Impresion 3d para hacer frente al coronavirus

Ingenieros, médicos, makers y tecnólogos forman este improvisado grupo en las RRSS que está logrando, en tiempo récord, fabricar piezas hospitalarias indispensables para el funcionamiento de un respiradero, vital para la supervivencia de los casos más graves de coronavirus.


Es  ya casi imposible seguir los avances que a diario se esta realizando desde  el forocoronavirusmakers.org ( A.I.R.E. o Ayuda Innovadora a la Respiración), equipo que por cierto , hasta hace casi nada  ni tenia contacto entre sus miembros  , consiguiendo de una manera colaborativa  ,altruista  y desinteresada intentar mitigar  la escasez  de material sanitario  fabricando  en un tiempo récord  y a a precios irrisorios   todo tipo de material sanitario , pantallas, utensilios , etc,   así como   respiradores  open source  ante el  grave problema de  indisponibilidad de stock de estos carisimos dispositivos que  cuestan a la sanidad pública casi 15.000 euros  por dispositivo.  

Es interesante destacar  que en este foro están presentes  médicos e ingenieros sanitarios que indican y marcan las pautas para crear un proyecto que cumpla con todas las garantías sanitarias.

También  es importante destacar que las soluciones que se están buscando pretenden ser  soluciones de código abierto, rápidas y baratas  para poder ser rápidamente replicables y escalables gracias  a  técnicas  de fabricación modernas como son el corte laser, los cnc   o la impresión 3d .

Veamos ahora  los 4 principales frentes abiertos :

Respiradores Open Source

Desgraciadamente la estimación de respiradores que se necesitarán solo en España en los próximos días es de miles de respiradores, incluso contando con todos los que se están comprando a nivel estatal, regional y privado. Dado que en los próximos días u horas se liberaran algunos de los diseños es importante que aunque se haga con buena fe ser lo mas filedignos  a las  pruebas que ya se han hecho dado que es cierto que  algunos de estos podrian ser contraproducentes al poder producir mas daño al paciente que beneficios para el   .

Reesistencia Team ya ha conseguido  desarrollar los primeros respiradores autónomos Open, basados en el denominado sistema Jackson Rees .

En el foro  hay varios prototipos de respiradores DIY en proceso de validación clínica muy avanzados  : Reespirator23, Oxygen, Makespace Madrid,varias empresas importantes en industria y varios muy prometedores de personas individuales. 

El equipo asturiano ha mostrado una demo de su prototipo que promete mucho , el cual será validado con el Departamento de Sanidad del Principado de Asturias. Si se demuestra que puede ser útil en situaciones de escasez de respiradores comerciales, las comunidades maker en cada CC.AA. pueden llevar el proyecto a escala España en cuestión de días. 

https://twitter.com/ReesistenciaT/status/1241052680119824385?s=20


Respirador maker asturiano

Pantallas

Dada la eficaz protección  física   que ofrecen, el equipo  esta imprimiendo en 3d estructuras que van montadas  sobre la cabeza   para albergar un filtro de acetato el cual ha demostrado ser muy eficaz    si lo complementas con mascarillas  y gafas de protección

El modelo mas popular por su simplicidad   y rápida impresión  es MODEL SACYL.STL  .

Estos son algunos de los parámetros que se están usando para imprimir el  Modelo SACYL:

      • Diámetro del Nozzle: 0,4mm
      • Altura de capa : 0,28 – 0,30
      • Grosor de pared: 1,2
      • Capas superiores/inferiores: 4
      • Relleno: 50%
      • Patrón de relleno: grid, rejilla
      • Velocidad: 80 mm/s
      • Velocidad superior/inferior: 40 mm/s
      • Sin soporte

 

Por cierto,  para acelerar la producción   podemos imprimir en cualquier impresora 3d  de  300x300x300  dos unidades por impresión  , como vemos en la imagen superior,

A todos aquellos personas que estén fabricando pantallas, las tengan ya hechas o las vayan a fabricar es importante destacar algunas pautas:

      •  Eliminen los filos cortantes (pasando un cutter es suficiente), sobre todo la zona que entra en contacto con la frente.
      • Redondear los picos inferiores del acetato, si es que lo tiene a disposición
      • Para que la pantalla no se empañe, es necesario que deje pasar algo de aire por la parte superior, sí ha impreso algún modelo sin agujeros intente ver la forma de realizárselos sin destrozar el trabajo realizado.

Una vez impresas  es importante que se registre cada una de las pantallas ( hay grupos de Telegram en https://t.me/coronavirus_makers) . Mientras se termina de gestionar las logística, cuando  se  tenga un número importante de pantallas (+ de 10) fabricadas, se limpien  y se embolsen  usando bolsas nuevas con auto-cierre (bolsas de basura),guantes y mascarilla y se limpie  cada pantalla con disolución de agua y legía (10%) y papel adsorbente desechable.

Tambien es muy importante, que cuando se cambie de pantalla se  limpie también  los guantes con la disolución, antes de la siguiente pantalla a limpiar.

 

Mascarillas 

Hay muchas confirmaciones de centros hospitalarios informando que las mascaras impresas  en 3D   comparándolas  con una bufanda , sobre  todo por el aspecto psicológico de  que pueden dar una falsa sensación de seguridad. 

Como se puede ver en la imagen   ya esta demostrado que una mascarilla impresa  en 3d   y una bufanda hacen prácticamente lo mismo  debido al carácter poroso  que permite dejan pasar las partículas infecciosas . 

El problema  como nos dicen los expertos no es el diseño ,material  o la buena intención ,   sino la falsa seguridad que puede provocar el llevarla puesta  pues con impresión 3d las mascarillas no aíslan de los virus por muchos filtros que intentemos ponerlos ( por  ejemplo el que usa goma eva )

Por  tanto,  si se quiere ayudar   construyendo material  , es   mas aconsejable imprimir pantallas protectoras  y nos mascarillas 

No obstante desde el grupo de Telegram de  Aire , solicitan ayuda:

      • Necesitan diseñadores 3D con cierta experiencia

      • Necesitan expertos que nos ayuden con morfología facial

      • Necesitan moldes para inyectar silicona

Adicionalmente  también hacen falta filtros de los siguientes tipos para evaluación: recambios de filtros y prefiltros P2, N95, P3, trapezoidales y circulares

 

Valvulas

Por ultimo esperando   que no llegue a ser necesario es interesante recordar la fabricación de reemplazos de válvulas para respiradores en impresión 3D que llevaron a cabo ingenieros italianos para el Hospital de Brescia,

 

 

 

Si es usted querido lector  un maker, aficionado , médico o ingeniero y puede aportar su granito de arena en este proyecto, pásese por sus diferentes grupos de Twitter, telegram  o la  web https://foro.coronavirusmakers.org/:

Solidaridad tecnológica frente al coronavirus

Ante la grave pandemia que nos azota , surgen soluciones tecnológicas que buscan mitigar la falta de material sanitario mediante tecnologia 3d, corte láser , cnc, etc


Ante las crisis  graves  que han ocurrido a lo largo de la historia    se han  ido  repitiendo  una y otra vez que se  consigue aflorar   lo mejor ( y también  lo peor ) del ser humano ,   y desgraciadamente ahora  estamos ante una nueva  desastrosa situación del coronavirus  como pandemia global,  que ha conseguido que profesionales, makers, aficionados   , personas de diferentes ámbitos  ,  así como   empresas,organizaciones, etc   estén trabajando  la mayoría de forma altruista  en mitigar  los efectos de la carencia de material sanitario   mediante  técnicas  modernas como la impresión 3d, corte cnc , electronica embebida ,etc 

En esta linea , que  se ha hecho eco toda la prensa, la mayoria de los s esfuerzos se centran  es   lograr un respirador artificial barato open source   que sea  utilizable  durante   esta grave situación pues este dispositivo se ha convertido en una pieza clave en las UCI básicamente porque se prevee que no va  a haber suficientes suponiéndo  un enorme  reto para los médicos de todo  donde desgraciadamente ante la ausencia de estos en algunos países se ven en los dilemas morales de decidir a quien colocárselo.

Estos respiradores caseros  son muy importantes  en esta pandemia,  pero   hay muchos mas frentes abiertos   en esta comunidad  de solidaridad  tecnológica pues    hay otros grupos  para construir gafas de protección , mascarillas , pinzas desechables , piezas de repuesto para material sanitario, maquinas dispensadores de gel , etc , todos ellos   dispositivos   o herramientas  que podemos  fabricar gracias a la impresión 3D o técnicas modernas como el CNC

Este es el foro que pretende  centralizar toda la ayuda   https://foro.coronavirusmakers.org/     , el hashtag de Twitter #CheapVentilators para conocer los equipos de otros países y a la cuenta @AIRE_Covid19 donde publicarán toda la información del proyecto español.

También  hay un sitio web: https://coronavirusmakers.org/index.php/es/  con  información general filtrada

Asimismo es posible contactar via Telegram  en las diferentes grupos de trabajo que se han asignado , siendo el grupo principal de Telegram https://t.me/coronavirus_makers

Respiradores  artificiales

El funcionamiento de los respiradores artificiales modernos está condicionado por una sensorización muy   compleja  que permite ajustar la mezcla aire-oxígeno, generar alarmas , etc.   función que obviamente no se va a poder solucionar  con una solución “sencilla” que sea open  source pues se busca  dispositivos que puedan fabricarse rápido y de forma distribuida usando,  impresión 3D , corte CNC , etc   y electronica convencional  para construir algo  que   pueda  ayudar la falta de respiradores comerciales

Actualmente en el foro  respecto a los respiradores  hay  tres líneas de trabajo:

    • Estudiar la línea de suministro de las máquinas de respiración, comprobando si de verdad hay una rotura de stock y eliminar los cuellos de botella que pudieran aparecer . 
    • Adaptación de máquinas actuales para ser utilizadas como respiradores; por ejemplo, las máquina CPAP o BIPAP , usadas contra la apnea del sueño que utilizan miles de personas todas las noches .
    •  Crear máquinas de respiración artificial basándose en   maquinas mas “simples” ,por ejemplo el balón de tipo Jackson Rees   dotándoles  de una “inteligencia” que les permita funcionar de forma autónoma. En ese sentido  se estaba trabajando sobre dos  modelos , uno  iniciado por el Mit   en el 2010 y  otro por la Universidad Rice en Houston. Muy resumidamente se basan subyacentemente en usar diseños clásicos probados   eliminando la necesidad de  tener a un sanitario dedicado exclusivamente a esa tarea pues es un desperdicio de recursos si podemos tener una máquina capaz de hacer ese trabajo sin cansarse y de una forma eficiente  y autónoma.

Obviamente por su bajo precio  y alto potencia  se están  abordando  diseños que utilizan material médico desechable y ampliamente disponibles para liberar manos de médicos y/o enfermeros en situación de emergencia.

En este caso, en lugar de asistir el facultativo con un  sistema respiratorio manual tipo de bolsa, se busca generar un sistema mecánico que le permita liberarlo de esta tarea para atender a otros enfermos en la misma sala. Estos modelos no disponen por el momento de los parámetros avanzados de los respiradores modernos. Se está explorando esta posibilidad, pero requerirá mucho más tiempo.

En todo  caso queda clara la dificultad de tratar unos pulmones con Covid-19, que requieren de una gran complejidad pero gracias a las aportaciones de personal sanitario  explican que ante problemas de  respiradores avanzando los respiradores pueden ser sencillos los primeros días pues estos pacientes son muy fáciles de ventilar en general.

Por tantos estos diseños que están surgiendo,  pueden ser muy buenos para los primeros días aunque no tengan  sofisticación y permitan respiraciones espontáneas:es decir ventilación controlada por presión, a una frecuencia respiratoria entre 12-30 y con posibilidad de PEEP hasta 20 con monitorización del volumen corriente y volumen minuto. Eso ayudaría en las primeros días  (que son los peores )  con la esperanzar de que mas adelante  se buscaría alternativa con respiradores actuales sofisticados , ya que  llegado el momento no habrá para todos en las fases iniciales y algo  tan relativamente sencillo como los antiguos ventiladores con estas  nueva mejora  podría salvar vidas

Mascarillas caseras

Dados los problemas para conseguir mascarillas hay muchas opciones para fabricarlas nosotros mismos   siendo la mas famosa la  Mascarilla DIY con Goma EVA como filtro

En un grupo de Facebook un chico de Eslovenia se creó un diseño de una mascarilla para usar como filtro un filtro HEPA ( por ejemplo los usados en aspiradoras convencionales )  y de hecho este diseño ,dada la situación, como son dificiles de conseguir, desde Taipei dijeron que han usado goma EVA como filtro, asi que se he rediseñado y los he subido a Thingverse.

La goma EVA hay que cortarla en cuadrados de 77 x 77 mm para la de hombre y de 68 x 68 para mujer. Recomiendan que para que ajuste mejor a la cara, que se caliente un poco  el plástico en el microondas para amoldarla.

Ademas antes de usarla se debería limpiar todos sus componentes con alcohol isopropilico.

Hay dos tamaños para mujer y para hombre y los  ficheros estan disponibles en  https://www.thingiverse.com/thing:4223817

 

Ese diseño no es único , pues  en thinginverse  podemos encontrar muchos  mas , pero en este lo llamativo de este ultimo ,  es lo sencillo del filtro

 

 

Gafas de Protección

Se busca  intentar suplir una posible  carencia de gafas de protección para uso hospitalario  

Hay muchos disponibles  y otros nuevos que están apareciendo  usando materiales sencillos como pantallas ( por ejemplo  con encuadernadores de papelería)

Válvulas

Unos makers italianos han impreso en 3D una válvula que se les había averiado en un hospital de Milán (hemos pedido a uno de los Fablabs de Milan, para saber si tienen el STL): https://www.3dprintingmedia.network/covid-19-3d-printed-valve-for-reanimation-device/

 

 

Mas ideas

Hay muchísimos mas ejemplos de dispositivos   y diseños que nos pueden ayudar en el día a día   a sobrellevar esta grave pandemia , desde soportes para pomos de puertas, abridores de puerta con el  pie,  dispensadores automáticos de productos de desinfección   y un largo etcétera

Para inspirarnos basta buscar “coronavirus” en el repositorio thingiverse.com

 

Amigo lector , si tiene  alguna idea o sugerencia siéntase  libre de compartirla con esta comunidad  y por supuesto si tiene ganas de colaborar participe   en el foro en español del coronavirus  !MUCHO ANIMO QUE JUNTOS LO VAMOS A SUPERAR!

 

 

 

Reparar una batería de bicicleta

Veremos una solución económica para cambiar las baterías de una bicicleta eléctrica


En efecto ,progresivamente toda batería ,sea de la tecnologia que sea  termina perdiendo capacidad hasta el punto que llega el momento en que tenemos que desecharla porque no es eficiente ni practico contar con esta , sobre todo  si esta tiene que suministrar potencia a un medio de movilidad personal y  esta no cumpla con su cometido.

En este post vamos   a  ver que podemos hacer  con   una batería de nicd de 24V 8000maH  que ha perdido por completo su capacidad , y que necesitariamos por tanto repararla o  reemplazarla 

Veamos en primer lugar que tecnologías están disponibles   de baterías  para luego tras  analizar  como esta compuesta ,  sospesar  un remplazo o reparación de esta  teniendo siempre en cuenta   ventajas y desventajas del uso  de un tipo de batería u  otro

 

Baterías de Nicd

Las baterías de NiCd (níquel-cadmio ) son  batería recargables cuyo uso se extendió hace bastantes años en el el ámbito   doméstico e industrial , por ejemplo en los primeros  robots de limpieza, pero  que hoy han quedado prácticamente  en desuso

Este  tipo de batería  cada vez se usa menos primero a cambio de la tecnología de  de NiMH , debido a :

      • Alto coste  por célula
      • Efecto memoria
      • El alto precio del cadmio en su composición
      • El uso del Cd  representa un peligro para el medio ambiente
      • Densidad energética 50–150 W·h/L
      • Durabilidad (ciclos): 2000 ciclos

Sin embargo las baterías de Nicd  poseen algunas ventajas:

    • Sobre el NiMH, como por ejemplo los ciclos (1 ciclo = 1 carga y descarga) de carga, que oscilan entre los 1000 y 1500 ciclos (+ vida).
    • En condiciones estándar, dan un potencial de 1,25 V (tensión de trabajo nominal 1,2 V).
Resumiendo:
Voltaje de célula nominal: 1.2 V
Eficiencia carga/descarga: 70–90 %
Durabilidad (ciclos): 2000 ciclos
Densidad energética: 50–150 W·h/L
Potencia específica: 150 W/kg
Energía específica: 40–70 W·h/kg
Velocidad de autodescarga (%/mes): 10 %/mes

 

Baterías de NiMh

Las baterías de níquel-metal hidruro o de níquel-hidruro metálico (Ni-MH)  utilizan un ánodo de oxihidróxido de níquel (NiOOH), como en la batería de níquel cadmio, pero cuyo cátodo es de una aleación de hidruro metálico.

Cada pila de Ni-MH puede proporcionar un voltaje de 1,2 voltios y una capacidad entre 0,8 y 2,9 amperio-hora.

Esta tecnologia tiene varias ventajas:

      • Posee una mayor capacidad de carga (entre dos y tres veces más que la de una pila de NiCd del mismo tamaño y peso)
      • ​ Este tipo de baterías se encuentran menos afectadas por el llamado efecto memoria, en el que en cada recarga se limita el voltaje o la capacidad (a causa de un tiempo largo, una alta temperatura, o una corriente elevada), imposibilitando el uso de toda su energía.
      • Su densidad de energía llega hasta los 100 Wh/kg, y los ciclos de carga de estas pilas oscilan entre las 500 y 2000 cargas.
      • Menor precio al no contener Cd
      • Mas respetuosas con el medio ambiente al no contener Cd

Estas baterías son superiores  a las de niCd pero aun adolecen de  una mayor tasa de autodescarga que las de NiCd (un 30% mensual frente a un 20%), lo cual relega a estas últimas a usos caracterizados por largos periodos entre consumos (como  mandos a distancia,  luces de emergencia, etc), mientras que son desplazadas por las de NiMH para consumos continuos.

Resumiendo: 

Eficiencia carga/descarga: 66%​
Voltaje de célula nominal: 1.2 V
Durabilidad (ciclos): 500–2000​ ciclos
Energía específica: 60–120 W·h/kg
Potencia específica: 250–1,000 W/kg
 

No obstante, en 2005 se desarrolló una variante de baja autodescarga (low self-discharge, LSD) para estas pbaterias : LSD-NiMH , las cuales presentan una tasa de autodescarga mucho menor, lo que permite almacenarlas durante largos períodos de tiempo sin dañar la batería por desuso y pudiendo utilizarse de forma inmediata cuando sea requerido.

 

Baterías de Ion litio

Las batería de iones de litio, también denominadas baterías Li-Ion emplean como electrolito una sal de litio que consigue los iones necesarios para la reacción electroquímica reversible que tiene lugar entre el cátodo y el ánodo.

Las propiedades de las baterías de Li-ion, :

      • Elevada densidad de energía debido a la ligereza de sus componentes,
      • Elevada capacidad energética
      •  Resistencia a la descarga,
      •  Poco efecto memoria ​
      •  Capacidad para funcionar con un elevado número de ciclos de regeneración,

Este tipo de tecnlogia    ha permitido diseñar acumuladores ligeros, de pequeño tamaño y variadas formas, con un alto rendimiento, especialmente adaptados a las aplicaciones de la industria electrónica de gran consumo como por ejemplo a la movilidad personal .

Sin embargo, su rápida degradación y sensibilidad a las elevadas temperaturas, que pueden resultar en su destrucción por inflamación o incluso explosión, requieren, en su configuración como producto de consumo, la inclusión de dispositivos adicionales de seguridad  así como comtroladores  de carga  específicos, resultando en un coste superior que ha limitado la extensión de su uso a otras aplicaciones.

 

Baterías  de Gel de Pb

La  baterías  de plomo, también denominadas batería de ácido-plomo son  un tipo de batería a húmeda muy común en vehículos  como batería de arranque, aunque también se utilizan como batería de tracción de vehículos eléctricos como por ejemplo carretillas ,  vehículos de transporte ,etc. Suelen proporcionar una tensión de 6 V, 12 V u otro múltiplo de 2, ya que la tensión que suministra cada celda es de 2 V pudiendo  suministrar unas intensidades de corriente relativamente grandes, aunque no obstante  adolecen de un peso mayor respecto a otros tipos de baterías ( y por lo tanto una densidad energética menor)

Aunque su utilización y forma más conocida es la batería de automóvil, este acumulador tiene muchas aplicaciones, como por ejemplo en energía solar.

La  evolución de las baterías de Pb  son las  baterías de gel , que se componen de un electrolito gelidificado (de ahí su nombre) con lo cual nunca puede haber ningún tipo de derrame si se volcase la batería por accidente, como si podría ocurrir con una batería de ácido-plomo convencional  (por tanto gracias a ello, se pueden colocar en cualquier posición y orientación). Al igual que las AGM, las baterías de gel vienen en un envase sellado que no requiere de mantenimiento ya que el gas de su interior se recombina evitándose la pérdida de agua.
 

Una batería de gel tiene una vida útil de 12 años, superior a los 8-9 años de las baterías AGM y mucho mayor que las clásicas baterías  monoblock, la cual es de 4-5 años,con lo cual una batería de gel es una buena inversión para aquellas personas que no quieren realizar un desembolso económico tan grande como para poner baterías estacionarias (opzs, topzs, ropzs, opzv…) 

 
Esta mayor vida útil se consigue gracias al grosor de sus placas y a la alta densidad de su material activo en forma de gel que permite obtener un mejor rendimiento que otras baterías pues al disponer de unas mejores placas y rejillas favorece una mejor resistencia a la corrosión y un funcionamiento óptimo con el paso de los años.

Las baterías en formato gel ofrecen   las siguientes  ventajas:

      • Permite un elevado número de ciclos de carga y descarga durante mucho tiempo
      • Permite descargas profundas hasta el 80% sin afectar a su vida útil.
      • Autodescarga muy baja, lo cual  supone una gran ventaja donde no haya un control diario de su funcionamiento.
      • Buena tolerancia a las altas y bajas temperaturas ya que gracias a la densidad de su electrolito, dispone de una buena resistencia a congelarse y soportará temperaturas mucho más bajas que baterías como las AGM, smonoblock o las estacionarias OPZS. 

 

Una vez conocidas las tecnologías disponibles, analizaremos una batería real de una bicicleta eléctrica con  batería agotada de tecnologia Nimh   para   ver que podemos hacer para volver a usar el dispositivo alimentada  por esta.

 

Desmontaje de una batería de bicicleta elctrica

Veamos  que se esconde tras una carcasa de  una batería convencional  de una vieja bicicleta City Mover

En primer lugar desmontaremos  la carcasa  cuidando de no cruzar  ni romper ningún hilo

Tras abrir la carcasa  toca  separar el bloque de baterías  del resto  de componentes 

Como vemos separando el bloque de baterías  solo hay dos conectores ( el de carga  y el salida hacia la bicicleta) , el panel de medida   y el interruptor  

Bien centrémonos  en el bloque de batería de 24v 800maH  de tecnologia NiMh

Una vez levantados los  aislantes que cubren las 20  células de Nimh, las cuales  están conectadas en serie  ,   configuración que nos da una salida  de  1.2×20=24v 

 

Es interesante  observar  la presencia de un fusible de protección en serie de 10Amp  de los usados en automoción

También en serie con el circuito  encontramos un controlador de temperatura del motor SENSATA YS11A95A-C7 7A 250V serie YS11

Por ultimo hay una pequeña NTC conectada entre masa  y un pin de salida hacia el cargador

¿ Tiene solución esta batería?  Pues  si tiene unos cuantos años   esta batería   y la medida  con un voltÍmetro de cada  celda  de forma individual no llega a los 0.8-0.9V a lo sumo ( recordemos debería ser de 1.2v) ,  tenemos que  pensar   que las celdas han acabado su vida útil  y necesitaran ser reemplazadas..,   pero por lo contaminante  del Cd  usado en su composición  y  el   alto precio que tenemos que pagar por ellas  creemos no es una opción a  considerar

Bien ¿que opciones podemos evaluar?

OPCION 1

Pues una opción es   una batería de Litio  de un voltaje  y capacidad similar .En concreto para el ejemplo que estamos viendo   las especificaciones de la batería elegida son las siguientes:

        • Tensión nominal: 24V
        • Voltaje de salida: 16.5-25.2 V
        • Capacidad de la batería: 10Ah
        • Dimensiones: 68x100x112mm
        • Peso total: 2kgr
        • Circuito interno de la protección
        • Peso de la batería: cerca de 1825g
        • Embalaje: PVC azul
        • Celdas de la batería dentro: Células grandes modelo 18650.
        • Ciclos de vida: Más de 1000 veces
        • Descarga de la batería :La corriente de pico máxima: 36A/Corriente máxima de funcionamiento: 18A

La mejora en cuanto a  dimensiones y peso suelen ser considerables , tal y como se puede ver en la siguiente imagen donde aparecen ambas baterías  , donde se aprecian prácticamente  que por una tercera parte doblamos la capacidad con una batería de Litio:

IMG_20170714_230525[1]

Con esta solución ,  ahorraremos mucho peso debido a la mayor densidad energética, pero a cambio la vida de la batería  no es  tan  alta como la solución 2  que vamos a ver   que  ademas es de un pecio significativamente menor

OPCION 2

El problema de las baterías  de litio de la opción 1 ,  es su  relativo alto  coste ( entre 100 €y 250€  según  donde se compre  )  y la  relativa baja durabilidad  de estas baterias.

Otra  opción mas económica es usar baterías de Gel  pues este tipo de batería es de  menor coste (unos 14.99€ cada bateria en su version de 7ah  que es la capacidad mas similar)    y ofrece un rendimiento alto con una durabilidad mucho mayor.

El electrolito de ácido sulfúrico se encuentra absorbido por los separadores y placas y  éstas a su vez inmovilizadas. Están diseñados utilizando la tecnología de recombinación de gas que elimina la necesidad para la adición regular de agua mediante el control de la evolución de hidrógeno y oxígeno durante la carga.

La batería está completamente sellada y hermética y por lo tanto es libre de mantenimiento, permitiendo ser utilizada en cualquier posición. En el caso que accidentalmente la batería sea sobrecargada produciendo hidrógeno y oxígeno, unas válvulas especiales unidireccionales permiten que los gases salgan al exterior evitando la sobrepresión en su interior.

Resumiendo estas  son las características principales de esta bateria

      •  Tecnología AGM para una eficiente recombinación de los gases, hasta el 99% y libres de mantenimiento o de añadir agua
      •  Sin restricciones para el transporte aéreo, cumplimiento con la IATA/ICAO provisión especial A67
      •  Puede ser montado en cualquier posición
      •  Plomo diseñado por ordenador con rejilla de aleación de calcio-estaño para una alta densidad de energía
      • Larga vida de servicio, tanto en aplicaciones en flotación como cíclicas
      • Libres de mantenimiento
      •  Baja auto-descarga

Bien ,si elegimos esta opción de dos baterias en serie  de gel de 12v 7aH     por  unos 30€  el conjunto podemos  sustituir la vieja batería de NiCd  , teniendo ademas la posibilidad de mejorar la capacidad   y por tanto la autonomía del vehículo  por ejemplo usando de 12v de  gel  pero 10Ah o de 12H

 

En realidad el montaje no puede ser mas sencillo :

1-Uniremos  las dos baterías por uno de los costados  para lo cual simplemente podemos  usar cinta de doble cara  de buena calidad (  o pegarlo con un adhesivo)

2-Colocaremos dos baterias en serie  de gel de 12v 7aH      de   modo que  las  conexiones  de ambas  baterías  queden  a un mismo lado 

3-Conectaremos  en serie ambas baterías (es decir el polo + de una batería  con el negativo  de la otra  con  un cable  en el que interconectaremos un portafusible).

3-Es importante no olvidar el fusible en serie con el circuito pues esto nos evitara problemas  posteriores.

4-Finalmente conectaremos  en el polo +  de una batería   y el polo negativo a un conector  macho por ejemplo (reciclado de un alimentador de un viejo router de ADSL). Mucho cuidado de no confundir el polo positivo   y el polo negativo  a la hora de  soldar los hilos al conector.

5-Conectaremos un conector  hembra en la bicicleta  ( por ejemplo reciclando el conector  externo de un viejo router de ADSL). Mucho cuidado de no confundir el polo positivo   y el polo negativo  a la hora de  soldar los hilos al conector.

6-Colocaremos  las baterías  en el hueco de la bicicleta . enchufaremos ambos conectores y  !a probar la bicicleta!

 

 

 

Ha llegado el sustituto de los fusibles y es un componente de toda la vida

Usos innovadores o poco habituales de uno de los componentes electronicos mas sencillos : las resistencias tradicionales


Seguro que querido lector  se han cuestionado porque  en algún circuito  comercial   en la serigrafía  marcaba un componente como   un fusible  pero en su  lugar se ha colocado  una resistencia de muy bajo valor (ente 0.5 y 10 Ohms)   y de baja disipación ( 1/4 Watio  o  menos)  ocupando  el mismo  lugar del fusible.

Lo primero que se nos ocurre,es contradictorio , pero en cierta forma tiene sentido, pues una resistencia muy baja realmente actúa  casi como un fusible común, siendo ademas también muy  fácil de sustituir  (si va soldado ) , pero,  ademas, existen 2 motivos  de peso para usar resistencias como fusibles, en equipos electrónicos:

        • En primer lugar  motivos intrínsecos al propio  diseño en las nuevas fuentes de alimentación 
        • En segundo lugar  , y no menos importante,por la  economía de medios

Veamos   mas  detalladamente de lo que estamos hablando:

Razones basada en el nuevo diseño de fuentes de baja potencia 

En las  nuevas fuentes “no aisladas de baja potencia”  cuyo diseño estudiamos en un post anterior , se de la circunstancia de que en el momento de conectarlas  al suministro eléctrico de c.a.   tienden a generar un alto flujo de corriente por fracciones de segundo, comportándose casi como un corto-circuito, circunstancia  que puede quemar  perfectamente los fusibles convencionales  razón por la que justificaría  usar resistencias como fusibles “especiales”.

Precisamente estas  fuentes de alimentación no aisladas de baja potencia  de las que ya hemos hablado en este blog  son las que se usan  intensivamente por sus dimensiones  y bajo pecio en cargadores de teléfonos móviles, rectancias, fuentes conmutadas de baja potencia y fuentes de iluminación LED, etc . 

 

Todas estas nuevas fuentes de alimentación como se ve en el diseño anterior,  ya no usan el voluminoso y caro transformador , usando en su lugar a la entrada de corriente alterna condensadores en corriente alterna, razón por la que se  las conoce como “no aisladas” porque usan y rectifican la tensión alterna  procedente de la red de suministro a corriente continua  directamente, razón por lo que  todos sus componentes deben soportar esos grandes valores de voltaje :220-380v AC.

 

Como esta tensión se aplica a un puente de diodos  y de ahí a un condensador, precisamente por causa de estos condensadores electrolíticos que se usan a la salida del puente de diodos  filtrando las AC , como  manejan altos valores de tensión; arriba de 140v y hasta 360v , debemos saber que cuando estos condensadores electrolíticos están descargados completamente, tienen una resistencia interna muy baja , lo cual hace  que  se comporten como como si estuvieran en “corto circuito”  en el momento de arranque , lo cual debido a la  gran intensidad en algunos casos podría  fundir un fusible convencional , intensidad que por cierto  sera mayor   cuanto  mas grande sea el voltaje que maneje el condensador ( y en las fuentes no aisladas, los condensadores son de 160 volts como mínimo  hasta 450 volts )

 

Un componente que actué como “amortiguador”  que impida el corto circuito por esos breves instantes  mientras el condensador se carga y alcanza el umbral para dejar de consumir mucha corriente, y al mismo tiempo permita pasar la tensión necesaria, para que el todo el circuito funcione estable,lo  cumple precisamente  las resistencias de bajo valor , si bien en en fuentes conmutadas de voltaje de potencias altas y medias,  se usa también las NTC.

Pasar por alto el corto circuito temporal, en un condensador descargado, e instalar solo un fusible, lo fundirá tarde o temprano debido a un “falso positivo”,  abriendo el circuito e impidiendo el flujo de corriente completamente, aun estando todos los componentes en buen estado .

Ademas sin el uso de esta resistencia,  el condensador se degradará mas rápido, así que esta mas que justificado  el eso de estas resistencias.

Algunos argumentarían que se puede poner un fusible antes de esta resistencia “anti corto circuito”, como en la versión con fuentes de voltaje conmutadas de mayor potencia, pero  bien calculada, la resistencia actuará de ambas maneras.

Para terminar ,no  obstante puede ser justificado  la configuración “fusible-resistencia amortiguadora” en circuitos de media potencia  ( no  en fuentes de baja potencia donde  si se podría fundir)  ,pues  en fuentes de alimentación no aisladas de grandes potencias, usar un fusible y resistencias en los condensadores electrolíticos  filtraran los  altos voltajes protegiendo así el circuito   por lo que   según los diseños  y la corriente que pueda circular la solución puede venir  de la asociación de ambos componentes 

 

Economía y reducción de costos de producción.

Para los fabricantes de equipos que requieran este tipo de fuentes no aisladas con condensadores de voltajes altos y potencias bajas, u otro tipo de circuitos donde sea factible el uso de una resistencia en lugar de un fusible, les resulta muy beneficioso minimizar costos  (por pequeños que sean) ademas sin sacrificar la calidad por lo que  prefieren perfeccionar y mejorar estas resistencia-fusible ya que  su uso esta cada vez mas demandado resultando un 40% o 50% mas económico montar resistencias  en lugar usar  fusibles.

Respecto a la naturaleza de estas resistencias de bajo valor aunque para la mayoría de los casos y fabricantes de circuitos, una resistencia común de carbón de bajo valor óhmico es mas que suficiente, algunas veces se requieren diseños de resistencias especialmente pensadas para esta función de fusible, componentes conocidos  como: “FUSISTORES”

Fusistores

   Un tipo de protección interesante de fusistor (fusible + resistor)  se encuentra en algunos aparatos de consumo como televisores, fuentes de alimentación , etc , consiste en colocar una resistencia  de bajo valor (que como hemos visto no cambia la corriente en el circuito) en serie con las principales líneas de alimentación.

Cuando la corriente supera un cierto valor, esta resistencia se sobrecalienta y el calor generado por el terminal que se propaga fundiendo el material de soldadura que tiene un sistema de resorte, como se muestra abajo. 

Hay fabricantes que ofrecen el conjunto  resistencia+fusible encapsulado a  un bajo costo como alternativa a las soluciones tradicionales para aplicaciones que requieren protección contra sobretensiones.

Existen  tres  combinaciones de serie de resistencias / fusibles de resistencia fusible:

  • FRN :Resistencias de metal / carbono, son en esencia  resistencias fusible bobinada
  • FKN :resistencias fusibles recubiertas de cemento. Ideales para aplicaciones de suministro de energía en telecomunicaciones, militares y mercados industriales que requieren un reemplazo para las resistencias de composición de carbono dentro del diseño del circuito
  • FSQ :robustas resistencias con recubrimiento de cemento y bobinado de alambre

Este tipo de componente es usada en  aplicaciones de Telecomunicaciones,electrodomésticos ,protección contra impulsos de arranque,protección contra rayos,protección de entrada para pequeñas fuentes de alimentación y cargadores de baterías,etc

En resumen  ,tanto en fuentes aisladas con características especiales, así como en otros circuitos que las requieren  debemos ser muy cuidadosos  con estas resistencias especiales , pues hay fabricantes de equipos electrónicos que usan fusistores  singulares  de este tipo y si son remplazarlas con una común de carbón, puede poner en riesgo el circuito

 

 

 Shunt

Existen otro tipo deuso de las  resistencias  de muy bajo valor óhmico y  que se pueden encontar en muchos circuitos electrónicos complejos  (especialmente en electronica de potencia) ,  y que muchas veces,  a ojos de inexpertos, aparentan estar ahí para actuar como fusibles.

 

Pero lo cierto es  que esto no es verdad  pues se colocan en circuitos complejos y grandes, básicamente  para que puedan ser usados para  mediciones de corriente y voltaje y no para actuar  como fusibles, pues las características de las resistencias Shunt, impide que se dañen o fundan ante una tensión o corriente alta, lo cual es completamente contrario al de una resistencia fusible .

 

Como vemos  en la imagen anterior , aunque parezcan otra cosa, simplemente este shunt  no es mas que  una  resistencia que se usa para medir corriente .Los tornillos grandes son para conectar los cables principales de alimentación del circuito (quedando en serie con el circuito a alimentar) y los tornillos pequeños son para conectar los hilos que van al  equipo de medida o circuito de control  correspondiente.

 

Precisamente debido a la complejidad, sofisticación , tamaño ultra reducido, costo y difícil manipulación o desarme de muchos circuitos actuales, es muy práctico poder revisar y dar diagnósticos exactos a dichos circuitos y equipos.,y para hacer algo fácil esta labor, los diseñadores e ingenieros agregan estas resistencias SHUNT, y de este modo puedan tomarse mediciones muy precisas que con algunos cálculos,  se conoce certeramente si en el circuito existe flujo de corriente adecuado, valores de voltajes correctos o si de plano ese circuito no está siendo alimentado,pero recuerden: este tipo de resistencias no actúan como fusibles.pues como todos los componentes electrónicos ,( aunque  en raras ocasiones)  puedan dañarse su función principal es ayudar a verificar y obtener mediciones precisas en equipos de alta complejidad y difícil maleabilidad por tamaños ultra reducidos o todo  lo  contrario de  demasiado grandes.

 

 

Cómo actualizar el firmware Marlin y no morir en el intento

Veremos la importancia de tener al día el firmware Marlin de nuestra impresora 3D


What is Marlin?

Marlin es un firmware de código abierto  gratuito    para la familia de impresoras 3d RepRap derivado de Sprinter y grbl  que  se convirtió en un proyecto de código abierto independiente el 12 de agosto de 2011 con su lanzamiento de Github bajo licencia  GPLv3 . Desde el principio Marlin fue construido por y para los entusiastas de RepRap para ser un controlador de impresora sencillo, confiable y adaptable que “simplemente funciona”. Como testimonio de su calidad, Marlin es utilizado por varias impresoras 3D comerciales respetadas  como  Ultimaker, Printrbot, AlephObjects (Lulzbot) y Prusa Research   etc . Ademas Marlin también es capaz de cotrolar las  famosas maquinas CNC ,asi como grabadores láser ,  pues en realidad  en vez extruir material de diferentes propiedades , como lo haría  una impresora 3d,  son variantes de estas al haberse sustituido el extrusor por un láser o una multiherramienta de fresado , corte,etc.

Una clave de la popularidad del fw  Marlin es que se ejecuta en microcontroladores Atmel AVR de 8 bits de bajo costo siendo en su version  2.x   compatible con  placas de 32 bits,  chips  que como sabemos  son el núcleo  de la popular plataforma de código abierto Arduino/Genuino (de  hecho la plataforma de referencia para Marlin es un Arduino Mega2560 con RAMPS 1.4 y Re-Arm con rampas 1.4).

Como producto comunitario, Marlin tiene como objetivo ser adaptable a tantas placas y configuraciones como sea posible, de modo  que sea  altamente  configurable, personalizable, extensible y económico tanto para aficionados como para proveedores de modo  que una implementación  de  Marlin puede ser muy escueta por ejemplo  para su uso en una impresora sin cabeza con un solo hardware modesto pero que  pueda  ampliarse sus características habilitando  según sea necesario para adaptar Marlin a los componentes añadidos.

Resumidamente estas son las principales características:

    • Código G completo con más de 150 comandos
    • Suite completa de movimiento de código G, que incluye líneas, arcos y curvas Bézier
    • Sistema de movimiento inteligente con movimiento de mirada anticipada, basado en interrupciones, aceleración lineal
    • Soporte para cinemática cartesiana, delta, SCARA y core/H-Bot
    • Control del calentador PID de bucle cerrado con ajuste automático, protección térmica, corte de seguridad
    • Soporte para hasta 5 extrusoras más un estampado calefactado
    • Interfaz de usuario del controlador LCD con más de 30 traducciones de idiomas
    • Impresión de tarjetas SD y basadas en host con inicio automático
    • Compensación de nivelación de cama: con o sin sonda de cama
    • Avance lineal para extrusión a presión
    • Soporte para extrusión volumétrica
    • Soporte para mezcla y multiextrusoras (Cíclope, Quimera, Diamante)
    • Soporte para sensores de ancho/de ejecución de filamentos
    • Temporizador de trabajo de impresión y contador de impresión

FDM

Marlin Firmware se ejecuta en la placa principal de la impresora 3D, gestionando todas las actividades en tiempo real de la máquina coordinando los calentadores, motores paso a paso, sensores, luces, pantalla LCD, botones y todo lo demás involucrado en el proceso de impresión 3D implementando  el famoso  proceso de fabricación aditiva llamado Fused Deposition Modeling (FDM), también conocido como Fused Filament Fabrication (FFF). En este proceso, un motor empuja el filamento de plástico a través de una boquilla caliente que funde y extruye el material mientras la boquilla se mueve bajo control informático. Después de varios minutos (o muchas horas) de colocar finas capas de plástico, el resultado es un objeto físico.REPORT THIS ADREPORT THIS AD

El lenguaje de control para Marlin es un derivado del código G donde los comandos de código G le dicen a una máquina que haga cosas simples como “establecer el calentador de 1 a 180o” o “mover a XY a la velocidad F.” Para imprimir un modelo con Marlin, debe convertirse en código G utilizando un programa llamado “slicer”. Dado que cada impresora es diferente, no encontrará archivos de código G para descargar; tendrá que cortarlo  este el propio usuario  obviamente con unsw de slicing 

A medida que Marlin recibe comandos de movimiento, los agrega a una cola de movimiento para ser ejecutados segun las ordenes recibidas. La “interrupción paso a paso” procesa la cola, convirtiendo los movimientos lineales en pulsos electrónicos con precisión en los motores paso a paso. Incluso a velocidades modestas Marlin necesita generar miles de pulsos paso a paso cada segundo. (p. ej., 80 pasos por mm * 50 mm/s a 4000 pasos por segundo!) Dado que la velocidad de la CPU limita la velocidad con la que la máquina puede moverse, ¡siempre estamos buscando nuevas formas de optimizar la interrupción paso a paso!

Los calentadores y sensores se gestionan en una segunda interrupción que se ejecuta a una velocidad mucho más lenta, mientras que el bucle principal controla el procesamiento de comandos, la actualización de la pantalla y los eventos del controlador. Por razones de seguridad, Marlin realmente se reiniciará si la CPU se sobrecarga demasiado para leer los sensores.

Modelado

Mientras Que Marlin solo imprime código G, la mayoría de las segmentaciones solo cortan archivos STL.

Sea lo que sea que utilice para su cadena de herramientas CAD, siempre y cuando pueda exportar un modelo sólido, una segmentación puede “cortar” en código G, y el firmware de Marlin hará todo lo posible para imprimir el resultado final.

Antes de que Marlin pueda soñar con imprimir, primero necesitará un modelo 3D. Puede descargar modelos o crear los suyos propios con uno de los muchos programas CAD gratuitos, como FreeCAD, OpenSCAD, Tinkercad, Autodesk Fusion 360, SketchUp,etc.

Se necesita un alto grado de conocimiento para modelar objetos complejos como un cráneo T-Rex,pero otros objetos pueden ser bastante simples de modelar. Para obtener ideas y probar cosas, explore sitios como Thingiverse y YouMagine e imprima cosas por diversión.

Rebanar o “slicing”

Las segmentaciones preparan un modelo 3D sólido dividiéndolo en rodajas finas (capas). En el proceso se genera el código G que indica a la impresora con minuciosidad cómo reproducir el modelo. Hay muchas segmentaciones de datos para elegir, incluyendo:

Impresión

Marlin se puede controlar por completo desde un host o en modo independiente desde una tarjeta SD. Incluso sin un controlador LCD, una impresión SD independiente todavía se puede iniciar desde un host, por lo que el equipo se puede quitar de la impresora.

 

 

Actualización de Marlin

Para la impresoras  del famoso  fabricante Geetech , esn este link ponen a nuestra disposicion  todo el fw Marlin disponible

 

 
 
Una vez descargado , lo descomprimiremos    y nos iremos a Marlin.ino para que nos lo cargue el interfaz  de Arduino  todos los archivos necesarios:  
 

 

Antes de compilarlo  elegiremos   como placa   “Arduino:1.8.10 (Windows 10)  y la  tarjeta:”Arduino Mega or Mega 2560, ATmega2560 (Mega 2560)”

Intentaremos compilar el fw antes de subirlo a la impresora

 

Como  podemos ver puede que nos lance  el error exit status 1  using typedef-name ‘fpos_t’ after ‘struct’

 

Tendremos que cambiar el literal   fpost_t  por fpost    en los siguientes ficheros , pero al ser un fw  el ide de arduino nos va a dar problemas a la hora de editar los ficheros , así que  lo mejor es editar con nuestro editor de texto favorito los siguientes ficheros

 

  • SdBaseFile.h
  • Configuration.h
  • pins.h

 

 

Una vez hecho esto , cuando  intente compilar el código actualizado  desde el IDE de Arduino,  vera que  ya no encuentra problemas  y por fin  ya podrá actualizar el firmware  en su impresora 3d. 

 

 

Fuentes de alimentación sin transformador ( parte 1 de 2)

En este post discutimos circuitos de fuente de alimentación simples y compactos sin transformador. Todos los circuitos presentados aquí se construyen utilizando la teoría de la reactancia capacitiva para reducir la tensión de red de CA de entrada. Todos los diseños presentados aquí funcionan de forma independiente sin ningún transformador, o sin transformador.


El uso de un transformador en fuentes de alimentación de CC tradicionalmente ha sido una solución  bastante común porque son muchas las ventajas que conseguimos  con  él( especialmente  en lo que se refiere al aislamiento ) , pero sin embargo, una gran desventaja de usar un transformador es que  este no se permite  que la unidad sea compacta    añadiendo bastante peso y coste  al dispositivo que lo use ,por ello las  ventajas de usar un circuito de fuente de alimentación sin transformador  se centran en que  se reduce dramáticamente el coste  , tamaño  y peso  siendo ademas  una solución  muy efectiva para aplicaciones que requieren baja potencia para su funcionamiento,  como por ejemplo aplicaciones que requieren corriente por debajo de 100 mA.

 

 

En efecto,  incluso si el requisito actual  de consumo  para su aplicación de circuito es bajo, tradicionalmente teníamos que incluir un transformador pesado y voluminoso haciendo las cosas realmente engorrosas y desordenadas, por lo que en este post vamos a intentar buscar otras soluciones  que intentan prescindir de este caro y voluminoso componente , mas en linea con los nuevos tiempos. 

Como su nombre lo define, un circuito de fuente de alimentación sin transformador,  se aleja  del concepto clásico  de las fuentes de alimentación tradicionales  que poco  a poco  van  reservándose  para  propósitos mas  específicos   donde   básicamente suele haber un voluminoso  transformador  , un rectificador   y un circuito estabilizador ,  quitando  el  transformador(  o por lo menos uno de potencia) .

Con este nuevo enfoque   también es posible proporcionar corriente continua desde  la red de CA de alta tensión   con las ventajas  en reducción   tanto de coste  y de dimensiones  , pero  conllevando  también los   inconvenientes   en relación a  posibles peligros de contactos  de AT  ya que el circuito quedara  expuesto directamente  a la red de ca.

El secreto  de  este concepto   no es otro que  el uso de condensadores de alto voltaje para bajar la corriente de CA de red al nivel inferior requerido , lo cual  puede ser adecuado para el circuito electrónico conectado a la carga. La especificaciones de voltaje de este condensador se selecciona de tal manera que su clasificación de voltaje pico RMS es mucho mayor que el pico de la tensión de red de CA con el fin de garantizar el funcionamiento seguro del condensador.  Este condensador se aplica en serie con una de las entradas de red, preferiblemente la línea de fase de la CA.

Cuando la red AC entra en este condensador, dependiendo del valor del condensador, la reactancia del condensador entra en acción y restringe la corriente de CA de la red de exceder el nivel dado, según lo especificado por el valor del condensador.   

La reactancia capacitiva se representa por  y su valor viene dado por la fórmula:

Donde  es  la  reactancia capacitiva en ohmios., es la capacidad eléctrica en faradios, = Frecuencia en hercios y  = Velocidad angular.

 

Sin embargo, aunque la corriente está restringida la tensión no lo es, por lo tanto, si se mide la salida rectificada de una fuente de alimentación sin transformador, encontrará que la tensión es igual al valor máximo de la red de CA ( alrededor de 310  voltios)  lo cual  podría ser alarmante para cualquier nuevo aficionado,pero dado que la corriente puede ser suficientemente reducidas  por el condensador, este alto voltaje pico podría ser fácilmente abordado y estabilizado mediante el uso de un diodo zener en la salida del rectificador de puente como  vamos  a ver  mas adelante.

Por cierto , no olvidad que la potencia del diodo zener debe seleccionarse adecuadamente de acuerdo con el nivel de corriente permitido del condensador.

La serigrafia  de los condensadores

Dada la importancia del condensador , vamos a  ver como entender al serigrafia de los condensadores  CERÁMICOS y poliester usados tipicamdnte para este tipo de aplicaciones

Los condensadores cerámicos de 10 picofaradios a 82 picofaradios vienen representados con dos cifras, por tanto no tienen problema para diferenciar su capacidad.

Para los valores comprendidos entre 1 y 82, los fabricantes suelen utilizar el punto, es decir, suelen escribir 1.2 – 1.5 – 1.8 o bien situar entre los dos números la letra “p” de picofaradios, es decir, 1p2 – 1p5 – 1p8 que se interpreta como 1 picofaradio y 2 decimas, 1 picofaradio y 5 decimas, etc…

Las dificultades comienzan a partir de los 100 picofaradios, ya que los fabricantes utilizas dispares identificaciones.

  • El primer sistema es el japonés: Las dos primeras cifras indican los dos primeros números de capacidad. El tercer número, al igual que las resistencias, indican el número de ceros que hay que agregar a los dos primeros.Por ejemplo:

100pF   se  muestra como 101 , 120pF  se muestra como 121  o  150 pifofaradios se muestran como  151.

1000pF  se muestra como 102, 1200   se muestra como 122 o  1500 picofaradios se muestran como 152,…

  • Otro sistema es utilizar los nanofaradios: en el caso se 1000 – 1200 – 1800 – 2200 pf se marcan 0´001 – 0´0015 – 0´0018 – 0´0022. Como no siempre hay sitio en las carcasas de los condensadores para tanto número, se elimina el primer cero y se deja el punto, .001 – .0015 – .0018 – .0022.

 

En cambio los condensadores de poliester usados para capacidades mucho mayores que los cerámicos ,además de ir identificado como un sistema que ya hemos visto, pueden marcarse con otro sistema que utiliza la letra griega “µ”. Así pues, un condensador de 100.000 picofaradios, lo podemos encontrar marcado indistintamente como 10nf – .01 – µ10.

En la practica la letra µ sustituye al “0”, por tanto µ01 equivale a 0.01 microfaradios. Entonces, si encontramos condensadores marcados con µ1 – µ47 -µ82, tendremos que leerlo como 0.1µ – 0.47µ -0.82 microfaradios.

También en los condensadores de poliéster, al valor de la capacidad, le siguen otras siglas o números que pudieran despistar. Por ejemplo 1k, se puede interpretar como 1 kilo, es decir, 1000pf, ya que la letra “K” se considera el equivalente a 1000, mientras que su capacidad es en realidad 1 microfaradio.

La sigla .1M50 se puede interpretar erróneamente como 1.5 microfaradios porque la letra “M” se considera equivalente a microfaradios, o bien en presencia del punto, 150.000 picofaradios, mientras que en realidad su capacidad es de 100.000 picofaradios.

Las letras M, K o J presentes tras el valor de la capacidad, indican la tolerancia:

  • M = tolerancia del 20%
  • K = tolerancia del 10%
  • J = tolerancia del 5 %

Tras estas letras, aparecen las cifras que indican la tensión de trabajo.Por ejemplo: .15M50 significa que el condensador tiene una capacidad de 150.000 picofaradios, que su tolerancia es M = 20% y su tensión máxima de trabajo son 50 voltios.

 

 

 

 

El circuito  

A pesar de que vemos ciertas ventajas en este enfoque  de fuente de alimentación sin trafo , también  hay algunas desventajas de un circuito de fuente de alimentación sin transformador:

  • En primer lugar, el circuito no puede producir salidas de alta corriente, pero eso no hará un problema para la mayoría de las aplicaciones .
  • Otro inconveniente que ciertamente necesita cierta consideración es que el concepto no aísla el circuito de las potencialidades peligrosas de la red de CA. Este inconveniente puede tener graves impacto para los diseños que tienen salidas terminadas o partes metálicas de metal, pero no importará para las unidades que tienen todo cubierto en una carcasa no conductora.

Por lo tanto,  debemos trabajar con este circuito con mucho cuidado para evitar cualquier contacto  con toda  la parte eléctrica pues , el circuito anterior permite que las sobre-tensiones de tensión puedan entrar a través de él, lo  que puede causar graves daños al circuito accionado y al propio circuito de suministro. Sin embargo, en el diseño de circuito de fuente de alimentación simple sin transformador propuesto este inconveniente se ha abordado razonablemente mediante la introducción de diferentes tipos de etapas de estabilización después del rectificador de puente  gracias a un diodo zenner  y un condensador electrolítico a la salida dc del puente  diodos.

En el esquema  se utiliza un condensador metalizado de alto voltaje (C1)   que protege de  sobre-tensiones instantáneas de alto voltaje  el circuito  de  utilización,  siendo el  resto del circuito  nada más que  aun típica  configuraciones de puente simple para convertir la tensión de CA escalonada a CC.

Veamos pues la solución usada mas típicamente :

 

El circuito mostrado en el diagrama anterior es un diseño clásico que se puede utilizar como una fuente de alimentación de 12 voltios DC para la mayoría de los circuitos electrónicos.

El funcionamiento de esta fuente de alimentación sin transformación se puede entender con los siguientes puntos:

  1. Cuando la entrada de red de CA está presente, el condensador C1 bloquea la entrada de la corriente de red y la restringe a un nivel inferior según lo determinado por el valor de reactancia combinada de C1  en paralelo   con R1=1Mohmio  y C1=1 microfaradio / 400V AC   .   Con estos valores  la corriente que podría circular sera de  más o menos alrededor de 50mA. Sin embargo, la tensión no está restringida, y por lo tanto la tensión de  220V completa pueda  estar en la entrada pudiendo alcanzar la etapa posterior del rectificador del puente de diodos ( de ahi  el peligro de este tipo de fuentes)  
  2. El rectificador de puente rectifica este 220V C a un más alto 310V DC, debido a la conversión RMS al pico de la forma de onda AC.
  3. Esta tensión de  310V DC se reduce instantáneamente a una tensión de bajo nivel por la siguiente etapa de diodo zener, lo que lo deriva al valor zener. Si se utiliza un zener de 12V, esto se convertirá en 12V y así sucesivamente.
  4. C2 finalmente filtra el 12V DC con ondas, en un relativamente limpio 12V DC.

 

Usando  lo siguientes valores    en el  esquema anterior Podemos obtener una tensión DC de 12V  y como máximo unos 100mA:

  • R1=1Mohmio
  • C1=105 /400   PPC   donde 105=  10 00000 pf o lo que es  lo mismo 1.000.000pF , es decir 1microF. 
  • R2=50ohmios 1Watt
  • Z1= diodo zener de 12v 1W
  • C2=10mF /250V

 

 

Un ejemplo practico

El circuito anterior de fuente de alimentación capacitiva o sin transformador podría utilizarse como un circuito de lámpara LED para iluminar circuitos LED menores de forma segura, como pequeñas tiras o luces de cadena LED.  Por ejemplo para una  tira de  65 a 68 LED de 3 Voltios en serie aproximadamente a una distancia de vamos a decir 20 cm  y  esas tiras unidas para hacer una tira mayor  dando un total de 390 – 408  ledsen la tira  final.

El circuito del controlador que se muestra a continuación es adecuado para conducir cualquier cadena de bombilla LED que tenga menos de 100 LED (para entrada de 220V), cada LED clasificado en 20mA, LED de 3.3V de 5 mm:

Aquí el condensador de entrada 0.33uF/400V decide la cantidad de corriente suministrada a la cadena LED. En este ejemplo será alrededor de 17mA que es casi correcto para la cadena LED seleccionada.

Si se utiliza un solo controlador para un mayor número de cadenas LED 60/70 similares en paralelo, entonces simplemente el valor del condensador mencionado podría aumentarse proporcionalmente para mantener una iluminación óptima en los LED.

Por lo tanto, para 2 cadenas en paralelo, el valor requerido sería 0.68uF/400V, para 3 cadenas podría reemplazarlo con un 1uF/400V. De forma similar para 4 cadenas, esto tendría que actualizarse a 1.33uF/400V, y así sucesivamente.

Importante: Aunque no he mostrado una resistencia limitadora en el diseño, sería una buena idea incluir una resistencia de 33 ohmios y 2 vatios en serie con cada cadena LED para mayor seguridad. Esto se puede insertar en cualquier lugar de la serie con las cadenas individuales.

 

 

Otro ejemplo real

 

En este otro caso vamos  a  ver una bombilla led comercial  cuyo esquema se ha obtenido por ingeniería inversa

Una vez mas    tenemos como pieza clave  a la entrada  de  AC  un condensador de poliester  ( en este caso de 225pf    , 400V  y 5% de tolerancia   con  una resistencia de 603 ohmios en paralelo antes del puente de  diodos

En este caso al  tener perfectamente delimitado el consumo de 10 leds en serie  , sabemos  que aproximadamente  al ser de 1.2V la salida en el puente de diodos deberia rondar los 12V DC y como se puede ver no es preciso  un diodo zenner a la salida del puente

 

Como truco ,por cierto   esta  bombilla si queremos alimentarla con la batería de un coche  de 12V ,  por ejemplo   bastaría conectar  dos hilos de la  batería de 12V  directamente  a la salida del puente , es decir   justo en los dos polos del condensador electrolítico  respetando lógicamente  la polaridad .

 

ADVERTENCIA: AMBOS CIRCUITOS MENCIONADOS EN ESTE ARTICULO NO SON AISLADOS DE  LA TENSIÓN DE AC  POR LO TANTO TODAS LAS SECCIONES EN EL CIRCUITO SON EXTREMADAMENTE PELIGROSAS PARA TOCARLAS CUANDO SE CONECTAN AL SUMINISTRO ELÉCTRICO…

 

 

 

Compo extender el timbre de un portero automático o el del timbre de la puerta de acceso

El conjunto HEB 004 (prolongador de llamada) y HEB B01 (timbre inalámbrico) se adaptan a la perfección a su cometido de conseguir que el timbre del portero electrónico se oiga donde sea necesario (por ejemplo en el comedor, en la terrada, en el dormitorio, etc).


Pensemos en personas de cierta edad  o simplemente personas que normalmente hacen su vida en alguna habitación de su vivienda lejos donde se encuentra el portero automático  o por ejemplo  están escuchando la radio , su reproductor musical o simplemente están viendo la TV  y  suena el zumbador del portero automático de la vivienda:en la mayoría de los casos evidentemente no lo van a oír, por lo que se hace necesario de algún modo sencillo  extender el sonido  del timbre de la cocina hasta otra sala sin necesidad de cables por ejemplo con un emisor dentro del telefonillo de la cocina y un receptor-timbre  auxiliar para situarlo  donde más la convenga .

Además, por cierto, esta solución emisor-receptor  inalambricos en cuanto a su conectividad   también es aplicable a los  timbres convencionales de entrada a la vivienda compartiendo el receptor   variando únicamente el transmisor que deberá ser diferente , básicamente porque las  tensiones de disparo son muy diferentes   (220v de los timbre de la casa  frente   a los 8v a 24v de los porteros  automáticos ) .   Precisamente esta solución  permite por ejemplo usar  melodías diferentes para  diferenciar  una llamada  de otro  en un mismo receptor 

 

La solución emisor mas  receptor

El conjunto HEB 004 (prolongador de llamada) y HEB B01 (timbre inalámbrico) se adaptan a la perfección a su cometido de conseguir que el timbre del portero electrónico se oiga donde sea necesario (por ejemplo en el comedor, en la terraza, en el dormitorio, etc).

Este es el pequeño emisor Dinuy EM HEB 004 que introduciremos en el telefonillo de la cocina.  En este caso, los cables negro y azul se conectarán en paralelo con el timbre mecánico.  El cable blanco es para la antena emisora  que lógicamente, no se conecta a ningún sitio.

Observe  como hay que prestar mucha atencion a no confundir el  emisor Dinuy EM HEB 004 que es especial para tensiones continua entre 8 y 24v DC  para usarlo  en porteros  automáticos( o videoporteros)   y el emisor Dinuy  HEB005  que es  el que conectaríamos al  timbre de acceso a nuestra vivienda y por tanto que se alimenta de la red de c.a.  de 220V

Dinuy helios - Emisor extra timbre 110-230v Dinuy helios - Emisor extra timbre 8-12v

Si abrimos cualquiera de los modulso  podemos ver un par de microinterruptores.  Por defecto pueden venir ambos abajo, en OFF, (como se ve en la foto) , pero lo interesante es ponerlo ambos en ON  si  solo tiene que configurar un extensor/emisor de timbre de portero . Se pueden configurar hasta 30 de estos emisores diferentes, para que suenen todos en el mismo timbre receptor, y que suenen en este receptor cada uno con una melodía diferente a elegir entre 32 (así se sabría desde qué origen están llamando).

 

En el dorso del emisor, con su pila de Litio de 3V tipo CR2032. De acuerdo con el fabricante, la duración de esta pila sería de cuatro años a una media de cuarenta llamadas por día, (en la realidad no es tanto).  La pila viene incluida y es muy fácil de encontrar en el mercado   sirviendo para alimentar al receptor pues realmente estamos viendo que la alimentación del zumbador es un tren de  pulsos claramente insuficientes  para alimentar  el receptor.

Bien, si la solución que vamos a instalar es para un portero automático  usaremos  el pequeño emisor Dinuy EM HEB 004 que como hemos comentado  arranca con una tensión DC comprendida entre  8 y 24V ,  Nuestro reto   pues   es introducir en el interior del  emisor  del portero  automático de la vivienda ( normalmente situado  dentro  de la cocina)   acomodando las dos únicas conexiones con las  que cuenta  F de color negro  y  N de color azul  . El tercer hilo blanco obviamente no hay que conectar a ningun sitio pues es la antena exterior.

El primer paso es pues  abrir el interior  del portero electrónico e intentar  instalar en su interior el HEB 004, poniendo los cables en el sitio adecuado. Se adjunta foto para el caso de un GOLMAR T-810.

 

Para otro modelo, la estructura interna del portero es similar, de manera que hay que conectar entre los terminales correspondientes al zumbador y al común.En la imagen de más bajo el  modelo data de hace unos cuarenta años más o menos, (en enero de 2013). Sin embargo, la solución inalámbrica de Dinuy que presentamos aquí vale igual para este modelo que para otros mucho más modernos.

La lengüeta del timbre golpea cincuenta veces a cada lado por segundo  siendo el sonido  similar a una onda cuadrada de 100 Hz con sus armónicos de 200 Hz, 400 Hz, etc. ( de hecho si tiene un instrumento musical, la altura del sonido se corresponde aproximadamente con la nota musical  entre la nota sol y la nota sol sostenido, pero algo más cerca de la nota sol.)

En todos  los caso el circuito emisor (en la cajita blanca) se conecta en paralelo con el timbre 

 

Se conectan los cables azul y negro en paralelo con el timbre mecánico, pues el cable blanco, como ya hemos dicho, es la antena exterior  siendo el rango  de hasta 200 metros sin obstáculos de por medio   y una vez colocada la carcasa, no se ve nada en el exterior

En la siguiente imagen podemos ver como es el proceso de borrado de códigos  o la selección de melodías   a nuestro gusto.

Y por cierto aunque hablamos de porteros automaticos ( antiguos o modernos ) , también se puede conectar a cualquier  videoporteros   ( por ejemplo al Godman)

 

El siguiente y último paso es poner pilas  al HEB B01 y ponerlo en marcha (botón ON). Viene configurado de fábrica para que reconozca al HEB 004. Para comprobarlo, se baja a la puerta y se aprieta la tecla de llamada, hasta que el HEB B01 reaccione. Si no es así, hay que configurarlo de una manera muy sencilla descrita en el manual de instrucciones. Se puede ajustar el volumen y el tipo de melodía (hasta un total de 32).

Cuando llaman y suena el de la cocina, éste recibe la señal y suena (una entre 32 melodías) a su vez con un sonido FUERTE, a la vez que se enciende el piloto (LED) verde.   El interruptor lateral sirve para seleccionar pilotosonido, o ambos.

 

 

El botoncito negro sirve para seleccionar una de las 32 melodías diferentes que almacena y  e el botoncito embutido que está a su lado se pincha con un clip para emparejarlo con el emisor de forma similar a como se hace con los teléfonos digitales de tecnología DECT.

Si conectamos el receptor a un vatímetro para que veáis el consumo es razonablemente bajo consumiendo en torno a unos 1,07 W aproximadamente, lo que supone tan sólo unos céntimos de euro al mes  no siendo por tanto demasiado costoso energéticamente  hablando

 

Por cierto, el transmisor y receptor extra  para timbre , si no lo encuentra en su tienda minorista también se puede localizar en Amazon  en el siguinte link para el emisor y en este otro para el receptor ( ambos hay que comprarlos por separado)