El sucesor de Netduino esta listo


Desgraciadamente los tiempos de la plataforma de Netduino pasaron a la historia, ya que fue adquirida por wildernesslabs, empresa que tras unos años de desarrollo han dado paso a Meadow , una plataforma IoT completa con seguridad de nivel de defensa que ejecuta aplicaciones estándar .NET completas en microcontroladores integrados.

Meadow realmente se ha orientado al publico profesional proporcionando una biblioteca IoT completa, plug-and-play con una enorme biblioteca de controladores periféricos, control industrial, compatibilidad con pantallas gráficas y más.Los kits para desarrolladores integrables y aptos para prototipos le permiten crear prototipos en hardware real e integrarlos directamente en los productos.Los módulos de hardware de montaje en superficie (SMT) llave en mano le permiten ir a escala de producción con opciones de conectividad modular en entornos industriales.Asismismo Meadow.Cloud le permite administrar sus dispositivos a escala en el campo.

En este post hablaremos de su ultimo diseño Meadow F7 que destaca por su potencia y muy bajo perfil y que a continuación pasaremos a comentar sus novedades mas notables

Wilderness Labs, que impulsa a los desarrolladores de .NET a incursionar en el hardware, ha anunciado un nuevo sistema en módulo (SOM) basado en su familia Meadow: el módulo Meadow F7 Core-Compute.

«Nuestros clientes tienden a crear soluciones de IoT industriales y comerciales, en muchos casos están modernizando procesos industriales e integrándose en arquitecturas SCADA», dice Bryan Costanich, cofundador y director ejecutivo de Wilderness Labs, sobre el lanzamiento. «Gran parte de la infraestructura existente con la que están trabajando es lamentablemente insegura, por lo que es gratificante poder brindarles una plataforma de desarrollo rápido que les permite usar sus habilidades existentes para desbloquear el desarrollo de hardware, al mismo tiempo que brinda seguridad de manera predeterminada.

The Meadow F7 has a new, smaller sibling. Meet the Meadow F7 Core-Compute Module. (📷: Wilderness Labs)

El Meadow F7 tiene un nuevo hermano más pequeño. Conozca el módulo de cómputo central Meadow F7. (📷: Laboratorios del desierto)

«Y al ofrecer el módulo Core-Compute», agrega Costanich, «podemos reducir significativamente el tiempo de comercialización de nuestros clientes, así como aliviar muchos de los desafíos de su cadena de suministro, dado lo difícil que es obtener un mantener estos microcontroladores, ya que estamos en la asignación directa del fabricante».

El SOM en sí se basa en el mismo diseño central que el Meadow F7 similar a un chicle de la compañía, que se actualizó a fines del año pasado como Meadow F7v2 . Hay un microcontrolador STMicroelectronics STM32F7 con un coprocesador Espressif ESP32 para conectividad Wi-Fi y Bluetooth Low Energy (BLE), 32 MB de RAM, 64 MB de memoria flash no volátil y un tamaño reducido que empaqueta todo en algo «del tamaño de un EE. cuarto de dólar», se jacta la compañía.

Aquellos que estén ansiosos por comenzar tendrán la opción de un kit de desarrollador, que incluye el módulo Core-Compute con una placa portadora que rompe los pines de entrada/salida de uso general (GPIO) de la pieza y ofrece puertos USB, puertos Ethernet duales y SD. almacenamiento de tarjetas Tanto la placa portadora como el propio módulo Core-Compute son de código abierto, señala la empresa, bajo la permisiva licencia Apache 2.0.

The $100 developer's kit includes a single module plus a carrier board for ease of access to features. (📷: Wilderness Labs)

El kit para desarrolladores de $100 incluye un solo módulo más una placa portadora para facilitar el acceso a las funciones. (📷: Laboratorios del desierto)

«El kit de desarrollo del módulo Core-Compute está pensado como un acelerador, ya que proporciona un buen diseño de referencia conocido para las diversas funciones avanzadas del módulo, de modo que la gente básicamente puede copiar y pegar el esquema en sus propios diseños», explica Costanich de la decisión de la empresa de publicar el diseño de forma permisiva. «Y si tienen necesidades específicas, también pueden tomar el diseño de referencia del módulo e integrarlo directamente en sus circuitos».

Meadow F7 Core-Compute ahora está disponible para pre-pedido a $45 , antes del envío de julio, como una muestra de ingeniería con un pedido máximo por cliente de 25 piezas a través de la tienda de Wilderness Labs, mientras que el Developer’s Kit tiene un precio de $100 con un límite de cinco por cliente. El precio por volumen del módulo solo se reducirá a $ 30 en el lanzamiento general, prometió la compañía. Mientras tanto, los archivos de diseño están disponibles en el repositorio de GitHub de la compañía .

Fuente: hackster.io

Anuncio publicitario

Integración con Arduino IoT Cloud Amazon Alexa


En la página principal de IoT Cloud,crearemos una nueva cosa y le asignaremos un nombre significativo. A continuación, seleccionaremos el tablero que vamos a usar. Si no puede ver su tablero, es posible que se haya saltado el procedimiento de introducción (consulte la sección anterior).

Una vez hecho esto, agregaremos tres propiedades a nuestra cosa. Los dos primeros representarán las lámparas,la última de la temperatura.

Aquí es lo que la vista de panel de su cosa debe verse como en este punto:

Al agregar propiedades, asegúrese de que solo utiliza los tipos enumerados en la sección Inicio inteligente, de lo contrario no funcionarán con Alexa.

The Smart Home section

La sección Smart Home

Ahora ve al Editor Web haciendo clic en el botón Editar boceto en la vista de edición de tu cosa.

 

En el Editor Web necesitamos añadir algo de código al Sketch generado automáticamente para nosotros.

Debido a que queremos leer algunos datos ambientales (a saber, la temperatura, pero no dude en agregar luz, humedad y presión si lo desea), vamos a importar la biblioteca de Arduino_MKRENV en la parte superior de nuestro boceto

#include <Arduino_MKRENV.h>

A continuación, definimos algunas constantes para los pines de placa que se utilizarán para R,G,Bandwhitelight, deesta manera el código es más legible:

#define PIN_MEETING_ROOM 5
#define PIN_LOUNGE_AREA_R 2
#define PIN_LOUNGE_AREA_B 3
#define PIN_LOUNGE_AREA_G 4

Ahora en la función de configuración podemos inicializar el Arduino MKR ENV Shield con:

if (!ENV.begin()) {  
 Serial.println("Failed to initialize MKR ENV shield!");  
 while (1);
}

De esta manera, si el escudo no está instalado, se bloqueará la ejecución de Sketch.

No es necesario especificar que tiene que ser porque vamos a utilizar para establecer la intensidad de nuestro LED blanco o los colores individuales del RGB.pinModeOUTPUTanalogWrite()

En la función loopfunction vamos a leer la temperatura cada segundo:

temperature = ENV.readTemperature();delay(1000);

Por último, es el momento de implementar nuestras funciones de devolución de llamada: las que se ejecutarán cada vez que se extraiga un cambio en el valor de una propiedadde IoT Cloud.

Tenemos que implementar y :onMeetingRoomChangeonLoungeAreaChange

void onMeetingRoomChange()
 { uint8_t brightness = map(meetingRoom.getBrightness(), 0, 100, 0, 255); 
if (meetingRoom.getSwitch())
 {   Serial.println(brightness); 
  analogWrite(PIN_MEETING_ROOM, brightness);   
  } else{ 
  analogWrite(PIN_MEETING_ROOM, LOW); 
}}

con el código anterior primero leemos el valor de brillo de la nube y lo mapeamos a un valor utilizable, luego verificamos si el interruptor de luz está encendido, si es que podemos encender la luz, usando el rojo antes. De lo contrario, apagamos la luzbrightness

El principio de trabajo es el mismo para la otra devolución de llamada:

void onLoungeAreaChange() 
{ uint8_t r, g, b;
 loungeArea.getValue().getRGB(r, g, b);
 if (loungeArea.getSwitch()) { 
  Serial.println("R:"+String(r)+" G:"+String(g)+ " B:"+String(b));   analogWrite(PIN_LOUNGE_AREA_R, r);  
 analogWrite(PIN_LOUNGE_AREA_B, b);  
 analogWrite(PIN_LOUNGE_AREA_G, g); }
 else{    
Serial.println("Lamp Off");   
 analogWrite(PIN_LOUNGE_AREA_R, 0);   
 analogWrite(PIN_LOUNGE_AREA_B, 0);    
analogWrite(PIN_LOUNGE_AREA_G, 0);
 }}

La única diferencia notable es el hecho de que en lugar del brillo justo, tenemos tres componentes diferentes: son la representación del color RGB de la luz. Por supuesto, podemos definir colores personalizados por nombre en la aplicación Alexa para que no tengamos que decir manualmente qué cantidades de rojo, verde o azul queremos establecer.

Amazon Alexa

Ahora necesitaremos la aplicación Amazon Alexa que se puede descargar desde apple App Store o Google Play Store. Una vez instalado, inicie sesión con su cuenta existente o cree una nueva.

Importante:Cuando se le pida que inicie sesión, asegúrese de utilizar las mismas credenciales utilizadas para crear su Arduino IoT Cloud Thing, de lo contrario no funcionará.

Además, tenemos que instalar la habilidad de hogar inteligente necesaria para interactuar con nuestro MKR1010. Para ello, vaya a Dispositivos (icono inferior derecho) y haga clic en YourSmartHomeSkillsy, a continuación, en EnableYourSmartHomeSkill.

Devices view

Vista de dispositivos

Ahora busca la habilidad llamada Arduino y agréguela. En el mismo momento de esta escritura, esa habilidad no está disponible en todo el mundo, pero estamos trabajando en ello y la aprobación para otros países está en curso.

Arduino Smart Home skill

Habilidad Arduino Smart Home

La pantalla debería tener este aspecto:

Devices with Arduino skill installed

Dispositivos con habilidad Arduino instalada

Ahora que la habilidad está configurada, finalmente podemos añadir nuestros dispositivos. Para hacerlo, vuelva a la pantalla Dispositivos y toque el signo + en la parte superior.

Add a new device

Añadir un nuevo dispositivo

Pulse en AddDevice, luego En otros y DiscoverDevices. El proceso de búsqueda puede tomar un poco, pero al final se le debe presentar esta pantalla:

Después de pulsar en Elegir dispositivo se le presentará la página de configuración que enumera todos los dispositivos disponibles (Se nombrarán de acuerdo con cómo nombramos nuestras propiedades en Arduino IoT Cloud).

Vamos a elegir un dispositivo y puntee SetUpDevice. Si te gusta también puedes añadirlo a un grupo (De esta manera puedes controlar y organizar tus dispositivos más fácilmente), de lo contrario omite esta parte.

Repita el proceso de configuración para cada dispositivo que desee controlar.

Por último, la vista del dispositivo debe tener este aspecto:

Finalmente podemos empezar a preguntar cosas como «Alexa, ¿cuál es la temperatura en la oficina?» o «Alexa enciende la luz en la sala de reuniones».

!Diviértase jugando con Alexa y IoT Cloud.!

 

 

6 herramientas de domótica de código abierto


El Internet de las cosas no es sólo una palabra de moda, es una realidad que se ha expandido rápidamente desde la última vez que publicamos un artículo de revisión sobre las herramientas de domótica en 2016. En 2017, el 26,5% de los hogares estadounidenses ya tenían algún tipo de tecnología para hogares inteligentes en uso; en un plazo de cinco años, se espera que ese porcentaje se duplique.

Con un número cada vez mayor de dispositivos disponibles para ayudarle a automatizar, proteger y monitorear su hogar, nunca ha sido más fácil ni más tentador probar su mano en la automatización del hogar. Ya sea que esté buscando controlar su sistema HVAC de forma remota, integrar un cine en casa, proteger su hogar de robos, incendios u otras amenazas, reducir su consumo de energía o simplemente controlar algunas luces, hay innumerables dispositivos disponibles a su disposición.

Pero al mismo tiempo, muchos usuarios se preocupan por las implicaciones de seguridad y privacidad de traer nuevos dispositivos a sus hogares, una consideración muy real y seria. Quieren controlar quién tiene acceso a los sistemas vitales que controlan sus aparatos y registran cada momento de su vida cotidiana. Y es comprensible que en una época en la que incluso su refrigerador ahora sea un dispositivo inteligente, ¿no quiere saber si su refrigerador está llamando a casa? ¿No querría sin dudar en ello de que, incluso si concede permiso a un dispositivo para comunicarse externamente, solo es accesible para aquellos que están autorizados explícitamente?

Las preocupaciones de seguridad son algunas de las muchas razones por las que el código abierto será crítico para nuestro futuro con los dispositivos conectados. Ser capaz de comprender completamente los programas que controlan su hogar significa que puede ver, y si es necesario modificar, el código fuente que se ejecuta en los propios dispositivos.

Si bien los dispositivos conectados a menudo contienen componentes propietarios, un buen primer paso para incorporar código abierto a su sistema de domótica es asegurarse de que el dispositivo que une sus dispositivos y le presenta una interfaz para ellos (el «hub») está abierto Fuente. Afortunadamente, hay muchas opciones por ahí, con opciones para ejecutar en todo, desde su computadora personal siempre activa a una Raspberry Pi.

Estos son solo algunos ejemplos de plataformas disponibles

 

 

Calaos

Calaos es una solución completa para domótica. Primero fue un sistema desarrollado por una empresa francesa del mismo nombre. Cuando la compañía fue cerrada durante 2013, toda la base de código fue de código abierto y lanzado como GPL. Una pequeña comunidad comenzó en torno al proyecto para continuar el desarrollo. La comunidad está creciendo cada día, el wiki y el foro están aquí para compartir información y buenas idea

Calaos está diseñado como una plataforma de domótica de pila completa, que incluye una aplicación de servidor, interfaz de pantalla táctil, aplicación web, aplicaciones móviles nativas para iOS y Android, y un sistema operativo Linux preconfigurado para funcionar debajo. El proyecto Calaos surgió de una empresa francesa, por lo que sus foros de apoyo están principalmente en francés, aunque la mayor parte del material instructivo y la documentación han sido traducidos al inglés.

Algunos ejemplos de lo que se puede hacer:

  • Bienvenido a casa! Después de un largo día de trabajo, ¡relájese! Cuando se vaya a casa, Calaos preparará un ambiente dulce. Las persianas están cerradas, las luces atenuadas, la música favorita comienza a reproducirse.
  • Controla su música.Comparta toda Su música en toda la casa. No mire donde lo tiene, no  transfieras más, simplemente presionE play en la habitación que debe escuchar Sus listas de reproducción favoritas.
  • Crear escenario: Todos los artículos vinculados a Calaos se pueden automatizar por tiempo, ambiente o estado de ánimo. Su hogar se vuelve inteligente a partir de hoy. La creación de un escenario se realiza en unos pocos clics en la pantalla táctil.
  • Configurar :Tiene herramientas escritas que le permiten configurar fácilmente su casa directamente desde su computadora. ¿Desea agregar más elementos a su sistema? Sólo tiene que instalar Calaos Installer.

Calaos está licenciado bajo la versión 3 de la GPL y puede ver su fuente en GitHub.

 

Domoticz

Domoticz es un sistema domótico con una biblioteca bastante amplia de dispositivos compatibles, que van desde estaciones meteorológicas hasta detectores de humo y controles remotos, y un gran número de integraciones adicionales de terceros se documentan en el sitio web del proyecto. Está diseñado con un front-end HTML5, por lo que es accesible desde los navegadores de escritorio y la mayoría de los teléfonos inteligentes modernos, y es ligero, se ejecuta en muchos dispositivos de baja potencia como raspberry Pi.

 

Es libre  y Open Source   y ademas esta diseñado para funcionar en varios sistemas operativos(es compatible con dispositivos Linux ,windows   embebidos ). La interfaz de usuario es un front-end web HTML5 escalable y se adapta automáticamente para dispositivos de escritorio y móviles.
Es compatible con todos los navegadores aunque  para los usuarios de Internet Explorer se necesita la versión 10+.

Algunas características destacables:

  • Hardware: Transceptor RFXCOM, Z-Wave, P1 Smart Meter, YouLess Meter, Contadores de pulsos, 1-Wire, EnOcean, y mucho más….
  • Registro extendido
  • Notificaciones push de iPhone / Android
  • Sensores/interruptores de aprendizaje automático
  • Creación manual de códigos de conmutación
  • Compartir / Usar dispositivos externos
  • Diseñado para la simplicidad

Domoticz está escrito principalmente en C/C++ bajo la GPLv3, y su código fuente se puede examinar en GitHub.

 

Home Assistant

Home Assistant es una plataforma de domótica de código abierto diseñada para implementarse fácilmente en casi cualquier máquina que pueda ejecutar Python 3, desde una Raspberry Pi hasta un dispositivo de almacenamiento conectado a la red (NAS), e incluso se suministra con un contenedor Docker para realizar la implementación en otros sistemas una brisa. Se integra con un gran número de ofertas comerciales y de código abierto, lo que le permite vincular, por ejemplo, IFTTT, información meteorológica o su dispositivo Amazon Echo, para controlar el hardware desde bloqueos hasta luces.

 

Home Assistant se publica bajo una licencia mIT,y su fuente se puede descargar desde GitHub.

 

 

 

Misterhouse

MisterHouse ha ganado mucho terreno desde 2016, cuando era «otra opción a considerar» en esta lista. Utiliza scripts Perl para monitorear cualquier cosa que pueda ser consultada por un ordenador o controlar cualquier cosa capaz de ser controlada a distancia.

Responde a los comandos de voz, hora del día, clima, ubicación y otros eventos para encender las luces, despertarte, grabar tu programa de televisión favorito, anunciar a las personas que llaman, advertir que tu puerta principal está abierta, reportar cuánto tiempo ha estado tu hijo en línea, te dicen si tu el coche de su hija está acelerando, y mucho más. Se ejecuta en ordenadores Linux, macOS y Windows y puede leer/escribir desde una amplia variedad de dispositivos, incluidos sistemas de seguridad, estaciones meteorológicas, identificador de llamadas, enrutadores, sistemas de ubicación de vehículos y más

MisterHouse está licenciado bajo la GPLv2 y puede ver su código fuente en GitHub.

OpenHAB

OpenHAB (abreviatura de Open Home Automation Bus) es una de las herramientas de domótica más conocidas entre los entusiastas del código abierto, con una gran comunidad de usuarios y un buen número de dispositivos e integraciones compatibles.

Escrito en Java, openHAB es portátil en la mayoría de los principales sistemas operativos e incluso funciona muy bien en Raspberry Pi. Compatible con cientos de dispositivos, openHAB está diseñado para ser independiente del dispositivo, al tiempo que facilita a los desarrolladores agregar sus propios dispositivos o plugins al sistema. OpenHAB también incluye aplicaciones iOS y Android para el control de dispositivos, así como herramientas de diseño para que pueda crear su propia interfaz de usuario para su sistema doméstico.

Con su arquitectura conectable openHAB soporta más de 200 diferentes tecnologías y sistemas y miles de dispositivos permitiendo además  automatice con facilidad . POr ejemplo puede utilizar un motor potente y flexible para diseñar reglas,con disparadores basados en tiempo y eventos, scripts, acciones, notificaciones y control de voz.

El sw puede  correr  en todas partes :Linux, macOS, Windows, Raspberry Pi, PINE64, Docker, Synology… accediendo a él con aplicaciones para la web, iOS, Android y otros.

Por cierto openHAB se ejecuta en su hardware, no requiere ningún servicio en la nube para funcionar, mantiene sus datos de forma privada en casa y habla directamente con sus dispositivos locales siempre que sea posible. En el centro de sua filosofía es que siempre el usuario tiene el control  aunque es amigable con la nube pues las integraciones están disponibles para las plataformas de hogar inteligente basadas en la nube más populares, como Google Assistant, Amazon Alexa, Apple HomeKit e IFTTT. Utilice el conector openHAB Cloud con el servicio de myopenhab.org gratuito o hospede el suyo propio

 
Una opción deseable es probar  la imagen openHAB  proporcionada para Raspberry Pi, una opción de hardware ampliamente utilizada y recomendada. Flashee una tarjeta SD, arranque y disfrute de su configuración openHAB actualizada con ajustes del sistema y software convenientemente preconfigurados como Samba, Grafana y Eclipse Mosquitto.

Puede encontrar el código fuente de openHAB en GitHub con licencia bajo la licencia pública Eclipse.

OpenMotics

OpenMotics es un sistema domótico con hardware y software bajo licencias de código abierto. Está diseñado para proporcionar un sistema completo para controlar dispositivos, en lugar de unir muchos dispositivos de diferentes proveedores. A diferencia de muchos de los otros sistemas diseñados principalmente para un fácil reacondicionamiento, OpenMotics se centra en una solución cableada. 

La plataforma de OpenMotics combina hardware de código abierto asequible con soluciones modernas en la nube. La plataforma intuitiva aprende de su comportamiento y puede expandirse a sus necesidades personales suscribiéndose a servicios adicionales.

Tambien openMotics  esta disponible para profesionales :Smart Homes ofrece beneficios significativos durante las fases de planificación, diseño y construcción de cualquier nuevo hogar, oficina u otro edificio.

El código fuente de OpenMotics está licenciado bajo la GPLv2 y está disponible para su descarga en GitHub.

 

 


Estas no son las únicas opciones disponibles, por supuesto. Muchos entusiastas de la domótica van con una solución diferente, o incluso deciden rodar la suya propia. Otros usuarios eligen utilizar dispositivos domésticos inteligentes individuales sin integrarlos en un único sistema integral.

Si las soluciones anteriores no satisfacen sus necesidades, estas son algunas alternativas potenciales a tener en cuenta:

  • EventGhost es una herramienta de automatización de cine en casa de código abierto (GPL v2) que funciona solo en equipos Microsoft Windows. Permite a los usuarios controlar los EQUIPOS multimedia y el hardware adjunto mediante el uso de plugins que activan macros o mediante la escritura de scripts de Python personalizados.
  • ioBroker es una plataforma IoT basada en JavaScript que puede controlar luces, cerraduras, termostatos, medios, webcams y más. Se ejecutará en cualquier hardware que ejecute Node.js, incluidos Windows, Linux y macOS, y sea de código abierto bajo la licencia MIT.
  • Jeedom es una plataforma de domótica compuesta por software de código abierto (GPL v2) para controlar luces, cerraduras, medios y más. Incluye una aplicación móvil (Android e iOS) y funciona en PC Linux; la compañía también vende centros que, según según él, proporcionan una solución lista para usar para configurar la automatización del hogar.
  • LinuxMCE se presenta a sí mismo como el «pegamento digital» entre sus medios y todos sus aparatos eléctricos.» Se ejecuta en Linux (incluyendo Raspberry Pi), se lanza bajo la licenciade código abierto Pluto, y se puede utilizar para la seguridad del hogar, telecomunicaciones (VoIP y correo de voz), equipos audiovisuales, domótica, y, de forma única, para jugar videojuegos.
  • OpenNetHome,al igual que las otras soluciones de esta categoría, es un software de código abierto para el control de luces, alarmas, electrodomésticos, etc. Se basa en Java y Apache Maven, funciona en Windows, macOS y Linux, incluyendo Raspberry Pi, y se lanza bajo GPLv3.
  • Smarthomatic es un marco de domótica de código abierto que se concentra en dispositivos de hardware y software, en lugar de interfaces de usuario. Licenciado bajo GPLv3,se utiliza para cosas como controlar luces, electrodomésticos y humedad del aire, medir la temperatura ambiente y recordar regar sus plantas.

 

 

 

 

 

Ahora es su turno: ¿Ya tiene un sistema de domótica de código abierto en su lugar? O tal vez usted está investigando las opciones para crear uno. ¿Qué consejo tendría para un recién llegado a la domótica y qué sistema o sistemas recomendaría?

Envío de datos a la nube de Azure desde ESP8266 usando DHT11 o DHT22


 DHT11 y  DHT22 son dos modelos de una misma familia de sensores, que permiten realizar la medición simultánea de temperatura y humedad usando ademas un único  hilo para comunicar los datos vía serie, para lo cual  ambos  disponen de un procesador interno que realiza el proceso de medición, proporcionando la medición mediante una señal digital, por lo que resulta muy sencillo obtener la medición desde un microprocesador como Arduino o ESP8266.

Ambos son similares ( DHT11 presenta una carcasa azul  , mientras que el sensor DHT22  es blanco)  compartiendo además los mismos pines  disponiendo de  4 patillas, de las cuales usaremos sólo 3: Vcc, Output y GND.  Como peculiaridad ,la  salida la conectaremos a una entrada digital  , pero necesitaremos poner una resistencia de 10K entre Vcc y el Pin Output.

El  DHT11  puede medir temperaturas entre 0 a 50, con una precisión de 2ºC, humedad entre 20 a 80%, con precisión del 5% y con una a frecuencia de muestreo de 1 muestras por segundo (1 Hz)

En clara superioridad  con el dHT11 , el modelo DHT22 tiene unas características mucho más profesionales.
  • Medición de temperatura entre -40 a 125, con una precisión de 0.5ºC
  • Medición de humedad entre 0 a 100%, con precisión del 2-5%.
  • Frecuencia de muestreo de 2 muestras por segundo (2 Hz)

Destacar que este tipo de  sensores de temperatura  ( y, aún más, los sensores de humedad) , son sensores con elevada inercia y tiempos de respuesta elevados. Es decir, al “lentos” para reflejar los cambios en la medición.

 

Conectar el DHT11   o el DHT22  a  un Arduino o ESP82366  es sencillo, simplemente alimentamos desde Arduino al sensor a través de los pines GND y Vcc del mismo. Por otro lado, conectamos la salida Output a una entrada digital de Arduino. Necesitaremos poner una resistencia de 10K entre Vcc y el Pin Output.

El esquema eléctrico queda como la siguiente imagen

arduino-dht11-dht22-esquema

Los sensores DHT11 y DHT22 usan su propio sistema de comunicación bidireccional mediante un único hilo , empleando señales temporizadas por lo que en general, lo normal es que empleemos una librería existente para simplificar el proceso.Por ejemplo podemos usar la librería de Adafruit disponible en este enlace.

Una vez  descargada e instalada  la librería  por ejemplo podemos capturar la información de un sensor DHT11  con este código :

#include «DHT.h»
#define DHTTYPE DHT11   // DHT 11
const int DHTPin = 5;     // conexion del pin digital
 
DHT dht(DHTPin, DHTTYPE);
 
void setup() {
   Serial.begin(9600);
   Serial.println(«DHTxx test!»);
 
   dht.begin();
}
 
void loop() {
   //esperar unos 2000ms
   delay(2000);
 
   // Leyendo temperatura  o humedad  toma  sobre unos 250 ms
   float h = dht.readHumidity();
   float t = dht.readTemperature();
 
   if (isnan(h) || isnan(t)) {
      Serial.println(«Fallo al leer el sensor DHT «);
      return;
   }
  
   Serial.print(«Humedad: «);
   Serial.print(h);
   Serial.print(» %\t»);
   Serial.print(«Temperatura: «);
   Serial.print(t);
   Serial.print(» *C «);
}

 

 

Conexión de un DHTXX a un  ESP8266 

Para resultados mas profesionales puede usar un DHT22 ( es el usado en el ejemplo ) , pero  como hemos comentado el DHT11  para fines experimentales  es también aceptable .

Las  simples conexiones  la puede utilizar  una  placa de pruebas, y  cables de puente o directamente con cablecillos  para realizar las conexiones de la siguiente manera:

referencia de conexiones

 

Para los pines  del sensor, usaremos el siguiente cableado:

Start (Sensor) Fin (Junta) Color del cable
VDD (Pin 27F) 3V (Pin 8A) cable rojo
DATOS (Pin 28F) GPIO 2 (Pin 9A) Cable blanco
GND (Pin 30F) GND (Pin 7J) Cable negro

 

 

Por  ultimo utilice un cable USB Micro USB a Tipo A para conectar Sparkfun ESP8266 Thing Dev a su ordenador 

Crear un centro de IoT

  1. Inicie sesión en el portal de Azure .
  2. Seleccione Crear un recurso > Internet de las cosas > IoT Hub .Captura de pantalla de la navegación del portal Azure al centro de IoT
  3. En el panel de hub de IoT , ingrese la siguiente información para su hub de IoT:
    • Nombre : crea un nombre para tu hub de IoT. Si el nombre que ingresa es válido, aparece una marca de verificación verde.

     

    • Nivel de precios y escala : para este tutorial, seleccione el nivel F1 – Gratuito .
    • Grupo de recursos : cree un grupo de recursos para alojar el concentrador de IoT o use uno existente.
    • Ubicación : Seleccione la ubicación más cercana para usted.
    • Fijar al tablero : marque esta opción para acceder fácilmente a su hub de IoT desde el tablero.Ventana del concentrador IoT
  4. Haga clic en Crear . Su hub de IoT puede tardar unos minutos en crearse. Puede controlar el progreso en el panel de notificaciones .

Ahora que ha creado un concentrador de IoT, ubique la información importante que usa para conectar dispositivos y aplicaciones a su hub de IoT.

  1. Después de crear su concentrador de IoT, haga clic en él en el tablero. Tome nota del nombre de host y luego haga clic en Directivas de acceso compartido .Obtenga el nombre de host de su centro de IoT
  2. En el panel Políticas de acceso compartido , haga clic en la política iothubowner , y luego copie y anote la cadena de conexión de su centro IoT.

Obtenga su cadena de conexión del hub de IoT

Registre un dispositivo en el hub de IoT para su dispositivo

  1. En el portal de Azure , abra su concentrador de IoT.
  2. Haga clic en Explorador de dispositivos  .
  3. En el panel Explorador de dispositivos, haga clic en Agregar para agregar un dispositivo a su centro de IdC. 
  4. Luego ingrese la ID del nuevo dispositivo en:ID del dispositivo ( Debe saber que los  ID de dispositivo son sensibles a mayúsculas y minúsculas)
  5. Tipo de autenticación : Seleccione la clave simétrica 
  6. Generar claves automáticamente : seleccione esta casilla de verificación.
  7. Conecte el dispositivo al Hub de IoT : haga clic en Habilitar .Agregue un dispositivo en el Explorador de dispositivos de su centro de IoT
  8. Haga clic en Guardar .
  9. Después de que se crea el dispositivo, abra el dispositivo en el panel Explorador de dispositivos .
  10. Tome nota de la clave principal de la cadena de conexión.Obtener la cadena de conexión del dispositivo

 

Reúna los datos del sensor y envíelos a su centro de IoT

En el ejemplo  se  implementa y ejecuta una aplicación de muestra en Sparkfun ESP8266 Thing Dev. La aplicación parpadea el LED en Sparkfun ESP8266 Thing Dev y envía los datos de temperatura y humedad recopilados del sensor DHT22 a su hub de IoT.

Obtenga la aplicación de muestra de GitHub

La aplicación de ejemplo está alojada en GitHub. Clone el repositorio de muestras que contiene la aplicación de muestra de GitHub. Para clonar el repositorio de muestras, siga estos pasos:

  1. Descargue e instale el programa Git ,por ejemplo desde https://gitforwindows.org/git
  2. Abra un símbolo del sistema o una ventana de terminal.
  3. Vaya a una carpeta donde desea que se almacene la aplicación de muestra.
  4. Ejecute el  Git
  5. Ahora desde el interfaz del Git en modo comando ejecute
    git clone https://github.com/Azure-Samples/iot-hub-SparkFun-ThingDev-client-app.gitclonado.PNG

 

Instale ahora el paquete para  el ESP8266 en Arduino IDE:

  1. Abra la carpeta donde se almacena la aplicación de muestra que descargo desde el comando git clone.
  2. Abra el archivo app.ino en la carpeta de la aplicación en Arduino IDE.
  3. En el IDE de Arduino, haga clic en Archivo > Preferencias .
  4. En el cuadro de diálogo Preferencias , haga clic en el icono que se encuentra junto al cuadro de texto Direcciones URL del administrador de tarjetas adicionales .
  5. En la ventana emergente, ingrese la siguiente URL http://arduino.esp8266.com/stable/package_esp8266com_index.json                                    señalar a un paquete url en arduino ide
  6. Haga  luego haga clic en Aceptar .
  7. En el cuadro de diálogo Preferencias , haga clic en Aceptar .
  8. Haga clic en Herramientas > Placa > Administrador de placas , y luego busque esp8266. Se debe instalar ESP8266 con una versión de 2.2.0 o posterior.En caso del ESP12E DEVKIT V2, seleccione NodeMCU 1.0(ESP-12E Module)

Instalación de  las bibliotecas necesarias

  1. En el IDE de Arduino, haga clic en Programa > Incluir libreria> Gestionar librerias .
  2. Busque los siguientes nombres de biblioteca una por una:
    • AzureIoTHub
    • AzureIoTUtility
    • AzureIoTProtocol_MQTT
    • ArduinoJson
    • DHT sensor library 
    • Adafruit Unified Sensor
  3. Para cada una de las bibliotecas que encuentre, haga clic en Instalar .

Implementar la aplicación de muestra  para ESP8266 

  1. En el IDE de Arduino, haga clic en Herramienta > Puerto , y luego haga clic en el puerto serie que le presente el interfaz de Arduino  para el  ESP8266(por ejemplo «COM3» )
  2. Haga clic en Programa > Subir para crear e implementar la aplicación de muestra en  ESP8266 .

Ingrese sus credenciales

Después de que la carga se complete con éxito, siga los pasos para ingresar sus credenciales:

  1. En el IDE de Arduino, haga clic en Herramientas > Monitor en serie .
  2. En la ventana del monitor de serie, observe las dos listas desplegables en la esquina inferior derecha.
  3. Seleccione Sin final de línea para la lista desplegable de la izquierda.
  4. Seleccione 115200 baudios para la lista desplegable de la derecha.
  5. En el cuadro de entrada ubicado en la parte superior de la ventana del monitor serie, ingrese la siguiente información si se le solicita que los proporcione y luego haga clic en Enviar .
    • Wi-Fi SSID
    • Contraseña de wifi
    • Cadena de conexión del dispositivo

 Nota:La información de credenciales se almacena en la EEPROM del ESP8266 Si hace clic en el botón de reinicio en la placa ESP8266 , la aplicación de muestra le pregunta si desea borrar la información. Ingrese Y para borrar la información y se le pedirá que proporcione la información nuevamente.

Verifique que la aplicación de muestra se esté ejecutando correctamente

Si ve la siguiente salida de la ventana del monitor serie y el LED parpadeante en  la placa ESP8266  la aplicación de muestra se está ejecutando correctamente.

com33.png

 

 

Nota:Si está utilizando otras placas ESP8266, puede seguir estos pasos para conectarlo a su hub de IoT. Según la placa ESP8266 que esté utilizando, es posible que necesite reconfigurar el LED_PIN . Por ejemplo, si está usando ESP8266 de AI-Thinker, puede cambiarlo de 0 a 2 .

 

 

 

Fuente  https://docs.microsoft.com/en-gb/azure/iot-hub/iot-hub-sparkfun-esp8266-thing-dev-get-started

Control de GPIO de Raspberry Pi sobre MQTT usando ThingsBoard


ThingsBoard es una plataforma de servidor de código abierto que le permite monitorear y controlar dispositivos IoT. Es gratuita tanto para uso personal como comercial y puede implementarlo en cualquier lugar.

ThingsBoard es pues  una plataforma de IoT de código abierto que permite el desarrollo rápido, la gestión y la ampliación de los proyectos de IoT  de modo  que  puede:

  • Crear dispositivos de provisión y control.
  • Recopilar y visualizad datos de dispositivos.
  • Analizea datos del dispositivo y disparae alarmas.
  • Entregar datos del dispositivo a otros sistemas.
  • Habilitar las funciones específicas de casos de uso usando reglas y complementos personalizables.
  • Proporcionar la nube IoT lista para usar o ser la solución en las instalaciones que habilitará la infraestructura del lado del servidor para sus aplicaciones de IoT.

ThingsBoard es escalable pues es una plataforma escalable horizontalmente y compilación utilizando tecnologías líderes de código abierto, tolerante a errores  pues  no hay punto único de fallo ya que  cada nodo en el clúster es idéntico,es personalizable pues permite agregar nueva funcionalidad es fácil con widgets personalizables, motor de reglas y sistema de complementos, es s duradero  y es robusto y eficiente  pues  el nodo de servidor único puede manejar decenas o incluso cientos de miles de dispositivos según el caso de uso (un cluster ThingsBoard puede manejar millones de dispositivos). Asimismo también puede conectar dispositivos existentes a la plataforma usando ThingsBoard Gateway .

 

ThingsBoard le permite enviar llamadas de procedimiento remoto (RPC) desde aplicaciones del servidor a dispositivos y viceversa. Básicamente, esta característica le permite enviar comandos a dispositivos y recibir resultados de ejecución de comandos. Similarmente, puede ejecutar la solicitud desde el dispositivo, aplicar algunos cálculos u otra lógica del lado del servidor en el back-end y enviar la respuesta de regreso al dispositivo. Esta guía cubre las capacidades de ThingsBoard RPC. Después de leer esta guía, se familiarizará con los siguientes temas:

  • Tipos de llamadas RPC
  • Casos de uso de RPC básicos
  • Las API RPC del lado del cliente y del lado del servidor
  • Widgets RPC

Tipos de llamadas RPC

La característica de RPC de Thinsboard se puede dividir en dos tipos según el originador: llamadas RPC originadas en el dispositivo y originadas en el servidor. Para utilizar nombres más conocidos, denominaremos llamadas RPC originadas en el dispositivo como llamadas RPC del lado del cliente y llamadas RPC originadas en el servidor como llamadas RPC del lado del servidor .

imagen

Las llamadas RPC del lado del servidor se pueden dividir en un solo sentido y bidireccional:

  • La solicitud RPC unidireccional se envía al dispositivo sin confirmación de entrega y, obviamente, no proporciona ninguna respuesta del dispositivo. La llamada RPC puede fallar solo si no hay una conexión activa con el dispositivo objetivo dentro de un período de tiempo de espera configurable.imagen
  • La solicitud de RPC bidireccional se envía al dispositivo y espera recibir una respuesta del dispositivo dentro del tiempo de espera determinado. La solicitud del lado del servidor está bloqueada hasta que el dispositivo de destino responda a la solicitud.imagen

Vamos  a  ver una  aplicación de ejemplo    que  permitirá controlar GPIO de su dispositivo Raspberry Pi utilizando la interfaz de usuario web de ThingsBoard y observaremos el control de GPIO utilizando  un Led conectado a uno de los pines. El propósito de esta aplicación es demostrar las capacidades de ThingsBoard RPC .

Dispositivo RPC API

ThingsBoard está diseñado para ejecutarse y utilizarse en la mayoría del hardware, desde Raspberry PI local hasta potentes servidores en la nube. Las formas de configurar un cluster de ThingsBoard soporta los  siguientes sistemas operativos:

  • Windows : instale el clúster Thingboard en cualquier máquina preexistente que ejecute Windows.
  • Linux (Ubuntu y CentOS) : instala el clúster Thingboard en cualquier máquina preexistente que ejecute Linux.
  • Raspberry Pi 3 Modelo B (Raspbian Jessie) : instala el servidor Cassandra y Thingboard en una Raspberry Pi 3 modelo B.
  • Docker (Linux o Mac OS) : instala un clúster ThingsBoard de un nodo en tu máquina Linux o Mac OS para su desarrollo y prueba.
  • Docker (Windows) : instala un clúster ThingsBoard de un nodo en tu máquina con Windows para su desarrollo y prueba.
  • Instalación de AWC EC2 utilizando AMI : instale un clúster ThingsBoard de nodo único con AWI AMI público.

Asimismo , sin instalar nada ,también si esta es su primera experiencia con la plataforma, puede usar una demostración en vivo para ahorrar tiempo en la instalación (vea la página de documentación de demostración en vivo para más detalles).Ejempl

 

Ejemplo  control de un  led

En  este ejemplo  «hello world»   orientado a controlar un led usaremos  una   Raspberry Pi con una aplicación simple escrita en Python , que se conectará al servidor ThingsBoard a través de MQTT y escuchará los comandos RPC.

El estado GPIO actual y el widget de control GPIO se visualizaran utilizando el panel de control incorporado personalizable.

Por tanto tendrá que tener el servidor ThingsBoard en funcionamiento. Use Live Demo o la Guía de instalación para instalar ThingsBoard.

Lista de hardware y pinouts

  • Raspberry Pi : utilizaremos Raspberry Pi 3 Model B pero puede usar cualquier otro modelo.
  • Led y resistencia correspondiente
  • 2 cables de puente hembra a macho

Dado que nuestra aplicación permitirá controlar el estado de todos los pines GPIO disponibles, recomendamos conectar algunos LED a esos pines para mayor visibilidad. Puede usar culquier  instrucción básica u otra para cablear algunos LED.

Instalación de la biblioteca MQTT

El siguiente comando instalará la biblioteca MQTT Python:

sudo pip install paho-mqtt

La aplicación consiste en un único script python que está bien documentado. Tendrá que modificar la constante THINGSBOARD_HOST para que coincida con su dirección IP de instalación del servidor ThingsBoard o nombre de host. Utilice «demo.thingsboard.io» si está utilizando el servidor de demostración en vivo .

El valor de la constante ACCESS_TOKEN corresponde al dispositivo Raspberry Pi de muestra en datos de demostración preaprovisionados . Si está utilizando un servidor de demostración en vivo , obtenga el token de acceso para el «Dispositivo de demostración Raspberry Pi preaprovisionado».

 

resources/gpio.py 
import paho.mqtt.client as mqtt
import RPi.GPIO as GPIO
import json

THINGSBOARD_HOST = 'YOUR_THINGSBOARD_IP_OR_HOSTNAME'
ACCESS_TOKEN = 'RASPBERRY_PI_DEMO_TOKEN'

# We assume that all GPIOs are LOW
gpio_state = {7: False, 11: False, 12: False, 13: False, 15: False, 16: False, 18: False, 22: False, 29: False,
              31: False, 32: False, 33: False, 35: False, 36: False, 37: False, 38: False, 40: False}


# The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, rc, *extra_params):
    print('Connected with result code ' + str(rc))
    # Subscribing to receive RPC requests
    client.subscribe('v1/devices/me/rpc/request/+')
    # Sending current GPIO status
    client.publish('v1/devices/me/attributes', get_gpio_status(), 1)


# The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):
    print 'Topic: ' + msg.topic + '\nMessage: ' + str(msg.payload)
    # Decode JSON request
    data = json.loads(msg.payload)
    # Check request method
    if data['method'] == 'getGpioStatus':
        # Reply with GPIO status
        client.publish(msg.topic.replace('request', 'response'), get_gpio_status(), 1)
    elif data['method'] == 'setGpioStatus':
        # Update GPIO status and reply
        set_gpio_status(data['params']['pin'], data['params']['enabled'])
        client.publish(msg.topic.replace('request', 'response'), get_gpio_status(), 1)
        client.publish('v1/devices/me/attributes', get_gpio_status(), 1)


def get_gpio_status():
    # Encode GPIOs state to json
    return json.dumps(gpio_state)


def set_gpio_status(pin, status):
    # Output GPIOs state
    GPIO.output(pin, GPIO.HIGH if status else GPIO.LOW)
    # Update GPIOs state
    gpio_state[pin] = status


# Using board GPIO layout
GPIO.setmode(GPIO.BOARD)
for pin in gpio_state:
    # Set output mode for all GPIO pins
    GPIO.setup(pin, GPIO.OUT)

client = mqtt.Client()
# Register connect callback
client.on_connect = on_connect
# Registed publish message callback
client.on_message = on_message
# Set access token
client.username_pw_set(ACCESS_TOKEN)
# Connect to ThingsBoard using default MQTT port and 60 seconds keepalive interval
client.connect(THINGSBOARD_HOST, 1883, 60)

try:
    client.loop_forever()
except KeyboardInterrupt:
    GPIO.cleanup()

Este simple comando lanzará la aplicación:   python gpio.py

Visualización de datos

Para simplificar esta guía, en  «Raspberry PI GPIO Demo Dashboard» vemos los datos de demostración que están disponibles en cada instalación Thingboard. Aún puede modificar este panel: sintonizar, agregar, eliminar widgets, etc. Puede acceder a este panel iniciando sesión como administrador de inquilinos.

Utilizar en caso de instalación local de ThingsBoard.

 

Una vez que haya iniciado sesión, abra la página Dashboards-> Raspberry PI GPIO Demo Dashboard . Debe observar el tablero de demostración con el panel de control y estado de GPIO para su dispositivo. Ahora puede cambiar el estado de los GPIO usando el panel de control. Como resultado, verá que el estado de los LED cambia en el dispositivo y en el panel de estado.

A continuación se muestra la captura de pantalla del «Tablero Demo de Raspberry PI GPIO».

imagen

 

 

El vídeo a continuación  resume  todo el proceso  citado llegando  hasta el resultado final :.

Primeros pasos con ESP8266


Node MCU es una plataforma para el desarrollo de proyectos IoT que integra el famoso chip ESP8266, el cual se ha extendido enormemente debido a su facilidad para desarrollar proyectos open source  que pueden ademas  pueden   involucrar el IoT  .

Esta placa  destaca  porque integra capacidades de comunicación via WiFi , conteniendo en su interior  un microprocesador que puede ser programado fácilmente usando el  conocido lenguaje de programación Lua o bien vía Arduino IDE.

Obviamente ante todo no podemos perder de vista su bajisimo precio ( menos de 10€  ) comparados con otras opciones , pues no debemos olvidar  que incluye  el modulo wifi integrado  y un bus GPIO para conectar dispositivos de E/S.
Node MCU es una plataforma de desarrollo permite un prototipado rápido, para una vez satisfechos con el resultado, portar el desarrollo a un sistema final con un chip ESP8266 como pieza central.

A la hora de programar nuevas funciones, si optamos por utilizar Lua, dispondremos de un sistema simple con buena comunidad de usuarios. En cambio programar con el sistema Arduino nos aporta un fantástico IDE y un sinfin de manuales y ejemplos de desarrollo.

Este modulo es Ideal como una solución independiente en lugar de Arduino además de Wi-Fi  integrado siendo fácil de programar a través del IDE de Arduino (como vamos a ver ) , al igual que un Arduino.
Todos los periféricos con bus I2C puede unirse,por ejemplo Pantallas OLED, pantallas LCD, temperatura, presión, sensores de humedad pueden ser conectados en paralelo. También se puede conectar múltiples DS18B20

Sin embargo, sólo hay una entrada analógica y salida y las pantallas táctiles no se pueden conectar con ella.

 

¿Se pregunta cómo empezar a  desarrollar código  con  su económico ESP8266 ?

Los pasos  a seguir   para conectar un ESP8266     son los siguientes:

  •  Instalación del IDE de Arduino .Si aun no lo tiene instalado ,se puede hacer  desde aqui
  • Instalación  del paquete de la placa ESP8266 en Arduino IDE  siguiendo las instrucciones del sitio : https://github.com/esp8266/Arduino

esp

  • Instalación de los controladores USB

Es necesario instalar el controlador USB requerido en su ordenador  para que pueda programar el ESP8266.  Independientemente de la opción de firmware que elijamos, primero necesitamos comunicarnos con la placa de desarrollo ESP-12E utilizando la interfaz USB de la computadora.

El módulo USB a Serial UART incluido en la placa es Silicon Labs ‘CP2012, para lo cual generalmente necesitamos instalar los controladores de puerto COM virtual (VCP) fácilmente disponibles para su sistema operativo específico.Una vez instalado, debemos verificar que el CP2102 sea reconocido por su ordenador

Una vez que el controlador está instalado, podemos conectar el cable USB al puerto USB de la computadora y la placa. Después de hacerlo, deberíamos ver el mensaje: software del controlador del dispositivo instalado correctamente.

Además, podemos verificar manualmente que todo funcione correctamente siguiendo estos pasos:

Abra el Administrador de dispositivos (disponible a través del Panel de control → Sistema y seguridad → Administrador de dispositivos en la sección Sistema)
Debajo de la entrada Puertos (COM & LPT), debe haber un puerto abierto llamado USB-SERIAL CP2102 (COM) donde hay un número típicamente mayor o igual a 3.

Ahora que estamos listos para comunicarnos con nuestro ESP8266 a través del CP2102, podemos explorar algunas de las diferentes opciones de firmware disponibles.

node.png

  • En el IDE de Arduino, vaya al menú de herramientas, seleccionada su placa y elija el  puerto al que está conectado su ESP8266.En el ejemplo  es el COM11

 

puerto.png

  • Ahora  copie el siguiente código  para probar que puede subir y ejecutar código código  en la placa :

 

/*
ESP8266 Led Parapadeante
*/

void setup(){

pinMode(LED_BUILTIN, OUTPUT);// Initializa el  pin de  LED_BUILTIN como salida

}

void loop() {       // la función de bucle se repite una y otra vez para siempre

digitalWrite(LED_BUILTIN, LOW);// encienda el LED 

delay(1000); //Espera de 1 segundo

digitalWrite(LED_BUILTIN, HIGH);//  Apague el LED haciendo que el voltaje sea ALTO

delay(2000); // Espere dos segundos  para dejar apagado  LED 

}

 

El LED azul en el módulo ESP – 01 está conectado a GPIO 1, (que también es el pin TXD, por lo que no podemos usar Serial.print () al mismo tiempo)

Tenga en cuenta que el nivel de voltaje es BAJO  pero en realidad el LED está encendido, porque es bajo en el ESP – 01

En este código se usa  LED_BUILTIN para encontrar el pin con el LED interno  de modo

Como puede apreciar , el código ejecuta un bucle infinito en el que pone el estado bajo  un segundo (encendiendo el led)    para posteriormente forzar a nivel alto  dos segundos(apagando el led  )  y así   indefinidamente gracias al bucle  que se repite indefinidamente

 

Envio de datos a la nube de Cayenne

  • Agregue la biblioteca de Cayenne MQTT a Arduino IDE  desde aqui como un fuchero zip
  • Instale la biblioteca zip descargada en el paso anterior desde Programa -> Incluir biblioteca -> Añadir libreria ZIP. y seleccionar ahora el fichero descargado con anterioridad  Cayenne-MQTT-ESP-master.zip
  • Ya puede crear una cuenta Starter en cayenne ( si aun no la tiene  ya creada)
  • Una vez ya validado vaya a la esquina  superior  izquierda  y pulse sobre el botón verde  add new
addnew.png
  • Ahora seleccione Generic ESP8266  como la placa y  tome nota  ahora  de los siguintes paraetros ofrecidos por la  pagina:
    •  MQTT USERNAME:
    • MQTT PASSWORD:
    • CLIENT ID:
    • MQTT SERVER:
    • MQTT PORT:
    • NAME YOUR DEVICE (optional):
  • Abra el boceto de ejemplo incluido desde Archivo -> Ejemplos -> Cayenne-MQTT-ESP. Modifique el boceto incluido con su información de red y la información de autenticación de Cayenne que recibió al agregar su dispositivo.

APIs para IoT


Las API están estrechamente vinculadas con el IoT porque le permiten exponer con seguridad los dispositivos conectados a los clientes, canales «Go-to-Market» y otras aplicaciones de su infraestructura informática. Las API conectan «cosas» importantes, como son los coches, dispositivos médicos, redes inteligentes y termostatos, con su ecosistema. .

Veamos algunas de las APIS de Iot mas representativos:

 

 

    ThingSpeak API

ThingSpeak es un plataforma de  IoT que permite recoger y almacenar datos de sensores en la nube y desarrollar aplicaciones IoT ofreciendo tambien aplicaciones que permiten analizar y visualizar sus datos en MATLAB y actuar sobre los datos. Los datos de los sensores pueden ser enviados desde Arduino, Raspberry Pi, BeagleBone Black y otro HW.

Thingspeak está en colaboración con Mathworksque es la empresa de Matlab y Simulink entre otros.

La API de ThingSpeak le permite crear aplicaciones de «Internet de las cosas». Utilizar la API para crear aplicaciones en la nube que interactúan con los sensores y controles de cualquier cosa que soporta el protocolo HTTP. La API de ThingSpeak es capaz de interactuar con dispositivos de Arduino y ioBridge, iPhone y Android dispositivos móviles, sistemas de automatización del hogar, robots, termostatos, controles industriales, etcetera. ThingSpeak también admite la integración con servicios web externos como Twitter, Prowl, Twilio, WeatherBug y Foursquare, mediante el uso de la aplicación de ThingHTTP. Además de la API alojada libre, la API de ThingSpeak es open source y está disponible en GitHub para su descarga en servidores privados.

thingpeak.png

La API de ThingSpeak siempre trabaja con datos, esa es su gran especialidad. Es una API abierta para el Internet de las Cosas que permite recopilar, almacenar, analizar, visualizar y actuar sobre la información recogida en sensores y dispositivos como aplicaciones web y móviles, redes sociales como Twitter, soluciones de mensajería, VoIP y nube como Twilio, hardware de código abierto como Arduino, Raspberry Pi o BeagleBone (los reyes del Internet de las Cosas y la robótica) o con lenguajes de cálculo computacional como MATLAB… ThingSpeak es una API conocida entre los desarrolladores y dispone ya de una gran comunidad.

ThingSpeak API funciona siempre con canales, los cuales contienen los campos de datos, ubicación y estado. Para empezar a trabajar con esta interfaz es necesario crear un canal, donde se recopilará la información de dispositivos y aplicaciones, datos que posteriormente se pueden analizar y visualizar en gráficos  y el paso final es operar sobre esa documentación. El proceso con la API siempre es el mismo.

Al final, la ruta del proyecto con la API será parecida a lo siguiente, sustituyendo los campos CHANNEL_ID y FIELD_ID por los datos del canal recién abierto.

http://api.thingspeak.com/channels/CHANNEL_ID/charts/FIELD_ID

Un ejemplo del tipo de gráficos que se pueden crear fruto de la recogida, análisis y visualización con ThingSpeak son estas mediciones de temperatura:

Cosm.com

Pachube ha pasado de manos de forma alarmante : primero Pachube que se hizo famosa por monitorizar la radiactividad en Japon  , luego Xively.com   y ahora finalmente cosm ,com .

Esta veterana plataforma le permite almacenar, compartir y descubrir el sensor en tiempo real, datos de energía y medio ambiente de edificios u otros dispositivos. Pachube proporciona la mayor parte de su funcionalidad a través de su API, en lugar de a través de su sitio web. Complemento a los proyectos participantes en tiempo real para que, por ejemplo, edificios, entornos interactivos, contadores de energía en red, mundos virtuales y dispositivos móviles pueden hablar todos entre sí. Datos en tiempo real disponibles. Pachube hace uso de extendido entornos Markup lenguaje (EEML), que se extiende el protocolo de la industria de construcción IFC.

La API de Pachube permite almacenar, compartir y analizar en tiempo real los datos de energía o medioambientales recogidos por sensores en edificios y otros dispositivos. Toda la funcionalidad del sistema de Pachube viene dada por la API, que es la que facilita que la información generada por edificios, contadores de energía o dispositivos móviles con sensores sea recogida y analizada y que todos esos objetos estén conectados entre sí. Es el verdadero Internet de las Cosas.

La API de Pachube funciona en el entorno EEML (Extended Markup Language Environments), un protocolo para el intercambio de datos de sensores en ambientes a distancia, ya sean físicos o también virtuales (un ejemplo típico es la conexión con objetos de Second Life). Que exista un protocolo universal es lo que posibilita que las personas puedan compartir con la comunidad millones de datos en tiempo real de objetos, dispositivos o espacios de todo el mundo.

Los pasos a seguir para comenzar a trabajar con Pachube son bastante sencillos:

●       Agregar un dispositivo: el desarrollador da un nombre, una descripción y permisos de privacidad al dispositivo que quiere agregar y automáticamente se le asigna un ID y la clave de la API necesaria para conectar ese terminal.

●       Conectar el dispositivo: es necesario copiar el ID y la clave de la API en el código del objeto para establecer una relación bidireccional entre ambos. Se pueden conectar dispositivos, pero también apps o servicios. Para realizar esa conexión, aquí hay todo tipo de librerías para dispositivos Android, objetos programados en Java, C, Objective-C, Python, PHP, Ruby y JavaScript, y tutoriales para hardware abierto como Arduino o Raspberry Pi.

●       Prueba de funcionamiento: una vez agregado y conectado, el desarrollador puede empezar a ver valores de datos actualizados en tiempo real en su canal y depurar las alteraciones irregulares que vea en esa información.

 

 

Fitbit API

La API de Fitbit facilita a los desarrolladores el trabajo de interacción con los datos que son recogidos por cualquiera de los productos de Fitbit, ya sea una aplicación, un dispositivo o un servicio. Hoy en día, la API de Fitbit soporta la mayoría de lenguajes de lectura y escritura de información, pero ellos ofrecen una comunidad para desarrolladores donde es posible hacer sugerencias y evolucionar la API.

La API de Fitbit lo que permite en última instancia es que cualquier persona pueda desarrollar una aplicación para acceder y manipular datos recogidos por un dispositivo Fitbit, siempre y cuando cumpla dos requisitos obvios: deben ser datos relacionados con un usuario que sea él y no otra persona y cumplir con las condiciones de uso que establece la documentación de la propia API.

¿Cómo se puede empezar a probar y trabajar con la API de Fitbit?

●       Registro de la aplicación: el registro de la app permite obtener credenciales de cliente de la API. Para hacerlo es necesario disponer primero de una cuenta en el servicio de Fitbit (su apertura es totalmente gratuita).

●       El acceso a los datos de usuario se hace a través de autenticación OAuth. Las solicitudes a la API de Fitbit para leer y escribir datos de usuarios se hacen a través de este explorador de la API. Es posible también suscribirse a la API para tener la actualización de los datos en tiempo real

●       El desarrollador debe escoger alguna librería OAuth 2.0 que opere con el lenguaje de programación y marco de desarrollo utilizado para el flujo de datos. Sin esa librería no se puede crear el protocolo de autorización.

●       Las peticiones a la API necesitan de credenciales de usuario autorizado.

 

Futurista ambientador


Es  reconfortante tener una fragante casa floral de primavera para senirse como si estuviera en medio de un jardín de lavanda en lugar de una vivienda tradicional  donde probablemente viva, de heho eso es es que precisamente por esto, muchas de las diferentes empresas han creado para los amantes del aire  una multitud de aromas.

Hay muchos ambientadores en el mercado: desde los antiguos aerosoles manuales hasta los disparados por temporizador pero los últimos, aunque son automáticas, son bastante tontas pues seguirán rociando incluso si no estás cerca para  sentir el olor, desperdiciando esas recargas de fragancia no tan baratas.

¿No sería agradable si su refrescante de aire fuera capaz de comunicarse con otros dispositivos y disparar solo cuando realmente lo necesite ?

En este proyecto IgorF2 diseñó   un ambientador  conectado , usando algunas impresiones 3D, NodeMCU, IFTTT y Adafruit.IO.

!

¡Siempre tenga en cuenta que este es un prototipo experimental y podría usarse con precaución!

Paso 1: herramientas y materiales

Las siguientes herramientas y materiales fueron utilizados en este proyecto:

  • impresora 3d. En mi caso, utilicé Voolt3D, una impresora 3D basada en Grabber i3;
  • 1.75mm PLA de su color favorito;
  • Alambre de soldar. Tendrás que soldar algunos cables;
  • Destornillador. Lo necesitará para montar su caso;
  • Tornillos M2x6mm (x11) ;
  • Servomotor MG995
  • NodeMCU LoLin (- La versión NodeMCU LoLin tiene un pin UV, que está conectado al terminal USB 5V. De esta forma, es posible usar los 5 V de un cargador USB, pasando por la placa NodeMCU, para alimentar el servomotor. Otras versiones de NodeMCU no tienen este pin UV (tienen un pin reservado en su lugar). De esta forma, no podrá alimentar su servomotor directamente si usa una de esas otras versiones;
  • NeoPixel 16 x WS2812 5050 RGB LED
  • Botón pulsador de 12x12x12 mm
  • Cable MiniUSB , para la conexión entre NodeMCU y la computadora (para cargar el código);
  • Cargador USB 5V, 2A ( cargador de teléfono, por ejemplo) para alimentar el circuito;
  • 5 cables de puente hembra-hembra;
  • 3 cables de puente macho-hembra;
  • Recambio de aire fresco.

 

Paso 2: impresión en 3D

Imagen de impresión 3D

El modelo 3d se diseñó utilizando Fusion 360.

El modelo se compone de cinco partes diferentes:

  • Frente: cuerpo principal del gadget. Aquí es donde algunos de los componentes electrónicos (anillo LED y botón pulsador) y el servomotor se unirán;
  • Funda trasera: se usa para cerrar el cuerpo de la caja. Aquí es donde se instalarán NodeMCU y el recambio de renovación;
  • Botón : esta parte está conectada al botón;
  • Tapa: esta parte se enrosca en la parte posterior de la caja y permite reemplazar la recarga
  • Soporte: esta parte se utiliza para bloquear el anillo LED y el botón en su posición.

Puede descargar todos los archivos stl en https://www.thingiverse.com/thing:2613327

Este es un prototipo experimental. Tenga en cuenta que fue diseñado para un modelo determinado de recarga de renovación de aire (una Glade, cuyas dimensiones en milímetros puede encontrar en las imágenes). Si desea utilizar un modelo diferente, envíe un comentario y puedo ver si es posible cambiar las dimensiones del modelo para adaptarlo a sus necesidades.

Si no tiene una impresora 3D, aquí hay algunas cosas que puede hacer:

  • Pídale a un amigo que lo imprima para usted;
  • Encuentre un espacio para hackers / fabricantes cerca. Las piezas utilizadas en este modelo se pueden imprimir rápidamente (alrededor de 9 horas).Algunos espacios de hackers / fabricantes solo le cobrarán por los materiales utilizados;
  • ¡Improvisar! Puede intentar ensamblar una estructura sin partes impresas en 3D;

Paso 3: Explicación del circuito

Imagen del circuito explicado

Para este proyecto se utiliza  el modulo  NodeMCU LoLin para controlar el gadget. NodeMCU es una plataforma de código abierto IoT, que se ejecuta en un SoC Wi-Fi ESP8266 de Espressif Systems. Su hardware se basa en el módulo ESP-12.

La placa de desarrollo conecta una red Wi-Fi determinada y recibe algunos comandos de Adafruit.io plafrom. Un anillo NeoPixel se utiliza para la indicación del estado (si la conexión Wi-Fi fue exitosa, o si se recibió un comando dado, por ejemplo). El tablero de control también acciona un servomotor, que actuará en una recarga de renovación de aire. Un botón pulsador se usa para comandos locales.

Se utilizó un cargador USB de 5 V y 2 A para alimentar la placa de control y todos los periféricos. Es importante observar que cuando se activa el servo, se toma una corriente máxima considerable de la fuente de alimentación. De esta forma, no use el puerto USB de una computadora (o cualquier otro dispositivo) para alimentar su circuito. Podría reiniciarse o incluso dañarse.

Las figuras ilustran cómo se conectaron los componentes.

Paso 4: Prepare la electrónica

Imagen de Prepare the Electronics

Algunos de los componentes utilizados en este proyecto deben soldarse primero. En este paso, mostraré cómo se prepararon para una conexión más fácil de los componentes.

1. Terminales Solder NeoPixel

Los anillos NeoPixel generalmente vienen sin cables conectados a sus terminales. Esto significa que tuve que soldar algunos cables para la conexión de los LED al microcontrolador.

Para eso use tres puentes femeninos y femeninos. Corte un lado del puente y suelde sus cables en los terminales de anillo NeoPixel. El otro extremo de cada jumper estará con un terminal hembra, que se conectará más adelante en los pines NodeMCU.

  • Cable rojo = 5V
  • Cable negro = GND
  • Cable amarillo = entrada de datos

2. Terminales de botón de soldadura

Para conectar el botón pulsador al NodeMCU, primero tuve que soldar algunos cables de puente en dos terminales del botón.

Use dos jumpers femeninos y femeninos. Cortar un lado del jumper y suelde sus hilos al botón.

  • Cable verde = entrada de datos
  • Cable negro = GND

3. Servomotor MG995

Los servomotores generalmente tienen un terminal hembra de tres pines, pero desafortunadamente no se puede conectarse directamente al NodeMCU debido a la posición de los pines. Para conectar esos componentes usé un cable de puente macho-hembra.

Paso 5: Ensamblar los componentes

Imagen de Montar los Componentes

En este paso, veremos cómo ensamblar los componentes dentro de la estructura impresa en 3D. Si no desea imprimir el caso por algún motivo, puede saltar al siguiente paso y ver cómo está conectado el circuito.
Una vez que se imprime su estructura, ensamblar el circuito es bastante simple:

  1. Coloque el anillo de LED dentro de la caja frontal ;
  2. Coloque el botón impreso en 3D dentro del anillo;
  3. Coloque el botón pulsador en el medio del soporte impreso en 3D;
  4. Monte el soporte dentro de la caja frontal con cuatro pernos M2x6mm;
  5. Monte el servomotor dentro de la carcasa delantera con cuatro tornillos (los que generalmente vienen con el servo);
  6. Coloque la bocina del servo de acuerdo con la imagen y bloquee su posición con un perno. Cuando el servo está a 90 grados, la retención debe ser horizontal;
  7. Fije NodeMCU dentro de la caja trasera usando cuatro pernos M2x6mm;
  8. Inserte el relleno de renovación de aire dentro de la cámara;
  9. Thead la tapa, cerrando la cámara;
  10. Conecte el circuito (en el siguiente paso le mostraré cómo hacerlo);
  11. Cierre la caja con tres tornillos M2x6mm.

Después de eso, estará listo para subir el código.

Paso 6: Cableado del circuito

Imagen de Wire Up the Circuit

Una vez que los componentes se colocaron dentro de la caja, conecte los cables de acuerdo con los esquemas.

  • NeoPixel 5V (cable rojo) => NodeMcu 3V3
  • NeoPixel GND (cable negro) => NodeMcu GND
  • Entrada de datos NeoPixel (cable amarillo) => NodeMcu GPIO 15 (pin D8)
  • Botón pulsador 1 (cable verde) => NodeMcu GPIO 14 (pin D5)
  • Pulsador 2 (cable negro) => NodeMcu GND
  • MG995 servo 5V (cable rojo) => NodeMcu VU pin
  • MG995 servo GNG (cable marrón) => NodeMcu GND
  • Servo señal MG995 (cable naranja) => NodeMcu GPIO 12 (pin D6)

Paso 7: Configurar NodeMCU en Arduino IDE

Imagen de Setup NodeMCU en Arduino IDE

Para este proyecto se utiliza  Arduino IDE para programar  el NodeMcu. Es la forma más fácil si ya has usado un Arduino antes, y no necesitarás aprender un nuevo lenguaje de programación, como Python o Lua, por ejemplo.

Si nunca has hecho esto antes, primero tendrá que agregar el soporte de la placa ESP8266 al software Arduino.

1. Descargue e instale la última versión de Arduino IDE

Puede encontrar la última versión para Windows, Linux o MAC OSX en el sitio web de Arduino: https://www.arduino.cc/en/main/software

Descárguelo gratis, instálelo en su computadora y ejecútelo.

2. Agregar el tablero ESP8266

Arduino IDE ya viene con soporte para muchas placas diferentes: Arduino Nano, Mine, Uno, Mega, Yún, etc. Desafortunadamente ESP8266 no está por defecto entre esas placas de desarrollo soportadas. Por lo tanto, para subir sus códigos a una placa base ESP8266, primero deberá agregar sus propiedades al software de Arduino.

  • Navegue a Archivo> Preferencias (Ctrl +, en el sistema operativo Windows);
  • Agregue la siguiente URL al cuadro de texto Gestor de tableros adicionales (el que está en la parte inferior de la ventana de Preferencias):

http://arduino.esp8266.com/stable/package_esp8266com_index.json

  • Si el cuadro de texto no estaba en blanco, significa que ya había agregado otras placas antes en Arduino IDE. Agregue una coma al final de la URL anterior y la anterior.
  • Presiona el botón «Aceptar» y cierra la ventana de Preferencias.
  • Navegue hacia Herramientas> Tablero> Administrador de tableros para agregar su placa ESP8266.
  • Escriba «ESP8266» en el cuadro de texto de búsqueda, seleccione «esp8266 por ESP8266 Community» e instálelo.

Ahora su IDE de Arduino estará listo para trabajar con muchas placas de desarrollo basadas en ESP8266, como el ESP8266 genérico, NodeMcu (que utilicé en este tutorial), Adafruit Huzzah, Sparkfun Thing, WeMos, etc.

3. Agregar las bibliotecas

Las siguientes bibliotecas se usarán para nuestro código Arduino. Descargue las siguientes bibliotecas:

Navegue a Boceto-> Incluir biblioteca-> Administrar bibliotecas … en tu IDE de Arduino y agrega las bibliotecas de arriba.¡Ahora que su entorno de desarrollo está listo, pasemos al siguiente paso!

Paso 8: Configuración de Adafruit.IO

Imagen de la configuración de Adafruit.IO

Hay muchos servicios de registro de datos disponibles para comunicar un microcontrolador a la web. Con esos servicios, puede cargar / descargar datos desde / hacia la nube y hacer muchas cosas interesantes.
Adafruit.IO es uno de esos servicios gratuitos. ¡Es realmente fácil de usar y promete traer Internet de las cosas a todos!

Crear Adafruit IO Web Feed

  • Regístrese en https://io.adafruit.com/
  • En Feeds> Crear un nuevo feed, agregue un nuevo feed denominado «IoT air freshner command». Creará una base de datos, y la usaremos para almacenar los comandos recibidos por el gadget.

En el siguiente paso, veremos cómo configurar IFTTT, otra plataforma utilizada  en este proyecto. La idea aquí es simple: IFTTT tendrá configurados algunos desencadenantes y enviará algunos datos a la plataforma Adafruit.IO cuando una lógica dada sea verdadera. El gadget podrá leer los datos almacenados en un feed determinado en Adafruit.IO, ejecutar un poco de lógica y realizar algunas acciones.

También es un buen momento para copiar su clave Adafruit.IO, que luego será utilizada para permitir que su dispositivo acceda a la base de datos. Navega por Configuración> Ver clave AIO y copia el código de tecla activa. Lo necesitará para su código Arduino (NodeMCU) en los próximos pasos.

Paso 9: Configuración IFTTT

Imagen de la configuración IFTTT

IFTTT es una plataforma gratuita que ayuda a conectar aplicaciones y dispositivos. Puede usarlo para conectar su teléfono inteligente con otros dispositivos, o para compartir datos entre sus servicios web favoritos (como Google, Facebook, Twitter, Instragram, etc.) y otros dispositivos físicos, por ejemplo. ¡Y la mejor parte es que es realmente fácil de usar!

IFTTT usa una lógica «si esto, luego eso», donde «esto» representa un servicio que activará una acción determinada dada por «eso». De esta forma, creará pequeños applets que conectan los servicios y dispositivos web. Para el proyecto descrito en este tutorial, hay varias manzanas que se te ocurren. Por ejemplo, los siguientes ejemplos podrían usarse para activar su dispositivo («esto»):

  • se hace clic en un botón virtual en un teléfono;
  • todos los días en un momento dado;
  • un teléfono inteligente (GPS) llega a una ubicación determinada;
  • se recibe una notificación por correo electrónico.

En nuestros ejemplos, «ese» valor siempre será un enlace a Adafruit.IO, donde los comandos (resultado de un desencadenante dado) se almacenarán, y más tarde serán leídos por el NodeMCU.

Primero tendrá que iniciar sesión en:https://ifttt.com/

Luego instale la aplicación IFTTT en su teléfono inteligente. Puedes encontrarlo en Google Play Store:https://play.google.com/store/apps/details?id=com.ifttt.ifttt

En el sitio web, vaya a Nuevo applet (haga clic en el botón de flecha al lado de su inicio de sesión para acceder al menú).

Paso 10: Applet # 1 – The Lazy Boy

Imagen de Applet # 1 - The Lazy Boy

Para este applet crearemos un botón virtual que activará su gadget IoT. ¡En nuestro caso, significa que no tendrá que levantarse y encender su refrescante de aire! Haga clic en un botón, aguarde y respire profundamente.

Crear el applet en el sitio web:

  • Haga clic en + Esto;
  • Escriba «botón» en el cuadro de texto del servicio Seach y seleccione Botón widget> Presione botón . Tal como se describe en el sitio web de IFTTT, creará un activador que se activará cada vez que presione el botón;
  • Ahora elija + Eso ;
  • Escriba «adafruit» y seleccione Adafruit> Enviar datos a Adafruit IO . Esto enviará datos a un canal de información en su cuenta IO de Adafruit siempre que el activador que configuró previamente ( + Esto ) esté activado;
  • Configure el nombre del feed como «IoT air freshner command» y Data para guardar como «botón».
  • Termina tu applet y enciéndelo.

Crea un botón virtual en dispositivos Android:

  • Mantenga presionado el fondo. Y elige Widgets ;
  • Búsqueda de IFTTT Small 1 x 1;
  • Ahora elija Enviar datos a IoT air freshner command feed;
  • Se creará un botón con el ícono de Adafruit.

Pruebas:

  • Haga clic en el botón que acaba de crear;
  • En https://io.adafruit.com/, vaya a su feed de comandos de renovación de aire IoT y verifique si se recibió el comando. Mostrará la última vez que se recibió la acción si funciona correctamente.

En pasos adicionales, le mostraré cómo crear el código para su ESP8266 para realizar una acción cuando se recibe el comando.

Paso 11: Applet # 2 – IIIIIIII es Tiiiiiime!

Imagen de Applet # 2 - IIIIIIIIt es Tiiiiiime!

Para este applet, crearemos un disparador de temporizador para su gadget de IoT, que se activará en determinados momentos. Reloj de alarma perfumado listo para despertarte!

Crea el applet en el sitio web:

  • Haga clic en + Esto ;
  • Escriba «Fecha» en el cuadro de texto del servicio Seach y seleccione el widget Fecha y hora> Todos los días a las . Tal como se describe en el sitio web de IFTTT, creará un disparador que se dispara todos los días en un momento determinado;
  • Haga clic en + Eso ;
  • Escriba «adafruit» y seleccione Adafruit> Enviar datos a Adafruit IO. Esto enviará datos a un feed en su cuenta IO de Adafruit siempre que el activador que configuró previamente (+ Esto) esté activado;
  • Configure el nombre del feed como «IoT air freshner command» y Data para guardar como «time»;
  • Termina tu applet y enciéndelo.

Pruebas:

  • Para probar si está funcionando, configure el tiempo de activación por un minuto después de su hora actual. Y espéralo;
  • En https://io.adafruit.com/ , vaya a su feed de comandos de renovación de aire IoT y verifique si se recibió el comando. Mostrará la última vez que se recibió la acción si funciona correctamente.

Paso 12: Applet # 3 – ¡Hogar, dulce hogar!

Imagen de Applet # 3 - Home, Sweet Home!

Para este applet, crearemos un activador de ubicación para su gadget IoT, que se activará cada vez que ingrese a un área específica (su hogar, por ejemplo).Utilizará el servicio de Localización de su teléfono (posición de GPS) para determinar si se acerca a una ubicación específica.

Crear el applet en el sitio web:

  • Haga clic en + Esto ;
  • Escriba «ubicación» en el cuadro de texto del servicio Seach y seleccione widget de ubicación> Ingrese un área . Tal como se describe en el sitio web de IFTTT, creará un activador que se activará cada vez que ingrese a una ubicación específica;
  • Especifique la dirección de su ubicación;
  • Haga clic en + Eso ;
  • Escriba «adafruit» y seleccione Adafruit> Enviar datos a Adafruit IO . Esto enviará datos a un feed en su cuenta IO de Adafruit siempre que el activador que configuró previamente (+ Esto) esté activado;
  • Configure el nombre del feed como «comando IoT air freshner» y datos para guardar como «ubicación»;
  • Termina tu applet y enciéndelo.

Pruebas:

Para probar si funciona, ¡tendrá que caminar un poco! Tienes que salir de la ubicación que especificaste y volver allí. :RE

Paso 13: Applet # 4 – ¡Tiene correo!

Imagen de Applet # 4 - ¡Tienes correo!

Para este applet, crearemos un activador de notificación para su gadget IoT, que se activará cada vez que se reciba un correo electrónico en su cuenta de gmail. Si un tono de llamada y una notificación de vibración no fueran suficientes, ¡ahora puede agregar una notificación de olor para los mensajes entrantes!

Crea el applet en el sitio web:

  • Haga clic en + Esto ;
  • Escriba «gmail» en el cuadro de texto del servicio Seach y seleccione widget de Gmail> Cualquier correo electrónico nuevo en la bandeja de entrada . Tal como se describe en el sitio web de IFTTT, creará un activador que se activará cada vez que llegue un nuevo mensaje a Gmail.
  • Haga clic en + Eso ;
  • Escriba «adafruit» y seleccione Adafruit> Enviar datos a Adafruit IO . Esto enviará datos a un feed en su cuenta IO de Adafruit siempre que el activador que configuró previamente (+ Esto) esté activado;
  • Configure el nombre del feed como «comando IoT air freshner» y datos para guardar como «correo»;
  • Termine su applet y enciéndelo.

Pruebas

  • Para probar si funciona, envíelo y envíe un correo electrónico;
  • En https://io.adafruit.com/ , vaya a su feed de comando de renovación de aire IoT y verifique si se recibió el comando. Mostrará la última vez que se recibió la acción si funciona correctamente.

Paso 14: Código ESP8266

Imagen del código ESP8266

Ahora que sus activadores están configurados, trabajemos en su código ESP8266.

Básicamente, su gadget se conectará a una red wi-fi y esperará hasta que se reciba un nuevo comando en Arduino.IO. Cada vez que se recibe un mensaje, el renovador de aire IoT realizará sus acciones (mover un servo motor para liberar un poco de perfume, cambiar los colores del LED) y regresar para el estado inactivo. El circuito también usará un botón como entrada.

Para cargar su código, seleccione NodeMCU 0.9 (Módulo ESP-12) (si está utilizando un NodeMCU) con una velocidad de carga de 11520 kbps.Desconecte el servomotor del NodeMCU, conecte NodeMCU al puerto USB de su computadora y cargue el código.

Llevará un tiempo (mucho más que completar y cargar un boceto para un Arduino … tenga paciencia …). ¡Ahora es un buen momento para que le des un mecano de instrucciones mientras esperas! :RE

Después de completar la carga, desenchufe el cable USB, conecte el servomotor y alimente su circuito desde un cargador USB.

Código explicado:

Para la configuración de IO de Adafruit, deberá reemplazar el nombre de usuario ( XXXXXXXXXX ) y la tecla io ( YYYYYYYYY ).

Visite adafruit.io, inicie sesión en su cuenta y copie la clave io (tal como se describió en los pasos anteriores).

/************************ Adafruit IO Configuration *******************************/
// visit io.adafruit.com if you need to create an account, or if you need your Adafruit IO key.
#define IO_USERNAME «XXXXXXXXXX»
#define IO_KEY «YYYYYYYYY»

También deberá especificar el SSID y la contraseña de su enrutador Wi-Fi.Reemplace WWWWWWWWWW y ZZZZZZZZZZ para configurar su conexión Wi-Fi.

/******************************* Configuración de WIFI ***************** ********************* /
#define WIFI_SSID «WWWWWWWWWW»
#define WIFI_PASS «ZZZZZZZZZZ»
#include «AdafruitIO_WiFi.h»
AdafruitIO_WiFi io (IO_USERNAME, IO_KEY, WIFI_SSID, WIFI_PASS);

 

Se usarán las siguientes bibliotecas (como se describe en los pasos anteriores).Deberá agregarlos en el ide de Arduino antes de compilar el código.

/ ************************ El programa principal comienza aquí ********************* ********* /

#include <ESP6266WiFi.h>
#include <AdafruitIO.h>
#include <AdafruitMQTT.h>
#include <ArduinoHttpClient.h>
#include «Servo.h»

 
Varias cosas (pines y parámetros de LED) se definen antes de la configuración:
#define SERV1 12 // Pin conectado al Servomotor
Servo s1;
#define BUTTON_PIN 14 // Pin conectado al pulsador
#define PIXELS_PIN 15 // Pin conectado a la entrada de datos NeoPixel
#define NUM_LEDS 16 // Número de NeoPixels
#define BRILLO 30
#define PIXEL_TYPE NEO_GRB + NEO_KHZ800 // Tipo de NeoPixels (vea el ejemplo de strandtest).
Anillo Adafruit_NeoPixel = Adafruit_NeoPixel (NUM_LEDS, PIXELS_PIN, PIXEL_TYPE); // + NEO_KHZ800);
AdafruitIO_Feed * command = io.feed («iot-air-freshner-command»); // configura el feed ‘comando’
Durante la configuración, el NodeMCU inicializará los LED (apague y encienda), inicie el puerto de comunicación en serie y conéctese a Adafruit.io. Se mostrará una animación mientras intenta conectarse.

Las entradas (pulsador) y las salidas (servomotor) también se configuran durante la configuración.

void setup () {
ring.setBrightness (BRILLO);
ring.begin ();
ring.show (); // Inicializa todos los píxeles a ‘off’
// inicia la conexión en serie </ p> Serial.begin (115200);
// conectarse a io.adafruit.com
Serial.print («Conectando a Adafruit IO»);
io.connect ();

// configuramos un manejador de mensajes para el feed ‘comando’.
// la función handleMessage (definida a continuación)
// se llamará cada vez que se envíe un mensaje
// recibido de adafruit io.
command-> onMessage (handleMessage);
// espera una conexión
int i = NUM_LEDS – 1;
int color = 255;
// anima los LED mientras espera la conexión
while (io.status () <AIO_CONNECTED) {
Serial.print («.»);
ring.setPixelColor (i, 0, 0, color);
ring.show ();
i = i – 1;
if (i <0)

{ if (color == 255) {

color = 0; }

else

{ color = 255;

}

i = NUM_LEDS – 1;

} delay (50); }

lightPixels (ring.Color (0, 0, 0, 0)); // restablecer todos los píxeles a apagado cuando está conectado

// Estamos conectados

Serial.println ();

Serial.println (io.statusText ());

// mover el servomotor a la posición neutral s1.attach (SERV1);

s1.write (90); retraso (500);

s1.detach (); // establecer el pin del botón como entrada pinMode (BUTTON_PIN, INPUT_PULLUP);

}

El ciclo principal es bastante corto. Verifica si hay datos entrantes de Adafruit.io, y verifica si se presionó el botón. Si uno presiona el botón, envía datos a Adafruit.io.

 

void loop ()

{ // io.run (); es requerido para todos los bocetos.

// siempre debe estar presente en la parte superior de tu ciclo // función. mantiene al cliente conectado a

// io.adafruit.com, y procesa cualquier información entrante.

io.run ();

if(digitalRead(BUTTON_PIN) == LOW) {
command->save(«button»);
}

}

 

Cada vez que se recibe un mensaje, se llama a la función handleMessage .Esta función lee los últimos datos recibidos en una fuente dada en Adafruit.io, y verifica si se recibió una de las cadenas de comandos conocidas (‘botón’, ‘temporizador’, ‘ubicación’ o ‘correo’).

Según el comando recibido, los LED parpadearán con diferentes colores y el servomotor se activará.
// esta función se invoca cada vez que se recibe un mensaje
// de Adafruit IO. estaba adjunto a
// la alimentación en la función setup () arriba.

void handleMessage (AdafruitIO_Data * data) {

lightPixels (ring.Color (0, 0, 0, 0)); // restablecer todos los píxeles a apagado cuando se recibe nueva información
String commandStr = data-> toString (); // almacena los comandos entrantes en una cadena

Serial.print («recibido <-«);
Serial.println (commandStr);

// Estas declaraciones if comparan la variable meteorológica entrante con las condiciones almacenadas, y controlan las NeoPixels en consecuencia.

// si se presionó el botón virtual
if (commandStr.equalsIgnoreCase («button»)) {
Serial.println («Botón virtual»);
rotatingPixels (ring.Color (255, 255, 0, 0)); // mostrar animación
lightPixels (ring.Color (255, 255, 0, 0)); // mostrar animación
launch (1);
lightPixels (ring.Color (0, 0, 0, 0)); // restablecer todos los píxeles a apagado cuando se recibe nueva información
}

// si es hora
if (commandStr.equalsIgnoreCase («timer»)) {
Serial.println («es hora»);
rotatingPixels (ring.Color (0, 0, 255, 0)); // mostrar animación
lightPixels (ring.Color (0, 0, 255, 0)); // mostrar animación
launch (2);
lightPixels (ring.Color (0, 0, 0, 0)); // restablecer todos los píxeles a apagado cuando se recibe nueva información
}

// si se alcanzó la ubicación
if (commandStr.equalsIgnoreCase («ubicación»)) {
Serial.println («Bienvenido a casa!»);
rotatingPixels (ring.Color (0, 255, 0, 0)); // mostrar animación
lightPixels (ring.Color (0, 255, 0, 0)); // mostrar animación
launch (2);
lightPixels (ring.Color (0, 0, 0, 0)); // restablecer todos los píxeles a apagado cuando se recibe nueva información
}

// si tiene correo
if (commandStr.equalsIgnoreCase («mail»)) {
Serial.println («¡tienes correo!»);
rotatingPixels (ring.Color (255, 0, 0, 0)); // mostrar animación
lightPixels (ring.Color (255, 0, 0, 0)); // mostrar animación
launch (1);
lightPixels (ring.Color (0, 0, 0, 0)); // restablecer todos los píxeles a apagado cuando se recibe nueva información
}
}

//La función auxiliar rotatingPixels fue desarrollada para mostrar una animación.El color se recibe como una entrada para esta variable.
// Rotación completa de Funcion NeoPixels 

void rotatingPixels (uint32_t color) {
for (int j = 0; j <3; j ++) { for (int i = NUM_LEDS-1; i> = 0; i–) {
ring.setPixelColor (i, color);
ring.show ();
delay (50);
ring.setPixelColor (i, 0, 0, 0);
ring.show ();
}
}
}

//la función de inicio se usa para controlar el servomotor. Ciclos su posición de //90 ° a 175 ° una cantidad determinada de veces.
// Actúa el servomotor
void launch (int number) {
s1.attach (SERV1);
para (int i = 0; i <number; i ++) {
s1.write (175);
delay (1000);
s1.write (90);
delay (1000);
}
s1.detach ();
}

 

Código completo Arduino  aqui; iot-air-freshner-code.inoiot-air-freshner-code.ino

 

Desde luego es un proyecto realmente muy interesante  no solo por su posible utilidad sino  porque no enseña la potencia de la herramientas o servios  web disponibles hoy en dia para ayudarnos en nuestros proyectos

¡Siempre tenga en cuenta que este es un prototipo experimental y podría usarse con precaución!

 

 

Fuente  ; instructables.com

El futuro del IoT


Estamos empezando a ver es un mundo donde todo está conectado y todo es accesible  impulsado por la gran revolución propiciada por el  Iot  (Internet de las Cosas ) , es decir la tecnología que permite a  cualquier dispositivo simple o complejo,  gracias a la conectividad a internet ,ser capaz  no solo de enviar de información en tiempo real de su estado  y de ingentes diferentes variables físicas,   sino también interactuar con el medio .

En este breve vídeo podemos vemos  prototipos de  tecnología ya existente  como la maleta que nos sigue , el coche autónomo.   o las notificaciones complejas en  nuestro smartwatch , todas ellas en fase muy avanzada de diseño y   que sin duda   inundaran nuestras vidas en un futuro muy próximo,

Ya no hablamos del “Internet de las Cosas”, sino del IoE (Internet of Everywhere), de una nueva economía donde convivan más de 100.000 billones de dispositivos conectados   (aproximadamente allá en el horizonte de  2025)  donde, no solo  nuestro hogar sera accesible por nuestro propio smartphone  sino cualquier cosa que nos rodee como wereables , medios de transporte ,  etc.

Según analistas en unos años  asistiremos  a que cerca del  10% de la población mundial contara  con algún tipo de prenda de vestir comunicada con Internet, ( incluso incluyendo gafas graduadas)  así que la hipótesis   del smartphone   en el centro de nuestra vida digital incluso cambie , porque las cosas aun pueden cambiar mas , por ejemplo sustituyéndo  nuestro compañero inseparable  por  implantes, algún nuevo wereable   o cualquier otra nueva tecnología  que aparezca,

 

Sin duda  ,la carrera  solo acaba de empezar y ya se deslumbran sus enormes  posibilidades  , así que  la carrera  no acaba mas que empezar   y sin duda  veremos cada  vez mas  como el   IoT conectará a personas de todo el mundo para ayudarnos a concentrarnos en las cosas que más importan: familia, amigos, salud y felicidad.

IoT con Raspberry Pi sin escribir código


 

En este ejemplo vamos a ver lo facil qeu es configurar un sensor de temperatura:el DS18B20  usando el agente de Cayenne .

Todo lo que necesita hacer es configurar el circuito y tenerlo conectado a la Pi,el cual es bastante sencillo pues  se usa un bus de 1hilo cuyo diagrama del circuito viene a continuación. También se puede agregar un LED al pin # 17 con una resistencia de 100 ohmios al carril de tierra.
Raspberry Pi Diagrama de Sensor de Temperatura
Ahora cuando lo conecte  si tiene instalado el agente de Cayenne  el sensor sera detectado automáticamente y agregado al  tablero de mandos. Lo que es bastante bueno sin embargo, si no se agrega automáticamente, entonces tendrá que agregar manualmente. Para agregarlo manualmente, haga lo siguiente.

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccione el dispositivo en el cuadro desplegable.
  3. Encuentre el dispositivo, en este caso es un sensor de temperatura DS18B20.
  4. Agrega todos los detalles del dispositivo. En este caso necesitará la dirección de esclavo para el sensor. Para obtener la dirección de esclavo introduzca lo siguiente en el terminal de Pi.
    cd /sys/bus/w1/devices ls
  5. La dirección del esclavo será similar a esta 28-000007602ffa . Simplemente copie y pegue esto en el campo de esclavo dentro del panel de Cayenne.
  6. Una vez introducida seleccione sensor de complemento.
  7. El sensor debe aparecer ahora en el tablero de instrumentos.
  8. Si necesita personalizar el sensor, presione el diente y aparecerá algunas opciones.
  9. También puede ver estadísticas / gráficos. Por ejemplo, el sensor de temperatura puede trazar datos en tiempo real y mantendrá los datos históricos también.

Si también desea agregar un LED que pueda encender y apagar a través del tablero de instrumentos, siga las siguientes instrucciones.

  1. Ahora vamos a agregar un dispositivo más. Excepto que éste será un LED.
  2. Vuelva tan para agregar el nuevo dispositivo.
  3. Ahora busque la salida digital y selecciónela.
  4. Para este dispositivo seleccione su Pi, tipo de widget es el botón, el icono puede ser lo que quieras, y luego seleccione integrado GPIO. Finalmente, el canal es el pin / canal al que está conectado nuestro LED. Para este ejemplo es el pin # 17. (Esta es la numeración GPIO de los pines).
  5. Ahora presione el botón add sensor.
  6. Ahora puede girar el pin GPIO alto y bajo desde el tablero de mandos y también utilizarlo en un disparador.
  7. Ahora estamos listos para crear nuestro primer gatillo.

Ahora debería tener dos dispositivos en el tablero de mandos que deberían verse así.
Dispositivos añadidos

Configuración de su primer  trigger

Los disparadores en Cayenne son una forma de hacer que tu pi reaccione a un cambio en el Pi mismo oa través de un sensor conectado a él. Esto podría ser algo tan simple como una temperatura superior a un cierto valor o incluso sólo su Pi va fuera de línea. Como se podría imaginar esto puede ser muy poderoso en la creación de dispositivos inteligentes que reaccionan a los alrededores. Por ejemplo, si la habitación se pone demasiado fría, encienda el calentador.

El proceso de agregar un disparador es súper simple como vamos a ver aontunuacion:

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccionar un trigger desde el cuadro de abajo.
  3. El nombre de su gatillo, voy a llamar a la mía «demasiado caliente».
  4. Ahora arrastrar y soltar su Frambuesa Pi desde la esquina izquierda en el caso de la caja.
  5. Por debajo de esto seleccionar el sensor de temperatura y tienen casilla junto a «por encima de la temperatura» seleccionado. (Si las opciones del dispositivo no se muestran simplemente actualizar la página)
  6. Ahora en el cuadro de selección a continuación, notificación y agregar una dirección de correo electrónico o número de teléfono de un mensaje de texto (puede agregar ambos).Asegúrese de marcar las casillas de verificación también.

Dispara demasiado caliente

  1. Ahora haga clic en «Save trigger».
  2. Ahora se debe guardar y le enviará una alerta cada vez que el sensor de temperatura es más de 40 grados Celsius.
  3. También puede arrastrar el Raspberry Pi en el cuadro a continuación, y tienen que hacer muchas cosas, incluyendo el control de los dispositivos de salida. Por ejemplo, en mi circuito tengo un LED que se activará cuando la temperatura supere los 40 grados Celsius.
  4. Para hacer clic en el gatillo de disparo LED de nueva situada en la parte superior de la página. Nombre esta activar el gatillo LED.
  5. Ahora arrastrar el Pi en el caso de la caja y luego seleccione el sensor de temperatura de nuevo con 40 grados centígrados por encima.
  6. Ahora arrastrar el Raspberry Pi en cuadro a continuación. Seleccione nuestra salida digital y marque la casilla de verificación activada.
  7. Ahora haga clic en Save trigger.
  8. Ahora, cada vez que nuestro sensor de temperatura conectado al Pi informe una temperatura superior a 40 grados Celsius, enviará un correo electrónico y encenderá el LED.También necesitarás agregar otro disparador para apagar el LED cuando caiga por debajo de los 40 pero lo dejaré por ahora y pasaré a eventos.

Mydevices cayennem Disparadores

Eventos

Los eventos en Raspberry Pi Cayenne son algo similar a los desencadenantes, pero son dependientes del tiempo en lugar de confiar en un cambio en un sensor o el propio dispositivo. La configuración de un evento es bastante fácil,asi que por ejemplo vamos a ver cómo configurar su Pi para reiniciarla una vez al mes.

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccionar evento en el cuadro de abajo.
  3. Ahora debería ver una pantalla con un calendario y un popup llamado nuevo evento.
  4. Ingrese los detalles de su evento. Por ejemplo, la mina se llama reinicio mensual y sucederá el primero de cada mes a las 2am. A continuación se muestra un ejemplo de la pantalla.

Cayenne eventos con detalles

  1. Una vez hecho esto, haga clic en Guardar.
  2. Ahora debería poder ver su evento en el calendario. Simplemente haga clic en él si desea editarlo.

Como usted podría imaginar los acontecimientos pueden ser bastante poderosos así que valdría la pena de mirar en éstos más. Un buen ejemplo de uso de eventos sería si necesita algo para ejecutar o encender. Otro ejemplo es algo como luces que necesitan ser encendidas en un momento específico.

Panel GPIO

El panel GPIO en Cayenne  le permite controlar y alterar los pines en el Pi.Por ejemplo, puede convertir un pin de ser una entrada a una salida y viceversa. También puede activar los pines de salida bajos y altos.
Panel Cayenne GPIO
Como se puede ver también hace que una gran hoja de referencia si necesita volver a ver y ver qué pins son los que necesita. También puede ver los dispositivos que están actualmente asignados a pines específicos. También puede ver el estado actual de un pin. (Por ejemplo, entrada o salida y baja o alta)

Escritorio remoto

Se puede conectar a la  Pi a través de Secure Shell o tambien   con VNC. Si ha  instalado cayenne también puede escritorio remoto a su Raspberry Pi a través del navegador web o a través de la aplicación móvil. Puede hacerlo simplemente haciendo lo siguiente.

  1. En el tablero de mandos encontrar el widget que dice «comandos».
  2. Dentro de este widget haga clic en acceso remoto.
  3. Ahora se conectará al Pi y abrirá una nueva ventana. Si una nueva ventana no abre su navegador probablemente lo bloqueó. Simplemente permita que cayenne.mydevices abra nuevas pestañas.
  4. Una vez hecho usted puede controlar su Pi como si estuviera allí con él.
  5. Uno de los profesionales con el uso de Cayenne para escritorio remoto es que se puede acceder a ella en cualquier parte del mundo con bastante facilidad en lugar de la necesidad de configurar una VPN o abrir los puertos de su red.

Sin duda es un ejemplo muy sencillo pero que demuestra la gran potencia del agente de Cayenne para aplicaciones de IoT con su Raspberry Pi

 

Fuente   aqui