Sencillo contador de energía para hogar


Desde que cambió la normativa que regulaba el uso de limitador  de la potencia contratada , gracias a los contadores inteligentes  con tele-gestión que van instalados aparte ( normalmente centralizados en una parte de edificio aparte)y que integran ademas  la habilidad de limitar ( o mejor dicho interrumpir) el suministro la potencia desde estos en función de la potencia contratada , en muchos casos  y  en muchas viviendas ha quedado libre el hueco  donde residía el antiguo  ICP magnetotérmico  que hacia de limitador  y que  instalaba la compañía suministradora

Este hueco  en la caja ICT  que ha quedado vacante normalmente ubicado a  la derecha de la caja de distribución de corriente alterna , es ideal  para instalar  un sencillo panel  muy económico que nos va ayudar muchísimo a concienciarnos de nuestro consumo energético en tiempo real   y por supuesto realizar las acciones correctores

El panel digital ,como se observa en la imagen superior ya montado,   encaja en la parte del hueco dejado por el antiguo magnetotérmico , aunque según el tipo de caja habrá que rebajar algo mas el hueco  con una lima para que encaje perfectamente en el hueco ,   y como se puede  apreciar ,es bastante llamativo visualmente gracias  a su luz de fondo azulada  mostrando en tiempo real   las siguientes medidas:

  • Tensión en voltios de la red de suministro ca
  • Intensidad en amperios del
  • Potencia instantánea consumida en Watios
  • Acumulado de  energía consumida wn Kw/h

 

 

 

El instrumento calcula la potencia activa usando la formula  P = U * I * (Cos ) donde  (Cos ) indica  el factor de potencia .

El factor de potencia o coseno de “fi” (Cos ) representa el valor del ángulo que se forma al representar gráficamente la potencia activa (P) y la potencia aparente (S), es decir, la relación existente entre la potencia real de trabajo y la potencia total consumida por la carga o el consumidor conectado a un circuito eléctrico de corriente alterna. 

En los circuitos inductivos, como ocurre con los motores, transformadores y la mayoría de los dispositivos o aparatos que trabajan con algún tipo de bobinado, el valor del factor de potencia se muestra siempre con una fracción decimal menor que la unidad ,lo cual realmente indica  el retraso o desfase que produce la carga inductiva en la sinusoide correspondiente a la intensidad de la corriente con respecto a la sinusoide de la tensión o voltaje.

Por ejemplo un  motor de corriente alterna con un  factor  de  potencia  o  Cos  = 0,95 ,  por  ejemplo,  será  mucho  más  eficiente  que  otro  que  posea  un  Cos  = 0,85 .

Instalación 

Como panel hemos elegido el modelo  Elegiac AC        de bajo coste (18,99€ )  que  tiene un tamaño muy compacto (90x50x25mm), alimentándose directamente a la red 110V-220V ( frecuencia de trabajo: 45-65Hz) ,y  que  soporta  hasta 100A / 22000W con una precisión de  1.0.

Ademas de  presentar parámetros eléctricos función de medición (tensión, corriente, potencia activa, potencia) cuenta con una función de alarma de sobrecarga cuyo  umbral de alarma se puede preseleccionar.

Una ventaja de este panel es que no necesita  fuente  de alimentación externa al llevarla integrada  en esta , lo  que significa en la practica  que únicamente habrá que alimentarla con 220 V c.a. .

La instalación es muy sencilla :

  • Cortamos la alimentación general ( normalmente desde el mangenetotermico de entrada de la red)
  • Insertaremos el panel digital  bien en la caja ICT en los huecos libres del limitador o bien con un belcro en cualquier punto que nos resulte atractivo visualmente
  • Alimentamos el panel  directamente  con 220oV , eso si , !con mucho cuidado de no equivocarnos donde  se conectan los hilos del  toroide!  (en la foto de bajo los bornes serian los dos inferiores)
  • Se hacer pasar uno de los cables de alimentación  general  ( o circuito  a medir  ,preferiblemente la fase ) por el interior del toroide
  • Se conectan  los dos hilos del toroide a los bornes correspondientes del panel(en la foto de bajo los bornes serian los dos superiores)
  • Restituimos el suministro de ca
  • Ajustaremos los parametros de luz

Conviene recordar que por seguridad cuando trabaje en cuadros de baja tensión siempre trabaje cortando la alimentación general y asegúrese después con un polimetro o un buscapolos que efectivamente no hay tensión

Obviamente si no se tiene experiencia en cableados de baja tensión o no esta seguro de la instalación , le  recomendamos encarecidamente  que este tipo de trabajos lo realice un instalador  o un electricista pues  manejar por error tensiones de ca puede ser peligroso  .

 

 

Ajustes
1. Luz de fondo

El control de luz de fondo se puede ajustarse presionando brevemente el botón para encender o apagar la luz de fondo,de modo que quedara almacenado  el estado de retroiluminación de almacenamiento automático.

2. Reseteo de las lecturas

  • Paso 1: Pulse el botón de encendido durante 5 segundos hasta que la pantalla digital parpadee, luego suelte el botón;
  • Paso 2: Si vuelve a pulsar el botón, los datos de consumo se borran y se borran para dejar de parpadear;
  • Paso 3: Si vuelve a pulsar el botón durante 5 segundos hasta que no parpadee, los datos de carga no se borran y la salida se borra.
  1. Ajustes del valor de la alarma
  • Paso 1: Pulse el botón, cuando la pantalla LCD muestre “SET CLr” después del botón de liberación, ajuste el valor en el informe de estado de energía;
  • Paso 2: El área de potencia muestra el valor actual de la alarma de alimentación y el dígito más bajo comienza a parpadear, entonces puede presionar el botón del +1 digital, cuando no haya operación de tecla más de tres segundos, cambia automáticamente por ajuste digital corto como encima;
  • Paso 3: Después de la configuración, presione el botón más de cinco segundos para guardar y salir automáticamente, el alcance del umbral de potencia activa establecido para el 0.0 ~ 22.0kW.

 

 

 

 

 

 

Anuncios

Soldador de puntos sin transformador


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues esta muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ).

En los últimos años, los supercondensadores han surgido como una alternativa o complemento importante para otros dispositivos de producción o almacenamiento de energía eléctrica como las pilas de combustible o las baterías . La principal virtud del primero frente a los dos últimos es la mayor potencia que es capaz de inyectar, aunque poseen una menor densidad de energía. Otras características de los supercondensadores son la rapidez de carga y descarga, pueden proporcionar corrientes de carga altas, cosa que daña a las baterías, el número de ciclos de vida de los mismos, del orden de millones de veces, no necesitan mantenimiento, trabajan en condiciones de temperatura muy adversas y por último, no presentan en su composición elementos tóxicos, muy común en baterías.
La principal desventaja de los supercondensadores es la limitada capacidad de almacenar energía, y a día de hoy, su mayor precio. En realidad debido a sus diferentes prestaciones, condensadores y baterías no son sistemas que rivalizan entre sí, si no más bien se pueden considerar en muchas aplicaciones como sistemas complementarios donde la batería aporta la energía mientras el supercondensador aporta los picos de potencia

Si Q es la cantidad de carga almacenada cuando el voltaje entero de la batería aparece en los terminales del condensador, entonces la energía almacenada se obtiene de la integral:

Esta expresión de la energía se puede poner en tres formas equivalentes por solo permutaciones de la definición de capacidad C=Q/V.


Los materiales  usados  como electrodos para supercondensadores son principalmente de tres tipos: óxidos de metales de transición, polímeros conductores y materiales de carbono activados.

Se puede decir que, actualmente, sólo los supercondensadores basados en carbono, o también llamados condensadores de doble capa (double-layer capacitors), han conseguido llegar a la etapa de comercialización.

SOLDADOR ELECTRÓNICO  DE PUNTOS

Es la forma mas habitual de  y fácil de construir un soldador de puntos   a un precio bastante asequible.

Estas configuraciones funcionan  durante  mucho tiempo y normalmente  estas configuraciones  son  mucho mas optimas y eficientes  que los soldadores basados en transformadores de microondas modificados.

La alta temperatura destruye las baterías de litio, por lo que la soldadura  tradicional térmica no es una opción, así que esta configuración  es perfecta  , (es por eso  que hay personas que la llaman “soldadura fria” )

El circuito propuesto es el siguiente:

soldador de puntos

Como vemos en el siguiente circuito,  el principio es bastante sencillo usando 10  transistores Mosfet del tipo IRF1404 (Vdss=40V, Rds(on)=0.004ohm, Id=162A⑥) en configuración  paralelo para  controlar la descarga de un supercondensador de 120 Faradio de 15V compuesto por la asociación serie de 5 condensadores de 120F /2.7v  , el cual  almacena la energía  suficiente para producir la chispa que permita realizar   la soldadura por puntos.

Las resistencias de 1k  y 10K únicamente sirven para asegurar que pase a conducción los transistores,  motivo  por el cual se usa un pulsador para que conduzca  únicamente durante un breve espacio de tiempo  en el que se mantenga apretando el pulsador

Aunque el IRF1404 soporta hasta 200W de disipación , el motivo por el que se usan 10 transistores en paralelo  es para  evitar usar un voluminoso radiador pues en esta configuración  la disipación por elemento se divide por 10 ,lo cual hacen innecesario cualquier disipador térmico.

Alternativamente  a  los supercondensadores se pueden emplear dos viejas baterías de gel de 12V  /7Ah , aunque el conjunto ya no sera tan liviano ,pero incluso será mas efectivo dado que no es necesario cargar  los condensadores tras cada soldadura  pues las baterías almacenan  suficiente energía para bastantes soldaduras  ( en el montaje de condensadores tras varias descargas si que los es)

El circuito montado, lo podemos ver en la imagen siguiente,donde se observa una peculiaridad importante: dada la gran intensidad que va a pasar por el circuito ,los bornes  de las dos conexiones de los mosfet , deben ser metálicos de buena sección para evitar que esto se quemen por el paso de la corriente:

Asimismo los cables de salida del circuito deben ser de una sección adecuada , y deberían terminar en una punta de cobre macizo para facilitar la soldadura

En la imagen se puede ver como se puede soldar dos pequeñas laminas de níquel

Por ultimo en la siguiente imagen podemos ver una versión   del conjunto ya montado apreciándose claramente el pulsador de pie, y en este caso el uso de las dos baterías  que sustituyen a  los supercondensadores dado su mayor autonomía  y rendimiento:

Componentes

10 X  MOSFET  IRF1404

Resistencia  de  10k 1/4w

Resistencia  de 1k

6  x  Condensador  de 120F , 2.7V   (para el caso de montaje con condensadores) o  2 baterías de 12V  7AH

Pulsador normalmente abierto

Interruptor general

Voltímetro panel (para el caso de montaje con condensadores)

Fuente 15V (para el caso de montaje con condensadores)

2 x puntas de cobre

Cómo eliminar el molesto efecto de iluminación residual producida por una luminaria basada en leds


Es  relativamente  frecuente  reemplazar las luminarias “de toda la vida”  basada en bombillas incandescentes, halógenas  o  fluorescentes(incluidas las compactas o “CFL” las cuales por cierto están en entre dicho por el peligro para nuestra salud si se rompe  el vidrio  al incluir  mercurio)   por las nuevas  luminarias basadas en LED  no solo por que son muchísimo mas eficientes desde el punto de vista energético: también porque tienen una durabilidad mayor (tienen una vida útil de hasta 50,000 horas  si excluimos el convertidor ca/cc para alimentarlas) , no producen calor, ocupan mucho menos espacio,  y un sinfín de otras ventajas ,que a modo de resumen vamos a ver:

  • Lo mas destacado es su efecto sobre la Salud  y medio ambiente pues la luz producida a través de la tecnología led no emite rayos ultravioleta ni rayos infrarrojos, lo que ayuda a evitar riesgos de salud. Otro aspecto  a destacar es que diferencia  de las bombillas compactas “de bajo consumo”( que por cierto emiten luz ultravioleta) , las iluminarias de leds  no contienen   mercurio , el cual es un metal muy  toxico , por lo que se deben tener cuidados especiales al momento de desechar la bombilla. Ademas  las lámparas con led producen una pérdida mínima por calor y ahorran energía, lo que ayuda enormemente a la protección del medio ambiente y a reducir las emisiones de CO2 . Por cierto ademas son reciclables y no contaminan el medio ambiente.
  • Eficiencia energética :sin duda  todos nos sentimos atraídos por su eficiencia energética , y es fácil entenderlo puesto que  las luminarias basadas en  l< tecnología led consumen aproximadamente un 80% menos energía eléctrica que una luminaria tradicional. Es cierto que las CFL’s cuando están nuevas  pueden aproximarse a la eficiencia (según la calidad  de la luminaria) , pero estas van perdiendo rendimiento lumínico con el paso del tiempo.En comparación con una bombilla incandescente de 60 vatios que ofrece alrededor de 800 lúmenes de luz puede gastar más de  300€ al año  ,un CFL utiliza menos de 15 vatios y sólo gasta 75€ de electricidad al año y una lampara LED de pot en lúmenes similar   consume  menos de 8 vatios de potencia, con lo que los costos anuales bajan a 30€  con una esperanza de vida de 50.000 horas ( o  posiblemente más ).
  • Fácilmente controlables con dimmers  o reguladores  a gran diferencia de  las basadas en fluorescentes o del tipo CFL  donde no es tan sencillo
  • Como hemos visto, aspecto interesante  de los leds  es su mayor eficiencia lumínica, llegando a tener hasta 150 lúmenes por watt en las lámparas de alta eficiencia y de 80 lúmenes por watt en las comunes. Con esto se optimiza el uso de la luz emitida y se reduce el consumo de energía y la contaminación. En consecuencia, las lámparas LED tienen un mayor rendimiento luminoso útil (en porcentaje de lúmenes por watt).
  • Respeto  a la durabilidad  de  las  lámparas basadas con Leds , esa   es otra gran ventaja pues  tienen una vida útil de hasta 50,000 horas al igual que los convertidores ac/dc para alimentarlas ( en caso de que sean de calidad )  . Esto en parte  es debido a que los Leds no contienen partes mecánicas ni filamentos. Los Leds en si no dejan de funcionar; sólo se va reduciendo su capacidad lumínica y es por eso que tienen que ser reemplazados en un lapso de 30.000 a 50.000 horas dependiendo del caso. Gracias a su vida útil de hasta 50,000 horas, las lámparas de LED evitan que se tengan interrupciones de luz o iluminación y evitan que se tengan que estar reemplazando constantemente, por lo que ofrecen un excelente ahorro en cuestiones de mantenimiento.
  • Por ultimo destacar  mayor calidad cromática de la luz emitida  gracias a que el índice de rendimiento cromático (CRI)  en la tecnología led se suele tener un CRI <90, contra un CRI de los focos comunes de 44, lo cual nos da como resultado colores más puros, nítidos, vivos y profundos. Las lámparas LED vienen en una amplia versatilidad de colores que no necesitan de filtros para que se puedan apreciar.
Es evidente  pues como la iluminación basada en la tecnología  de  leds   tiene indudables ventajas frente   a todos otros   sistemas de iluminación anteriores como son le tradicional basado en luminarias incandescentes, las luminarias halógenas , las luminarias CFL o los tubos incandescentes  .
A modo de resumen  esta   imagen  aclara muy bien  las diferencias entre los diferentes sistemas de iluminación:

 

Vistas las grandes ventajas de la iluminación basada en la tecnología led , es lógico pensar en ciertos inconvenientes,  como puede ser la escasez  de ciertos modelos de  luminarias en algunos  formatos poco  habituales ( aunque esto es cada vez mas relativo) y  un   coste mayor relativo  de las luminarias, que  no realmente cierto puesto que , a parte de que éste tiende a bajar,   es claramente compensado  por la gran durabilidad de estas , etc

En  este apartado  hay también  un  aspecto algo problemático  , que es también  común   en menos frecuencia existente a los sistemas de iluminación basados en CFL , que   es  el de la llamada  corriente residual,  un efecto por el que se  quedan casi encendidas de forma tenue después de pulsar el interruptor para apagarlas.

Inicialmente puede parecer muy molesto sobre todo en habitaciones dedicadas al descanso   llevando  incluso   a personas  a volver  a  sistemas tradicionales ,   pero como vamos   a ver es resoluble  y no es algo tan misterioso como se ppuede  pensar   pues simplemente responden a una instalación  eléctrica  inadecuada  para este tipo de luminarias.

Este efecto se produce porque las luminarias de tipo LED son muy sensibles a la corriente, observamos que podemos cambiar una Bombilla convencional de 60W  por una LED de 5W ., lo  cual  quiere decir que la tecnología LED necesita muy poca corriente para proporcionarnos una alta intensidad Lumínica. Por lo mencionado anteriormente, si en nuestra instalación tenemos algo que produzca alteración en la corriente, nos encontraremos con que la Bombilla LED es inestable, produciendo destellos o no apagándose en su totalidad.

Si en una  vivienda hay colocados  interruptores con piloto de señalización, un interruptor con temporizador o en los circuitos de conmutados, se produce una pequeña corriente de retorno a las lámparas que ocasiona el problema mencionado.

Veamos las posibles causas de este efecto indeseado  y sobre todo como podemos resolverlos

Interruptores de corte  mal instalados

Normalmente las luminarias  en instalaciones monofásicas  ( que es la instalación habitual en nuestras viviendas)    se alimentan por dos hilos: la fase y  el neutro  de modo   que  todos  los  interruptores deberían cortar la fase cuando los accionamos   y no el neutro

Este  error de montaje  en  instalaciones con luminarias   convencionales  no conlleva ninguna anomalía   pero en caso de alimentar  a   luminarias del tipo  LED si que puede ser molesto ( según el driver ) , pues puede  hacer que  queden parcialmente encendidas cuando pulsamos el interruptor para apagarlas,

Es  fácil entender que esa leve iluminación se debe  que una pequeña derivación que hace que fluya corriente desde la fase hacia tierra  pasando por nuestras luminarias LED, puesto  que con  muy poca  corriente  un LED puede empezar  a lucir, y de ahi el misterio de las luces que no se apagan nunca.,

La solución en este caso  no es tan  sencilla (es decir cambiar el neutro por la fase  )  pues no siempre esta accesible  a todo el mundo y ademas sobra decir el peligro que puede conllevar , pues no todo el mundo tiene los suficientes conocimientos de electricidad   para cambiarlo  , pues se  precisa   desmontar el interruptor y  normalmente la caja  de conexiones para  localizar      los dos hilos que van  a la luminarias

Desgraciadamente como  no siempre están ambos hilos  en la caja del interruptor pues de hecho  lo normal  es que estén las 4 conexiones  en una caja de conexiones  previas , es en la caja de conexiones  donde   habrá que hacer el  doble cambio   en caso de tener  los dos cables  ahí    En caso de dudas con un destornillador buscapolos de 1€ podemos asegurarnos cual es la fase

 

Si no consigue resolver el problema o le parece muy compleja o peligrosa , otra solución  muy sencilla es optar por  poner un  justo antes del portalámparas un relee tal y como describimos al final de este post

 

Interruptores con neón de señalización

Es bastante común encontrarnos con interruptores que cuentan con una pequeña lamparita de neón que nos permite encontrarlo en la oscuridad de modo  que cuando esta apagado al luz del testigo se enciende  y al encenderlo esta se apaga.

Internamente el  piloto no es mas que una pequeña lampara de neón  con su correspondiente resistencia   imitadora  conectando el conjunto  en paralelo con el contacto del interruptor. Dada la configuración, el piloto queda  en serie con la bombilla LED que intentamos apagar cuando el interruptor abierto , permitiendo que fluya una mínima corriente hacia la bombilla LED que lleva a que se quede iluminada de forma tenue.

 

Las soluciones a este problema podrían ser:

  1. Anular el neón del interruptor ( en muchos mecanismos   el neon es enchufable por  lo que bastara quitarlo por  presión)   o sustituir el interruptor por uno normal.
  2. Instalar una pequeña resistencia en paralelo con la bombilla LED de forma que se evacue ahí la potencia. Ésta solución tampoco nos ahorrará ese pequeño consumo pero se apagará la luz completamente al pulsar el interruptor.
  3. Si estamos instalando dicroicas LED a 230V en sustitución de halógenos a 12V y hemos eliminado el transformador, podemos dejarlo conectado sin carga a la salida, de esta forma la corriente residual iría al transformador y no a la bombilla, apagándose la luz completamente al pulsar el interruptor
  4. Instalar un condensador en paralelo con la luminaria  para lo cual habrá que seguir los siguientes pasos:
    1. Desconecte la corriente del cuadro de distribución de corriente alterna para trabajar seguro.
    2. Quite el embellecedor de la luminaria objeto del cambio a tecnología LED.
    3. En la ficha de conexión de la lampara  conecte   un condensador de 470nF 400v (podemos encontrarlo bajo diferentes nombres  0.47uF / 470nF 474J 400v)
    4. Vuelva a colocar el embellecedor de conexión. Listo.

Si no consigue resolver el problema o le parece muy compleja o peligrosa , otra solución  muy sencilla es optar por  poner un  justo antes del portalámparas un relee tal y como describimos al final de este post

Corrientes de retorno por neutro

Este es el caso menos común de todos. Es posible que algunos de los electrodomésticos de nuestra casa produzcan corrientes de retorno por el neutro, que aunque son muy pequeñas, al pasar por nuestros super-eficientes luminarias con  LEDs pueden hacer que se queden medio encendidas incluso con el interruptor apagado.

Para  solucionarlo de forma eficaz podría bastar  sustituir los interruptores unipolares  por unos interuptores bipolares que corten a la vez  tanto  la fase como  el neutro al pulsar el mecanismo. En caso de no encontrar estos interruptores o no querer cambiar la instalación , otra opción muy sencilla es optar por usar un rele  alimentando por 220 v   con dos  circuitos para situarlos  justo en el lado de la luminaria

Un ejemplo de rele  Modelo LY2J que admite 220VAC  con capacidad de contactos de hasta 10A  y que se puede comprar por 8.89€ en Amazon 

 

 

El esquema de conexiones para Modelo LY2J    es bastante sencillo ,  pues consiste simplemente  intercalar en el cable que alimente a la luminaria  los contactos normalmente abiertos del relé  para que se cierren estos cuando se alimente la bobina   y den paso  para encender la luminaria.

Obviamente el circuito se completa con la conexión de la bobina ( contactos 7 y 8)  hacia el cable de alimentación

 

 

 

Es decir ,,conectaremos los terminal 7 con el 3  a la fase, el 8 con el 4 al neutro ( o viceversa)   y luego conectamos la luminaria a lo contactos 5  y 6  ( no importa el orden) . Con este sencilla idea nos evitaremos  manipular la instalación original  y  resolveremos de una vez el problema  de una forma bastante sencilla y económica este molesto problema .

Simplisimo soldador de puntos


En esencia la soldadura por  puntos  se usa intensivamente  en aplicaciones electrónicas  muy variadas destacando el ensamblaje de las células de baterías .La tecnología que hay subyacente    no es nada compleja, pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos  es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolo desde  allí , sus precios van entre los 300€ en adelante.

Puestos  a fabricar un soldador de puntos  nosotros mismos , en  youtube  se pueden ver  una gran cantidad de diseños de soldadores de puntos fabricados de forma casera usando casi siempre viejos transformadores de microondas dado  que son fácilmente obtenibles. A estos  transformadores  se les elimina el secundario de AT  y se rodea con   dos vueltas de cable de gran sección ( al menos de 8mm).Obviamente se  debe  tener  cuidado extremos si se decide seguir por ahí, pues  trabajar incluso con las piezas de  un horno de microondas es extremadamente peligroso  sobre todo por el peligro de descarga del condensador de AT. Además el resultado obtenido  aparte de peligroso  (tenga en cuenta que esta conectado  a la red de c.a) , dado el tamaño del trasnformador,   el conjunto es muy voluminoso  ,ruidoso y dificil de controlar .

Veamos un diseño muy sencillo  cuyos resultado  de  soldadura del pulso simple son igual de buenas que muchos soldadores profesionales  pudiendo llegar hasta , 210A para ser exactos.

Soldador un punto

Este diseño destaca por su simplicidad al  usar  como elemento activo únicamente  un tiristor de potencia de al menos 100 Amp para controlar la descarga del supercondensador.

Por mayor simplicidad ,  incluso en esta configuración  se ha optado  por añadir una pequeña batería  unido a un pulsador normalmente abierto para cebar al tiristor   incluyendo ambos componentes en un pedal  para activar el circuito

Obviamente  al activar el pulsador haremos que el SCR  entre en conducion    permitiendo la descarga de  condensador sobre los electrodos desde el momento en  el que el pulsador se cierre.

Claramente este esquema se puede  mejorar  usado la misma tensión de referencia  , pero dado el poquísimo consumo  y que puede ir integrado en el interruptor de pie  no es una mala opción y desde luego el circuito es bastante sencillo de construir.

Los componentes básicos  necesarios:.

  •  Fuente de alimentación de sobremesa  de 15-16v .Su amperaje depende de los rangos de carga de los condensadores (sobre 5A max ). En el esquema falta la resistencia de carga del condensador en serie (puede ser una bombilla en serie )
  •  SCR de 220v/220Amp (tiristor).Sólo  se necesita uno a menos que desee agregar un segundo conjunto de condensadores y un interruptor de láminas para la soldadura de doble pulso, pero esa opción es  mucho más cara
  • Carga resistencia control – se usa una bombilla  en serie de las usadas en un automóvil como luz de niebla (sobre 5A máximo segundo ~ 40 cargas), lo cual hara  de resistencia  de carga de la bateria de condensadores. Hay personas que eoptan por una resistencia clasica de potencia, pero desde luego una bombilla incandescente es mucho mas simple y economica
  •  Pulsador de pie ( ON/off ) para activar el SCR  para  la  soldadura (yo usé la misma fuente de alimentación de 15v para el interruptor, que está muy bien con un trabajo tan pesado SCR.)
  • Cable de tierra trenzado  terminando en Cobre sólido presentando a un punto en los extremos ( debería esta aislado  por los que sólo asegúrese de que su mano no va a estar en peligro de convertirse en parte del circuito !)
  • Condensador de  aproximadamente ~ 21 + faradios capacidad ( por ejemplo puede usar 10F uno, dos 5F y un 1F  de los usados  en  coche  para audio ). Todos los condensadores van en paralelo y con cables de sección adecuados ( mejor  sobre barras de metal)

 

Nota :  Como nos comenta Joaquin , que este diseño tiene un pequeño inconveniente  debido a que al trabajar en corriente continua  el tiristor  , una vez disparado este queda asi hasta que desconectemos la fuente de CC,  por lo que muchos diseños  para controlar  el pulso ,  optan por usar  transitores para descebar el SCR

Versión doble pulso

Basada en  el  principio  de los soldadores  de un punto , la mejora  del  circuito anterior  consiste en primer lugar en hacer una descarga más pequeña para limpiar la superficie del material de impurezas tales como el petróleo y crear una soldadura débil. El segundo impulso con más energía hace  enlace final. Con el fin de tener un pulso estable durante la descarga  se necesita pues  un condensador  mas grande para el segundo pulso.

Por tanto ademas  de los componentes anteriores , necesitara además :

  •  Segunda fuente de alimentación de sobremesa @15-16v / 5A max usando
  • SCR  220v/220A  (tiristor)
  • Rele reed
  • Condensador de  aproximadamente ~ 21 + faradios capacidad ( por ejemplo puede usar 10F uno, dos 5F y un 1F  de los usados  en  coche  para audio ). Todos los condensadores van en paralelo y con cables de sección adecuados ( mejor  sobre barras de metal)  NOTA :para el primer SCR  se usaría  una capacidad muy inferior (por ejemplo un condensador de 1F)
  • Carga resistencia control – se puede  usar tambien  una bombilla  en serie de las usadas en un automóvil como luz de niebla (sobre 5A máximo segundo ~ 40 cargas), lo cual hara  de resistencia  de carga de la bateria de condensadores. Hay personas que eoptan por una resistencia clasica de potencia, pero desde luego una bombilla incandescente es mucho mas simple y economica

En el esquema anterior como vemos se añade un control del  circuito de descarga por condensador  basado en un tiristor  y un supercondensador. La demora entre un pulso y el siguiente se basa en el retardo producido  por el rele reed al detectar la elevada corriente generada en la primera descarga pues la natural inductancia producida por el pulso de soldadura  hará que los contactos del rele reed se cierren activando el segundo SCR

Al ser un circuito tan básico no hay manera de medir el retardo entre ambos pulsos  que es aproximadamente de 1/4 segundo. Evidentemente con un circuito de demora se podría demorar mucho mas la segunda chispa pero para propósitos  caseros este diseño de  circuito es mas que suficiente

Consejos

  • Cómo electrodos de soldadura   elija un alambre  macizo y limados por el extremo. Tenga en cuenta que son muchos los factores que afectarán a la calidad de la soldadura.
  •  Limpie todas las superficies de soldadura con un limpiador no residuo como alcohol de alto %. Debe optimizar el contacto metal a metal, por lo que debe ser libre de aceites y basura
    para mantener las puntas de soldadura limpia regularmente los presentar a un punto redondeado. El tamaño de este punto afectarán su soldadura: si es  demasiado grande un punto  no soldará completamente, y si es demasiado pequeño  probablemente soplara la punta antes de soldar  el material.
  •  Jugar con diferentes  voltaje y capacidad, utilizando los valores citados  como referencia.
  • En caso de soldar células asegúrese de aplicar la presión adecuada a ambos puntos de contacto y que usted suelda  dentro de la zona centro de la batería . Si se desvía  hacia  el borde exterior de la terminal positiva puede fácilmente romper la célula. No es particularmente peligroso, pero el líquido se derramará. Según las hojas de especificaciones de materiales  células a123 , no contienen productos químicos tóxicos o peligrosos.
  •  Siempre use protección para los ojos, voy tirando chispas en tu rostro durante horas!
  •  Se recomienda la ventilación

[

Como identificar los bobinados de un viejo transformador


El funcionamiento de los transformadores se basa en el fenómeno de la inducción electromagnética, cuya explicación matemática se resume en las famosas  ecuaciones de Maxwell las cuales afirman que al aplicar una fuerza electromotriz en el devanado primario o inductor, producida esta por la corriente eléctrica que lo atraviesa, se produce la inducción de un flujo magnético en el núcleo de hierro. Según la ley de Faraday, si dicho flujo magnético es variable, aparece una fuerza electromotriz en el devanado secundario o inducido. De este modo, el circuito eléctrico primario y el circuito eléctrico secundario quedan acoplados mediante un campo magnético.

La relación entre la fuerza electromotriz inductora (Ep), aplicada al devanado primario y la fuerza electromotriz inducida (Es), obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns)

formaul.png

La tensión inducida en el devanado secundario depende directamente de la relación entre el número de espiras del devanado primario y secundario y de la tensión del devanado primario. Dicha relación se denomina relación de transformación (m) y  depende de los números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el doble del primario, en el secundario habrá el doble de tensión que en el primario  (seria un transformador elevador  como en el caso de los transformadores de  AT).

Si usted es de los que guarda transformadores para nuevos proyectos o cualquier otro uso y desconoce  cual es su Primario  o Secundario   realmente no es demasiado complicado averiguarlo sin ningún tipo de medición previa , de forma segura y rápida . Por supuesto además también usando un polímero podrá  averiguar mas cosas .

Para el test  usaremos una configuración  con una bombilla incandescente o halógena  en serie con uno de los bobinados

Como no sabemos cual es el primario o cual es el secundario podemos probar con ambos con total seguridad pues al alimentar el transformador con esta lámpara pues  esta hará de limitador de corriente en ambos bobinados  sin dañar  estos.

Como bien sabemos si colocamos la tensión de red  directamente en el secundario de un transformador lo destruiremos , pero con esta configuración  serie no pasaría nada pues simplemente el bobinado  hará de resistencia inductiva encendiéndose   la lampara prácticamente  con toda su intensidad  lo cual es un indicio de  que ese el bobinado secundario (menos vueltas  y por tanto menos resistencia   y por eso  hay mayor luminosidad en la lampara conectada en serie con el )

En caso de colocar  la tensión de red   en serie con el otro bobinado ( primario )   no pasaría tampoco nada pues simplemente el bobinado  hará de resistencia inductiva encendiéndose   la lampara  muy poco   debido al  mayor numero de vueltas por tanto mayor  resistencia   y por eso  hay mucha  menor  luminosidad en la lampara conectada en serie con el  (incuso   podemos medir el voltaje de salida en el secundario   que sera proporcional al obtenido

Resumiendo  al conectar un bobinado cualquiera   con una bombilla  pueden pasar tres cosas:

  • Si el transformador esta en cortocircuito (o posee una espira en cortocircuito): la lámpara enciende con todo su brillo.
  • Si el transformador es funcional :  la lámpara enciende muy poco  en  el caso de conectarlo en el primario  y mucho si lo conectamos al secundario  , lo cual en ambos casos nos demostrara que  el transformador estará funcionando. Ademas  en le caso de alimentar el primario si mantenemos la conexión, podremos medir las tensiones de salida en el  otro bobinado (secundario ) que lógicamente estarán por debajo de la tensión  nominal pero de todos modos e nos dará una buena aproximación  del voltaje de salida
  • Si el transformador esa abierto: no se encenderá absolutamente nada la lampara

.

 

 

montaje serie
Como  vemos ,con un poco de practica hasta se pueden identificar si los bobinados son de primario o secundario de acuerdo a la intensidad de la lámpara.

Con ese método  usando  una lámpara de unos 25 W se podrán probar  transformadores de hasta 30 W, pero con bombillas de  100 W se podrían llegar a probar transformador de hasta 1000 W.

Físicamente hay algunos indicios que nos pueden  ayudar a distinguir los bobinados como por ejemplo  , la ubicación  y la separación de los terminales  , la cual  nos va a definir el tipo de bobinado:

  • Los más separados corresponden al primario (  red ) y suelen ir arriba
  • Los más juntos suelen ser la(s)  salida(s)

Asimismo , el grosor de los hilos también es un claro  identificador del bobinado:

  • El más fino : al bobinado de entrada
  •  El más grueso: el bobinado de salida

Como ejemplo  en la foto superior  claramente se aprecia la sección elevada de los bobinados lo cual es indicio que indica que corresponden  a  dos secundarios independientes divididos en dos secciones arriba y abajo.

 

 

En contraposición con la foto anterior , se aprecia que la sección  de los hilos es muy inferior a la anterior  y ademas van muy separados   y en otro lado  lo cual nos da indicios de que puede ser el primario

 

 

Respecto a las medidas , como hemos visto que el numero de espiras aumenta el valor de la resistencia , si medimos con un polímetro la resistencia de los bobinados   nos puede indicar claramente cual es cada bobinado :

 

  • Las  resistencias más bajas son para el secundario
  • Las resistencia  mas altas son para el primario
  • Excepto para los auto-transformador  no debe  haber continuidad entre primario y secundario
  • Puede haber varios secundarios para varias tensiones interconectados o  no entre ellos

 

 

!Ojo con la tensión pues en Europa es 220V y en América suele ser 110V , lo cual significa que un transformador  diseñado para trabajar con 110V  si lo conectamos a la red de 220 V lo quemaremos!(en cuanto la  frecuencia a pesar de ser diferente  pues en Europa es de 60hz y  en     Europa   50  Hz  para  el transformador  es indiferente ese valor)

¿Como determinar  si un transformador es de 220 o 110 V sin quemarlo en la prueba ? Pues una vez determinado el  primero usaremos un segundo transformador cuya salida sea  de 110V

  • En la salida de este conectan el primario del transformador dudoso.Si el transformador dudoso es de 110VCA no pasara nada ya que estaremos alimentando un transformador de 110VCa con 110VCA y tendremos a la salida los voltajes correctos.
  • Si el transformador dudoso es de 220 VCA y lo conectamos a 110VCA tampoco pasara nada, solamente que a la salida obtendremos la mitad de la tensión nominal.

 

 

Dimensionamiento de baterias en embarcaciones electricas


Si tiene desventajas, a priori, también se adivinan los numerosos datos favorables o beneficios que pueden aportar los vehículos eléctricos  a corto plazo:son más agradables de conducir,  los motores eléctricos dan más par a bajo régimen de revoluciones y su comportamiento es más lineal,permiten una reducción de las emisiones contaminantes notable, su respuesta es más inmediata y generan menos ruido que un motor térmico. También puede citarse la posibilidad de recuperación de energía en las desaceleraciones  ¿pero como elegir  la  batería mas adecuada para  nuestro motor (intraborda o fueraborda ) electrico?

COMO ELEGIR LA BATERÍA NECESARIA PARA UN MOTOR ELÉCTRICO

Los acumuladores eléctricos almacenan energía eléctrica para utilizarla posteriormente transformando la energía química en energía eléctrica.
Las características de una batería son:

  •  El voltaje que suministra:se mide en Voltios y en las instalaciones de los barcos suele ser de 12 V. Para que una batería nos proporcione 12 V. ha de estar compuesta por seis elementos,y cada electrodo tiene que proporcionar un voltaje entre 1,8 y 2,2 voltios. La batería está descargada cuando esté en 10,8 voltios y a plena carga cuando esté en 13,2 voltios.
  • Su capacidad,es la cantidad de corriente que puede proporcionar, midiéndose en amperios/hora.

No se deben usar baterías de arranque de automóvil para alimentar un motor eléctrico porque las baterías de arranque están diseñadas para entregar la energía almacenada en breves descargas de gran amperaje que se realizan de manera muy espaciada. Si a una batería de arranque le solicitamos una entrega de por ejemplo, 25 A de manera continuada, esta batería no será capaz de entregarnos la energía que tiene acumulada (los amperios-hora) ya que esta entrega continuada la “asfixia” al cabo de un rato. Use baterías de ciclo profundo, a ser posible de tecnología AGM, diseñadas para este tipo de trabajo. Estas baterías sí serán capaces de entregar el amperaje solicitado durante el tiempo previsto y durarán muchos ciclos de carga-descarga.

Absorbent Glass Mat (AGM) es un tejido de fibra de vidrio absorbente que contiene el ácido de la batería. Las baterías de plomo tipo AGM son más seguras y ligeras y por tanto más avanzadas.
La tecnología AGM fue desarrollada en 1985 para los aviones militares que buscaban reducir el peso y aumentar la capacidad de carga de los aviones. En las baterías de tipo AGM el ácido sulfúrico de cada vaso es absorbido por una capa muy  delgada de fibra de vidrio comprimida con el aspecto de un fieltro, que asegura los problemas frente a posibles derrames de ácido en caso de rotura.  Son baterías mucho más seguras frente a vibraciones y posibles roturas, y por esta razón se suelen escoger en vehículos de competición ,para caravanas , para vehículos con función start-stopy  y por supuesto  también para usos náuticos.
Por esta razón las baterías AGM pueden ser transportadas de forma mucho más segura y sin restricciones por peligrosidad. Cada vaso puede se fabricado de forma rectangular o enrollados en forma cilíndrica.

agm

Las baterías AGM tienen una resistencia interna muy baja que las permite entregar corrientes muy altas y tienen además una vida útil bastante larga, incluso al someterlas a ciclos de descarga profundos. Las AGM son baterías selladas estancas sin mantenimiento, y como ya hemos comentado, más ligeras que las baterías de ácido-plomo normales.

Además se comportan bastante bien incluso con bajas temperaturas lo cual se agradece en invierno, y ofrecen una autodescarga reducida. Pero las ventajas de las AGM continúan frente a las normales pues admiten una recarga de hasta 5 veces más rápida, en caso naturalmente de que nuestro cargador entregue suficientes amperios.

El precio de este tipo de batería  es algo mas elevado que su homologas las de Plomo convencional  pero dese luego mucho mas asequibles a  igualdad capacidad  que las de Nq-cd o las de iones de Litio . Como ejemplo una de batería de 12V  y  100AH  del tipo AGM nos puede costar unos 200€

Es muy importante destacar que las baterías se pueden acoplar en serie o paralelo según necesitamos una mayor tensión o  capacidad que las ofrecidas por baterías estándar.

También  se pueden asociar  de forma conjunta en serie y en paralelo para obtener una determinada capacidad   y tensión fuera de  la “estándar”

En cualquier composición de baterías es muy importante tener en cuentas las siguientes consideraciones:

  • Todas las baterías usadas deberían ser similares en capacidad , tensión,modelo ,tamaño tipo y antigüedad (a ser posible todas nuevas)
  • Las conexiones deben ser  lo mas cortas posibles y de parecidas dimensiones entre todas las conexiones para asegurar que no haya asimetrias.
  • Debe mantenerse igualdad de longitud de cables
  • La sección de los cables hay que recordar que dependerá de la longitud del conductor y de la corriente máxima que debe soportar en DC
  • Para la unión de cables se deben usar  bornas o terminales ,las cuales  deben usarse especificas para uso marino  por el problema de la humedad
  • Las conexiones centrales deben apoyarse en regletas de conexiones dimensionadas para la corriente que van a soportar
  • Es muy conveniente un interruptor general de corte cerca de estas
  • Es muy interesante también usar con desconectadores rápidos que ante una emergencia nos permitan aislar una sección de baterías

baterias

En el ejemplo de la imagen superior ,como vemos,  tenemos dos asociaciones de 4 baterias de 12V en serie por ramal , que nos dan una salida de 12+12+12+12=48 voltios por ramal

Como  hay dos bloques de 48 V en paralelo, la capacidad total sera la suma de ambos bloques, Por ejemplo si cada batería es de 100AH y 12V , en conjunto esta asociación tendría una capacidad de 48V 200AH

 

En cuanto a la instalación del banco de baterías ,se suelen instalar en cajas cerradas pero con ventilación de persianas para que no entre el agua. Procuraremos no estibar objetos dentro de la caja de baterías y la mantendremos siempre limpias y secas. Esta caja estará firmemente sujeta para que no sufra desplazamientos con los movimientos del barco. Su instalación será lo más cerca posible del cuadro de distribución.

 

 

Muy sucintamente para calcular la  asociación de baterías que necesita puede seguir los dos siguientes pasos:

1. Calcule los amperios que consume su motor, con la siguiente fórmula:

Empuje en libras / Voltaje del motor x 12 = Amperios que consume.

Por ejemplo: 55 libras de empuje /12 Voltios x 12 = 55 Amperios 55 libras de empuje /24 Voltios x 12 = 27,5 Amperios 55 libras de empuje /36 Voltios x 12 = 18,3 Amperios

 Nota:Aunque tengamos un motor de 55 libras de empuje, probablemente no lo vamos a usar continuamente al 100% de potencia, por lo que deberemos estimar el % de potencia media usada.

2.  En función del número de horas seguidas que desea de autonomía, seleccione la batería necesaria. Por ejemplo: Con un motor que consume 55 Amperios, que usaremos a una media del 75% de su potencia, deseamos una autonomía de 3 horas Batería necesaria = consumo en amperios x % de potencia x horas de funcionamiento x 1,3 = 55 A x 0,75 x 3 h x 1,3 = 160,88 Ah.

 

Como seleccionar un cargador de baterías

 

Cargamos las baterías por medio de un cargador de baterías,(que puede ser automático), conectando el positivo del cargador con el positivo de la batería y el negativo con el negativo.

El cargador debería tener  un interruptor para abrir o cerrar el circuito ,un amperímetro para  medir la intensidad de la corriente,,un voltímetro que indique el voltaje de carga y un disyuntor que impide la descarga de la batería.

No use un cargador  económico ” de tensión constante pues su batería no se cargará al 100% y su vida se acortará (menos ciclos de carga-descarga).Lo recomendable sería usar  un cargador automático digital de tres fases.

Si decidimos montar el cargador  en la propia embarcación ,lo ideal es colocarlo en un lugar con ventilación y aireado puesto que para altas corrientes  de carga los cargadores suelen usar disipadores activos , muy   cerca del banco de baterías ( así nos ahorraremos sección de conductor)

Obviamente la entrada de ca  ira al cuadro de distribución de ca, el cual se alimentará normalmente de una conexión estanca abierta accesible por el exterior , para poder  conectarlo a la red general del puerto

 

cargador

 

Muy sucintamente para calcular su cargador de baterías que necesita puede seguir los tres siguientes pasos:

  • Determine cuántas baterías desea cargar simultáneamente.
  •  Sumar los amperios-hora de todas las baterías que desea cargar simultáneamente
  • Seleccione el cargador automático que cumpla sus requisitos, eligiendo en caso de necesitar una corriente no estándar,  el de corriente inmediatamente superior.

Ejemplos:

  • 1 batería de 100 Ah (C20h). Necesita un cargador a 12 V con una salida y una capacidad para 100 Ah..
  • 2 baterías de 132 Ah (C20h) cada una, conectadas en paralelo (el motor funciona a 12 V). Necesita un cargador a 12 V con dos salidas y una capacidad para 260 Ah. 
  • 2 baterías de 86 Ah (C20h) cada una, conectadas en serie (el motor funciona a 24 V). Puede usar o bien un cargador a 12 V con dos salidas y una capacidad para 172 Ah  o bien un cargador a 24 V con una salida o más y la misma capacidad de 182 Ah .

 

Resumidamente en el siguiente esquema podemos ver una configuración típica de una instalación de 48V para un uso marino  donde ademas se han incluido ademas delas barras generales , el interruptor de emergencia   y   dos fusibles para carga y de utilización:

INSTALACION COMPLETA

 

Piernas bionicas que ya son una realidad


 

En efecto gracias al trabajo  Hugh Herr, jefe del grupo biomecatrónica el MIT Media Lab, ,actual Premio Princesa de Asturias de Investigación Científica y Técnica  ya es posible dotar  a personas de movimiento gracias a  unas prótesis tecnológicamente avanzadas que realmente parecen salidas de la ciencia ficcion.

Sus logros han tenido un impacto significativo en personas con discapacidad física, a través de las prótesis de rodilla adaptables para amputados femorales o las ortoprótesis de tobillo y pie, para pie equino y patologías causadas por parálisis cerebral o esclerosis múltiple.

El trabajo de Herr como científico e ingeniero nace en parte de una desgracia hace  30 años  cuando él  tenía 17 años , durante una escalada de un montaña   fue sorprendido por una ventisca que le mantuvo tres noches perdido a temperaturas de 29 grados bajo cero. Afortunadamente fue rescatado con vida, pero desgraciadamente tubo secuelas muy graves  a consecuencia  del congelamiento intenso de sus miembros inferiores que le obligaron a que le amputasen las dos piernas por debajo de las rodillas.Por desgracia ademas la tragedia no termino allí porque ademas uno de los voluntarios que ayudó a su rescate falleció durante  el mismo.

Traumatizado y  decepcionado intentó que al menos su desgracia pudiera ayudar a otras personas en situaciones  similares  así  que empezó a investigar como mejorar  unas prótesis pasivas tradicionales que le realizaron en el Hospital .  Pronto se dio cuenta de la gran falta de tecnología  existente  así que decidió volcarse en el diseño de piezas más avanzadas experimentándolas sobre el mismo  para  ayudar a otras personas que, al igual que él, por circunstancias del destino  sufrían  algún problema en sus extremidades inferiores .

Herr necesitó un año para recuperarse después de su accidente y pronto diseño el mismo diseño  unas prótesis caseras . .Lo importante es que , abandonó la idea de que las extremidades biónicas tuviesen que parecerse a los miembros humanos pues lo realmente importante es  la funcionalidad ,creando diferentes  prótesis de piernas con alturas ajustables y accesorios para introducir el pie en grietas o poder apoyarse en salientes diminutos que le permitieron volver a escalar.

 

esclandoesclando.png

 

Desde entonces, su cuerpo se ha convertido en su principal banco de pruebas y no se conforma con devolver y mejorar la movilidad de personas que han sufrido amputaciones, también quiere mejorar los cuerpos de personas sanas por ejemplo construyendo exoesqueletos que ayuden a reducir el impacto sobre las articulaciones.

Herr ha abierto nuevas líneas de investigación, dando lugar a una clase de sistemas biónicos  de prótesis “inteligentes”, que gracias a la fusión del cuerpo y la máquina  han permitido mejorar   su fuerza y resistencia permitiendo casi lo que hace unos años hubiera parecido  una tarea solo reservada a la ciencia ficción.

En esencia sus prótesis avanzada  constituye un sistema retroalimentado  muy complejo donde ante una serie de estímulos se procesan esas entradas  hasta que finalmente derivan en la activación de un actuador  que  a su vez devuelve nuevas señales como entradas  permitiendo así el movimiento en función de la postura, de los pre-estimulos así como de la propia geometría del cuerpo

2016-06-21_22h43_07

Para llevar este complejo sistema a la realidad , se utilizan  un conjunto de disciplinas científicas y tecnológicas, desde la ciencia biomecánica y del control de los movimientos biológicos hasta el diseño de dispositivos biomédico

Una peculiaridad  que ha mejorado sustancialmente su diseño sobre otros antecesores es la forma de producir la propulsión  biónica apoyándose en el talon e impulsándonos hacia adelante como si de un palanca se tratase   tal y como lo hacemos instintivamente las personas que podemos caminar

Gracias a este sistema de optimización del mecanismo de propulsión humana,se  amplifican la resistencia para actividades anaeróbicas, permitiendo construir zapatos elásticos que aumentan la resistencia aeróbica al caminar y correr.

 

bionicpropulsion.png

Otra tecnologia  usada en las nueva prótesis  y con mucho potencial para usarla en otros campos es la piel sintética ,la cual básicamente es blanda   y ligera como el papel  pero que permite ponerse fuerte  y rigida  en presencia de un potencial eléctrico

 

piel artificial.png

Por supuesto   hay muchísima  mas tecnologia  para llegar a su modelos de prótesis actuales  por ejemplo en el diseño de la propia prótesis especifica para cada persona empleando modelos de puente cruzado del músculo esquelético para el diseño

 

TEDTalks es un podcast de vídeo diario de las mejores charlas y actuaciones de la Conferencia TED, donde los principales pensadores y hacedores del mundo dan la charla de sus vidas en 18 minutos (o menos).

 

En el siguiente interesantisimo video  presentado en febrero de 2014 dentro del contexto de charlas TED  ,el propio  Hugh Her presentó     por primera vez  en TED , la nueva generación de miembros biónicos, prótesis robóticas inspirados en diseños propios de la naturaleza; mostrando  su increíble tecnología en una charla muy emotiva  donde se entremezcla  la vertiente  técnica y lo profundamente personal – con la ayuda del bailarín de salón Adrianne Haslet-Davis( que  también perdió su pierna izquierda en el atentado de 2013 del maratón de Boston)

 

Hugh es el fundador de la compañía BiONx Medical Technologies (antigua iWalk) lo cual ambiciona llevar toda esta tecnologia a las personas, gracias a la  comercialización de la prótesis de miembros inferiores  BiOM® Ankle, la cual  proporciona magistralmente  energía emulando la función muscular e imitando el movimiento del tobillo  aportando ademas  una estabilidad que se ajusta a cualquier superficie.

Esperemos que muy pronto todas las personas con este tipo de discapacidad pueden contar con esta inestimable ayuda

.