windows 2000/XP/VISTA/Win7 , MAC OS 9.X +  , Linux, Ubuntu
Tamaño de la unidad de almacenamiento: 6,35 cm (2.5″)
Tipos de unidades de almacenamiento admitidas: Unidad de disco duro
Tornillos incluidos: Si
Velocidad de transferencia de datos: 480 Mbit/s
Versión USB: 2.0

 

Sin duda es una buena opción para dar una  nueva vida a un disco que tenga sin uso .Personalmente lo he probado  y ha cumplido mis expectativas en cuanto a relación calidad/precio

¿Y usted tiene algun disco de 2 1/2″  en desuso y no sabe que hacer con el? Pues por sólo 5€  ya sabe que puede volverle a dar un oportunidad …

 

Humanoide casero


Todos los  dos de abril se celebra el Arduino Day o día Arduino (o Genuino) en todo el mundo, así que esta ocasión  nos asombraron con un sofisticado robot humanoide construido con Arduino y Raspberry Pi  fabricado por el Maker Luisrobots en su casa mediante un Arduino Mega y una Raspberry Pi 2.

Como en otros montajes parecidos una vez mas la placa Arduino Mega se encarga de controlar la mecatronica   y la Raspberry Pi es la  encargada de controlar las cámaras, el altavoz, la tarjeta de sonido y el  micrófono que lleva el robot.

Lo han bautizado como Zeus y es capaz de caminar y hablar, midiendo 1,21 mts de altura y pesa un poco más de 8 kgs.

Además de las placas Arduino y Raspberry Pi, Zeus está equipado con varios módulos más  como un módulo transceptor nRF24L01, un shield Bluefruit EZ-Link para la comunicación y  un BN055 para la orientación absoluta

Por supuesto también usa   servos para las manos,brazos, cuello y piernas

 

El conjunto se completa un 5A UBEC para la regulación del voltaje así como  varios tipos de sensores , una cámara , altavoces,etc

 

En la página de Facebook de su creador hay mas información de este estupendo montaje.

LLegan los endoscopios para Android


La variedad de gadgets que tenemos a nuestra disposición para nuestros smartphones o tabletas  es realmente gigantesca:trípodes, docks, lentes, carcasas de todo tipo, impresoras portátiles,… pero hay uno que probablemente le falte:un endoscopio para Android. !seguramente, uno de los accesorios más locos y útiles que pueda encontrar!.

Como probablemente sabrá un endoscopio  es uno de esos aparatos que usan los médicos para explorar cavidades del cuerpo. Su funcionamiento es muy simple: Se conecta el endoscopio al puerto USB de su smartphone o tablet y la aplicación automáticamente comenzará a mostrar en pantalla lo que capture la cámara que hay en el extremo.Como extra ,gracias a  las  luces LED regulables que llevan junto a la cámara se pueden visualizar zonas oscuras como interiores de maquinaria,conducciones,etc. Lógicamente el vídeo y las fotografías se pueden  guardar directamente en el dispositivo …

Es muy  importante destacar que se podrá conectar el endoscopio a través de USB  si su smartphone o tableta  dispone de OTG .   

 

 

Lo cierto es que este tipo de dispositivos son muy  usados desde hace mucho tiempo en el  mundo sanitario, pero gracias a la drástica bajadas de precios de estos dispositivos ( se pueden encontrar en famosos portales orientales por 10$) ,  extrapolando su uso  a otros ámbitos , pueden ser muy útiles para revisar el estado de las tuberías y solucionar atascos, también para encontrar pequeños objetos que perdemos tras los muebles , ideal para pequeñas reparaciones en casa y ahorrar en fontanería,rejillas de ventilación, tubos de montajes eléctricos,automóviles, electrodomésticos de difícil acceso,  pudiendo acceder a huecos imposibles o situaciones curiosas de este estilo.

camara.png

 

Obviamente también ademas de los usos comentados  ,los endoscopios pueden usarse en electrónica por ejemplo para ver en detalle cualquier circuito smd, introducirlo en cualquier equipo sin tener que desmontarlo, para ayudarnos a soldar, inspección de maquinaria, y un largo etcétera.

Un ejemplo de aplicación de este tipo de endoscopios es  adaptarlo mediante una simple botella de plástico cortada por la mitad practicando un agujero en el centro del tapón para introducir la cámara haciendo que todo el conjunto  permita dejar semilibre la camara  tal  como podemos verlo en este video.

 

Este tipo de  endoscopios como este modelo vendido en Amazon  lo podremos conectar y usar con el móvil o tableta si es compatible ( debe soportar OTG)

Es muy importantes si pensamos visualizar en nuestro smartphone el contenido capturado por el endoscopio que este  tenga soporte de OTG ,asi como las cámaras de su móvil sean también compatibles con UVC (USB video device class, para conexión de vídeo cameras)

Ejemplos de modelos compatibles:

  • Samsung Galaxy S3
  • Samsung Galaxy S4
  • Samsung Galaxy Note 2
  • Samsung GalaxyNote 3
  • Samsung GalaxyNote 4
  • Sony Z2 L50H
  • Sony LT26i
  • Nexus 5
  • Samsung Galaxy Tab 3
  • En general cualquier smartphone Android con soporte a  la funcion OTG

 

En cuanto al sw usado en el terminal Android , el mas típico es UsbCamera disponible en Google Play, que permite tanto tomar fotos de las imagenes que mas  nos interesen o también grabar video cuando lo deseemos. Otro aspecto muy importante es que gracias a su gran BBDD de terminales al intentar instalar esta app en nuestro terminal nos indicara si nuestro terminal es o no compatible.

 

usbcamera

Otra opción es emplear  un ordenador  portátil usando un  adaptador de micro-usb a  USB  que muchos kits incluyen .En el caso de los ordenadores ,normalmente  no hay que instalar nada y  el propio ordenador debe reconocerlo como cámara externa y puede usarla enseguida con cualquier programa de captura de video .Amcap o Smart Cam son los mas usados  con esta finlaidad.

Dadas las zonas de trabajo típicas de este tipo de aparatos, lo normal es exigir  que estos  dispongan de certificación IP67, lo que significa que serán anti polvo y que han pasado una prueba de agua en la que deben soportar sin filtración alguna la inmersión completa a 1 metro durante 30 minutos.

Estos dispositivos  pues son muy simples de usar, pero también  muy  eficaz permitiéndonos  ahorrar tiempo y horas de trabajo gracias a su gran  polivalencia. Suelen  disponer de una longitud de  cable de 7m  o más , flexibles para poder acceder a cualquier hueco, rendija o lugar pequeño y estrecho.

También casi todos los modelos suelen disponer de una luz led muy potente (normalmente 6  LEDs de alta potencia acoplados rodeando el sensor cmos de la cámara) y su intensidad es ajustable mediante un regulador que suelen llevar en el otro extremo del cable .

Estos endoscopios suelen llevar ganchos , espejos, y pinzar  para poder ver atascos y solventarlos, para poder tirar y desencajar, compresas, papeles o lo que atasque sus tuberías.Estos  accesorios , que suelen incluir casi todos los modelos, son muy útiles para múltiples opciones, desde quitar un atasco, ver al 100% todo el interior de la tubería…
Las cámara en base a su uso suelen ser de baja resolución , por ejemplo la más vendida en  Amazon  es una Super Hi-Vision que incluye un sensor cmos de   300.000 píxeles , ofreciendo una imagen detallada y precisa pudiendo capturar fotos y vídeos, desde la app, para apreciar los desgastes o reparaciones, que requieren. !Ojo con versiones mas económicas pues suelen incluir sensores de aun mas baja resolución !

Por último, casi todo este tipo de productos, suelen incluir un cd con drivers y manual de instrucciones, aunque las app soportadas  suelen estar Google Play o App store  y, por tanto,   suelen ser  muy intuitivas  no necesitando para nada este tipo de soporte.

 

Algo muy importante es el pequeño tamaño y la  forma de la cámara, que debe ser de en  forma de tubo de como máximo  7 milímetros de diámetro: así estaremos seguros que la podremos utilizar en todo tipo de lugares debido a su pequeño tamaño, que aporta un acceso a cualquier lugar.

 

endoscopio.png

 

Un ejemplo de endoscopio multifuncional es la  Cámara Multipropósito:  vendida en Amazon por unos 15€  . Esta cámara de inspección tiene muchos usos incluyendo tubos de ventilación, equipos, máquinas, motores, automóvil, embarcación, aeronave y electrónica. Gracias a la alta resolución de la cámara para éstos tipos de usos, nos proporciona una “buena calidad de vídeo”  incluyendo ademas  luces LED regulables en la punta, para  ver claramente en la zona oscura.

También puede capturar imágenes o grabar vídeos a través de su ordenador o smartphone con facilidad con el software incluido

El cabezal de la cámara y el cable son resistentes al agua con certificación IP67 permitiendo trabajar en múltiples entornos ,pero nos advierten que no está diseñado para uso médico (existen otros modelos muchos mas costosos que si lo son)

Este endoscopio puede ser fácilmente operado bien conectándolo a un smartphone compatible con OTG  o bien enchufándolo directamente a un ordenador .

 

Especificaciones de este modelo:

  1.  Sensor: 300.000 píxeles CMOS
  2.  Resolución: 640*480
  3.  Ángulo de visión: 60 grados
  4.  Distancia focal: 6cm-10cm
  5.  Interfaz: USB 2.0
  6.  Luz: 6 LED blanco ajustable
  7.  La cámara flexible es resistente al agua con 7MM de diámetro para que pueda examinar área bajo el agua, las lagunas y agujeros.
  8. Algunos modelos de teléfonos compatibles: Samsung Galaxy S3 (I9300, I9308), S4 (i9500, I9508), S5, S6; Note 2, Note 3, 4; Sony Z2 L50H; Sony LT26i; Nexus 5 o el sistema Android ( es decir: cualquiera  que soporte  la función OTG)

Este producto incluye:

1 * endoscopio
1 * espejo
1 * imán
1 * Gancho
1 * sostenedor
1 * CD
1 * manual del usuario
1* interfaz USB
Un gadget loco ¿o no tanto? Un endoscopio para Android podía parecer algo muy loco a primera vista, pero en realidad no lo es tanto. Al fin y al cabo el smartphone es un monitor portátil y que llevamos siempre con nosotros, además de ser capaz de guardar todos los videos y fotos que tomemos, por lo que quizá sea uno de los soportes más convenientes para un endoscopio

Por cierto ,este endoscopio usb lo puede comprar por menos de 15€  aqui