La navegación eléctrica es posible


Siempre hemos tenido yates capaces de generar su propia electricidad a partir de energías renovables, por supuesto, y a medida que los electrodomésticos a bordo se han multiplicado, también lo han hecho las demandas de energía fuera de la red. Pero el objetivo final de reemplazar de forma fiable el motor diésel por un motor eléctrico equivalente ha resultado hasta ahora esquiva. Aunque un yate a vela  requiere muy poca potencia para lograr la velocidad del casco en condiciones de calma, todavía necesitará alrededor de 3cv por tonelada cuando se navega  en un mar intenso como reserva de potencia , tanto  esa así que de hecho muchos regatistas también prefieren tener un motor en reserva, por lo que un moderno yate de 40 pies (12 m) por lo general equipará un motor  interno entre 55cv y 80hp (72-104kW).

Pero todo eso está cambiando, y ahora es posible un barco libre de combustibles fósiles gracias a los enormes avances en el mercado de los vehículos eléctricos. Los nuevos motores electricos  sin escobillas proporcionan más torsión para menos energía, mientras que las nuevas baterías de litio pueden almacenar una mayor capacidad y, crucialmente, un ciclo profundo repetidamente sin daños. Aprovechando al máximo todos estos activos estamos ante  la nueva generación de controladores digitales, que gestionan el flujo de energía con inteligencia predictiva. Todo esto ha significado que cada amplificador posible se burla del sistema renovable, cuidadosamente almacenado con un mínimo de residuos, y luego utilizado sabiamente por el motor.

Para probar esta tecnologia , un grupo de estudiantes franceses acaba de circunnavegar el mundo en un yate reacondicionado con un sistema de propulsión totalmente eléctrico, y diseñado para recargar principalmente del movimiento a través del agua. Mientras tanto, firmas como Oceanvolt (Finlandia) y Electric Yacht (California) se han creado para proporcionar soluciones totalmente eléctricas para barcos de hasta 60 pies (18 m) de longitud. Decenas de yates ya han sido electrificados, y con cada conversión exitosa, se aprenden más lecciones

Asimismo el constructor de yates austriaco Frauscher fue el primero en aprovechar la pila de combustible para proporcionar un día completo de automovilizado a partir de hidrógeno de origen renovado

Para los propietarios de estos yates convertidos, no se trata realmente de ahorrar dinero. Como reveló el proyecto financiado con fondos europeos Hymar, no hay muchos ahorros de costes relacionados con la instalación de un sistema híbrido, principalmente porque el kit sigue siendo relativamente especializado y todavía bastante caro. En cambio, se trata de las alegría de un crucero suave y silencioso con cero emisiones, un mantenimiento continuo mínimo y una gran reserva de energía eléctrica para cargas domésticas. Otra ventaja es la entrega instantánea de la unidad, que puede tomar un yate de apagado a velocidad de flanco en pocos segundos, útil en situaciones de colisión. También puede ser útil girar el apoyo a sólo unas pocas rpm sin enganchar una caja de cambios torpe para maniobras de precisión.

 

El yate francés de 38 pies Amasia acaba de completar una circunnavegación global de 35.000 millas(incluyendo 500 millas de motor eléctrico) cubriendo todas sus necesidades energéticas enteramente a partir de fuentes renovables , lo cual es ciertamente esperanzador el simple hecho de cómo nos  podemos  imaginar un mundo ya actual  donde podríamos     ser capaces de navegar por los rincones más lejanos de la Tierra sin tener que buscar una bombona  de gas para la cocina, o combustible  para el motor intraborda de gasoil 

Pues en efecto hoy en día, esto  que podría ser  utópico , a dia de hoy  ya es bastante factible, porque su cocina y un potente motor principal pueden ser totalmente eléctricos,   pudiendo  el banco de baterías de iones de litio moderno   recargarse rápidamente mediante una combinación de paneles solares ,  generadores eolicos de viento,  una hélice de giro libre o un hidrogenerador.

Los generadores eólicos, los paneles solares y los hidrogeneradores retorces son las tecnologías clave aquí. Cada uno tiene sus propias fortalezas y debilidades, y un barco de crucero bien configurado tendrá dos o incluso tres opciones. Con, digamos, 240W de energía solar, una generación  eólica de 300W y una generación remolcada, debería ser posible cubrir la mayoría de las demandas de electricidad ‘hotel’ sin aire acondicionado, lavadoras /lavavajillas  y generadores de agua de alto rendimiento.Veamos  con más detalle de lo que estamos hablando

 

Generador eólico

Esta es una manera probada y probada de generar grandes cantidades de energía en el paso. Las unidades marinas suelen tener una clasificación de 300-400W, pero solo generaran ea potencia  a las velocidades de viento en las que preferirías no navegar. Funcionan igual de bien en el ancla o en el puerto deportivo, pero pueden dar problemas  así que elija este cuidadosamente y elija un buen regulador que pueda dosificar  la carga, así como bombear la energía. Eclectic Energy D400, Rutland, Leading Edge y Air Breeze son buenos vendedores.

Mas informacion se puede encontrar en  duogen.co.uk  ,marlec.co.uk  o en leturbines.com

Paneles  solares

Los paneles fijos y flexibles son ahora igualmente eficientes (12-18%) pero el reto esta en  cómo y dónde encajarlos para obtener el máximo efecto. Asimismo se necesita añadir un regulador solar para  la mas minima instalación incluso de  unas pocas decenas de vatios .

Siempre deberemos  optar por uno de potencia  máxima   que exceda  la de la instalación de paneles  y que sea  de buena calidad. Un pequeño panel puede cargar la batería, mientras que las matrices más grandes pueden soportar  10-20A-plus durante el calor del día.

Modernamente  gracias a la evolución de los paneles fotovoltaicos en cuanto a rendimiento , peso y flexibilidad ,   incluso para obtener una superficie más expuesta , hay entusiasmas que  fijan  los paneles  a las propias velas

electric yachts

Por  ejemplo el Arcona 380Z tiene 1000W de paneles solares establecidos en la vela principal, complementados por más en largueros y cubiertas

Más información sobre paneles solares para su uso en nautica  en ecopowershop.com ,marlec.co.uk   o en  barden-uk.com

 

Propulsión híbrida

La mayoría de los sistemas híbridos utilizan un motor diésel con un motor eléctrico reversible conectado a la caja de cambios.  Estos generan grandes cantidades de electricidad mientras que el motor diesel impulsa el barco o  para demandas más cortas de energía, se puede utilizar el motor eléctrico por sí mismo. Algunos llevan este sistema un paso más allá, reemplazando el motor por un generador que se puede usar  a tiempo completo para alimentar el motor si es necesario.

Incluso otros diseñadores  utilizan el sistema como una generación de remolque para producir electricidad a partir del movimiento del barco a vela.

Alimentar un motor eléctrico relativamente potente (10kW/13hp+) durante cualquier período de tiempo requiere un gran banco de baterías, y las cargas altas pueden drenarlas rápidamente. Hasta la fecha, el problema de la propulsión eléctrica dedicada ha sido el almacenamiento , por lo que se ha llegado a un compromiso práctico con una instalación híbrida. Un motor de combustión de tamaño pequeño a mediano se hace cargo del deber de propulsión en períodos de alta demanda, o cuando las baterías se agotan. El motor también gira el motor eléctrico como un generador. Una vez que las baterías están rematadas, los eléctricos están una vez más disponibles para funcionamiento silencioso. Debido a la necesidad de un “extensor de alcance” adicional, la propulsión eléctrica ha sido generalmente un complemento para un yate de crucero, y no el único proveedor.

electric yachts
El sistema eléctrico de transmisión y gestión de energía a bordo del Arcona 380Z permite que el yate motore a 4kt solo con energía solar y un controlador simple proporcione energía instantánea sin necesidad de una caja de cambios torpe,

Mas información sobre populsion hibrida en nautica  en  oceanvolt.com ,bellmarine.nl   o en  hybrid-marine.co.uk

 

Hidrogenador

Relativamentes recién llegados, prometen un excelente poder en el pasaje. A velocidades de crucero, pueden generar hasta 20A de salida constante para la pérdida de típicamente 0.2kt de velocidad del barco. El montaje es una consideración clave: algunos, como el H240 de Save Marine, tienen marcos para subirlos y bajarlos al agua, mientras que el Ampair es una hélice en una cuerda que remolca.

Mas información sobre populsion hibridaen nautica  en wattandsea.com ,save-marine.com ,duogen.co.uk o en seamap.com

 

Desarrollo de la tecnología de la batería

En el mercado marino, el fabricante holandés Mastervolt fue el primero en ser pionero en la batería de iones de litio de tamaño completo, disponible en 12V o 24V, y ahora en su segunda generación, la gama Ultra. Se afirma que estas baterías tienen un ciclo de vida de al menos 2.000 descargas profundas de hasta el 80 por ciento de drenaje, pero con un tercio del peso de un diseño equivalente de plomo-ácido. La electrónica compleja sobre cada célula garantiza un equilibrio perfecto y ningún riesgo de sobrecarga. Mastervolt fue pionero en la batería de iones de litio marina, ofreciendo ligereza con descarga profunda, ideal para la propulsión

En otros lugares, los científicos han hecho un gran avance con la batería de aire de litio, que utiliza oxígeno como uno de los reactivos. La reclamación es una batería que eventualmente se puede hacer por una quinta parte del precio y una quinta parte tan ligera como el litio, pero podría hacer que los teléfonos, coches y barcos operen cinco veces más.

Otras investigaciones están sondeando la física de otros materiales, como magnesio, oro ‘nanohilos’, sodio-ion, y la formulación de carbono, grafeno. La empresa española Graphenano ha desarrollado una batería de polímero de grafeno llamada Grabat, que afirma que es del 33 por ciento del peso del ion de litio y cuatro veces la densidad energética. Mejor aún, las baterías se afirma que se recargan 33 veces más rápido que el ion de litio, y retienen más del 80 por ciento de su capacidad después de miles de ciclos.

Además, la tecnología de pilas de combustible de hidrógeno también ha estado avanzando. La versión ST vio estaba trabajando en una lancha de 5kW, proporcionando 5 nudos para un día completo de conforz.

Avances en motores eléctricos

Los avances continúan en el mundo de los motores eléctricos, siendo uno de los más recientes Siemens. Inusualmente, este motor ha sido diseñado para la industria aeronáutica, y con un peso de sólo 50 kg entrega un continuo 260kW (348cv), aproximadamente cinco veces más potencia que sistemas equivalentes. Además, esto se entrega a sólo 2.500 rpm, por lo que se puede conectar directamente a la hélice sin transmisión.

El mercado del motor fueraborda también ha visto una serie de innovaciones, en particular por parte de la empresa austriaca Torqeedo, que ahora puede ofrecer motores eléctricos sin escobillas (sincrónicos) de hasta 80 cv. Torqueedo lanzó no menos de seis nuevos sistemas de propulsión este año, respondiendo a la creciente demanda de unidades fueraborda y de vainas de baja tensión tanto para embarcaciones de ocio como comerciales

electric yachts
Torqeedo ha desarrollado su gama para incluir motores capaces de planificar velocidades

Algunos motores marinos todavía requieren sus propios sistemas de refrigeración, tanto en modo de accionamiento como de regeneración, pero otros, como los accionamientos de vainas y los accionamientos de llantas, operan fuera del barco, por lo que se enfrían en la caja y, como ventaja, se pueden conducir.

Asimismo tampoco  faltan  usuarios  que sustituyen el motor intraborda  por unos motores DC   de potencia  considerable   manteniendo la hélice original haciendo adaptaciones  bastante ingeniosas   para acoplar el eje de la hélice al eje del motor

 

electric yachts

Cooper Anderson, propietario de Gulfstar Sailmaster 39 sloop Panormos, encontró un motor eléctrico quiettorque de 10 kW (13 cv) era fácil de encajar, y da un alcance notable

Cómo construir un banco de energía con supercondensadores.


Recientemente se ha introducido en el mercado los “supercondensadores” o lo que es lo mismo condensadores de gran capacidad pero que mantienen prácticamente el mismo factor de forma que los condensadores electrolíticos que estamos acostumbrados a usar en electronica . 

Un aspecto muy diferenciador  de esta nueva tecnología  es que gracias a esta se puede  almacenar energía sin reacciones químicas , lo cual permite que los súpercondensadores se carguen y descarguen mucho más rápido que las baterías y debido a ello  no sufren el desgaste causado por las reacciones químicas, también durando mucho más tiempo (como sabemos a diferencia de los condensadores ordinarios, las baterías almacenan energía en una reacción química, y debido a esto, los iones se insertan realmente en la estructura atómica de un electrodo : a diferencia de un condensador, los iones simplemente “se adhieren”.)

Normalmente si  descargamos nuestra batería del coche a menudo e intentamos arrancar nuestro coche una vez más ,esto  causará más daño a la batería del coche y eventualmente  no cargará de nuevo , hasta que llegue un tiempo rodando otra vez. Sin embargo esto no es cierto para los super-condensadores: por ejemplo un condensador tradicional del tamaño de una batería de célula 18650  , tiene una capacidad de aproximadamente 20 microfaradios, pero si tomamos un supercondensador  de tamaño similar, este  puede llegar a tener una capacidad de 300 Farads lo que  significa que para la misma tensión, el supercondensador  podría en teoría almacenar hasta 15 millones de veces más energía.

 A pesar  del gran avance ,sin embargo no todo son ventajas en los condensadores pues un condensador típico de 20 microfaradios sería capaz de manejar hasta 300 voltios, mientras que un ultracondensador solo puede llegar  a soportar  2,7 voltios, lo cual significa que  si se usa un voltaje más alto, el electrolito dentro del supercondensador comienza a descomponerse  y podría por tanto llegar a destruirse: por este motivo en realidad un super-condensador tiene la capacidad de almacenar alrededor de 1.500 veces la energía de un condensador de tamaño similar.

Por todo esto los supercondensadores  aunque  el campo de aplicación es muy grande : alimentación de emergencia ideal para CMOS, RAM, VCR, radio, televisión, teléfono, instrumentos inteligentes, datos de conducción, tres ICs, relojes electrónicos, linternas LED, dispositivos inteligentes, motores de juguetes, pantalla DC, USV industrial, válvula magnética, IC, reflectores LED, etc.    deberíamos  tenemos  tener en cuenta algunas consideraciones ya comentadas antes de proceder a  usarlos.

Preparación de un supercondensador

Como hemos ya comentado los supercondensadores deben  ser cargados SIEMPRE con circuitos de carga balanceadas pues sin estos corremos el riesgo de destruirlos .No obstante si piensa que son complejos no es así puesto que  estos, circuitos son asequibles de bajo costo  , sencillos ( en realidad hablamos de  un simple circuito de conmutación que no deja pasar la tensión de carga al condensador por encima del umbral )  y  son  muy fáciles de instalar pues van encima de cada condensador ya que están diseñadas con la misma forma para colocar estos justo encima y dar continuidad eléctrica ( y carga ) al conjunto

Por ejemplo si conectamos 5 supercondensadores en serie a 12v  el  voltaje no se dividirá por igual entre los diferentes terminales de los condensadores (2.2V),lo cual ya no está dando una pista de sus limitaciones especialmente a la hora de cargarlos puesto que en caso de asociación serie ,  hasta que cada supercondensador esté completamente cargado,  el voltaje en los extremos de cada condensador subirá y bajará casi como en vumetro de leds precisamente :es precisamente esta la razón  por la que  debemos usar un circuito de protección que proteja los condensadores labor que realizan las placas balanceadoras las cuales mantiene el voltaje entre los condensadores entre 2.7V o menos , es decir los mantiene en  la zona segura de funcionamiento segura cortando la tensión de carga cuando se supera ese valor protegiendo así de este modo al supercondensador

Estas placas por tanto nos descargan de un  trabajo tedioso  pues para cargar un simple condensador de 2.7V 500F   con 2.4 v de forma segura sin usar una placa balanceadora deberíamos conectar un voltímetro y un amperímetro simultáneamente durante unos 30 minutos para llegar casi a los 2V con una intensidad de unos 0.19Amp controlando en cada  momento que no se supere  el umbral . Una vez cargado aunque baje la tensión estos se comportan manteniendo la corriente casi invariable

 

Vamos a ver como calcular la capacidad  resultante de la asociación mas tipica de 5 supercondensadores  

  • En el caso de dos condensadores serie sabemos que esta es la capacidad resultante  es  1/c= 1/c1+ 1/c2

Por tanto la capacidad resultante será : 1/Cfinal= 1/500+ 1/500  =>  Cfinal =250F  

Asimismo  las tensión final es el sumatorio de las parciales:V=V1+v2

Es decir  V= 2.7 +2.7 =5.4V                                                                                                                                                                                                                          

  • En el caso de  tres  condensadores serie sabemos que esta es la capacidad resultante  es

      1/c=1/c1+1/c2+1/c3    lo que da  Cfinal=  166.67F

        Asimismo  las tensión final es el sumatorio de las parciales:    3x 2.7V 500F =8.1v                                                                                                                                                                                                                                                                                      

  • En el caso de cuatro condensadores serie  1/c=1/c1+1/c2+1/c3 +1/c4

Por tanto la capacidad resultante será Cfinal=125F

Asimismo  las tensión final es el sumatorio de las parciales:4 x 2.7V 500F =10.8V                                                                                                                                                                                         

  • Finalmente en el caso de cinco condensadores serie 1/c=1/c1+1/c2+1/c3 +1/c4+1/c5

Por tanto la capacidad resultante será Cfinal=100F

Asimismo  las tensión final es el sumatorio de las parciales  5* 2.7V 500F =13.5V , que es justo el valor que queremos llegar        

 

 

 

 

 

Calculo final

En el calculo anterior de  5 supercondensadores serie  obtuvimos  una tensión útil de 13.5V d3l conjunto   pero con una capacidad final  muy mermada de 100F  así que para aumentarla  si tomamos dos agrupaciones de 5  condensadores en serie  en  paralelo la  capacidad aumentará manteniéndose la tensión final;

 

 

La  capacidad  de este conjunto  aumenta justo el doble tal y como nos dicen los cálculos

          1/cfinal= 1/c1+1/c2+1/c3 +1/c4+1/c5 + 1/c6+1/c7+1/c8 +1/c9+1/c10  =>

         1/cfinal= 1/500+1/500+1/500 +1/500+1/500 + 1/500+1/500+1/500 +1/500+1/500 =>

          cfinal=200F  

Asimismo  las tensión final es el sumatorio de las parciales de una agrupación al estar ambas en paralelo

Es decir  V= 10 x 2.7V = 13.5V

En resumen    tenemos  con ambas agrupaciones  un supercondensador equivalente   de 3.5V 200F

 

Como C=As/V ( AS=Amperios por segundo) , entonces AS=C+V,

 AS= 200F x 13.5V =2700 Amp/seg   

Vemos   que para nuestra agrupación  serie y paralelo de 10 supercondensadores  obtenemos pues  una capacidad en AS  de 2700 Amp/seg

 

Por otro lado como la capacidad de un acumlador normalmente se mide en  unidades  de tiempo (AH= Amperios hora)  como AH =AS/3600s

C (en Amphora) =2700 (enAmp/seg)   /3600= 0.75Ah

Vemos   que para nuestra agrupación de 10 supercondensadores  una capacidad en AH de 0.75AH  que sería la capacidad de esta agrupación , lo cual  nos hace ver en números  que con estas agrupaciones siguiendo estas fórmulas ya comentadas  necesitamos bastantes elementos (  por ejemplo  para obtener un powerbank de 15AH necesitaríamos  unos 200 supercondensadores de 2.7V 500nf)

Una vez hecho los cálculos  llega el momento de construir el  banco de supercondensadores , para  lo cual lo primero es soldar los condensadores a las placas de  protección respetando escrupulosamente la  polaridad  .

Ya montados los módulos de condensador con las placas toca interconectar estos   para obtener  los 0.75AH    . Debemos   tener en cuenta ,dada la corriente que debe pasar por estos cables  que deberemos hacer   la interconexión   con cables  de cobre   de cierto espesor . En este sentido como un cable de 1.1mm soporta  unos 99 Amp en alterna  lo ideal es usar varios cable juntos para que no haya problemas   de calentamiento de estos

Este es el resultado final del montaje

 

 

Medición  de corriente  y tensión de carga

La mejor manera de monitorear la carga de  un acumulador o una  la agrupación de supercondensadores es usar  un medidor multifuncional de panel , pero !atención !  , porque este debe ser especial  para  corriente continua, lo cual será claramente evidente cuando  sea necesario un shut  que deberemos conectar en serie con la carga  (en nuestro caso el banco de supercondensadores)

Normalmente en estos medidores  el shunt se conecta  en  el polo negativo en serie con la carga   en el que precisamente  en ambos extremos  conectaremos  los hilos de medición  siguiendo el esquema siguiente 

Este tipo de multímetros  DC 4 en 1  suelen tener  una precisión de medición de grado 1.0, combinando  la medición de voltaje, corriente, potencia y energía en un combo, súper compacto y liviano que puede ser portátil y fácil de usar.   También  suelen  tener una  función de alarma mostrando el voltaje parpadeando  la luz de fondo  simultáneamente si el voltaje va más allá del umbral de alarma   que se puede establecer si es necesario( el rango va desde   6 a los 90v ).

Además estos instrumentos almacenan automáticamente los datos de  la última prueba de modo que  cuando se  apagan  el valor energético se puede restablecer por una pulsación corta el botón de función en segundos.

En  concreto este medidor, puede medir voltios, amperios, vatios y energía individualmente contando con un shunt de 100 A / 75 mV, adecuada para mediciones de gran alcance . Cuenta  con una pantalla Digital Súper Grande de  51x30mm de  LCD azul para mostrar la tensión, corriente, potencia y la energía.  Con este medidor, puede medir voltaje 6.5V – 100V DC, amperios 0.0A – 100A y vatios 0.0w – 10Kw.

 

 

Si tiene dudas sobre su uso en este video podemos ver el medidor   en funcionamiento  usando precisamente  est  para monitorizar la carga de nuestro conjunto de 10 supercondensadores

 

Conclusión 

Realmente ya hemos visto como montar  los supercondensadores  para fabricar  un banco de energía de supercondensadores  para uso doméstico utilizando  placas de protección  para ensamblar los condensadores   de 2.7V 500F  montados en una combinación mixta de serie y en paralelo de forma segura.

El valor total de la capacidad de los  10 supercaps resultante de es  de 13.5V ,como hemos calculado es de 200F  que traducido a Ampx hora es de  0.75AH .siendo e tiempo de carga promedio para este paquete de unos 8 minutos  utilizando un  cargador lento  comercial  tradicional  de  batería del automóvil.

No nos cansaremos de repetir que las placas de carga son imprescindibles  porque  protegen los condensadores de daños por sobretensión.

 

Finalmente  en este video podemos ver el montaje de este conjunto   y su utilización practica

 

 

 

Sencillo soldador de puntos


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues está muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ). Además  hay tambien un motivo obvio : si no contamos con un  horno microondas¿  vamos a tener que comprar un transformador de microondas  ( nuevo o no)   y que tendremos que desmontar?

 

 

Bien  en un  post  anterior vimos como una alternativa  a  los soldadores de punto basados en transformadores  de microondas era  usar supercondensadores  , pero   son caros  y dificiles de conseguir , así que es bueno explorar otras alternativas como  pueden ser las  baterias de automovil ( nueva  o usada ) como fuente de energía

Como parte de un proyecto de dotar de un nueva  batería  de litio  a un precio razonable   basada  en celdas 18650  para una bicicleta de montaña eléctrica  el autor de este proyecto (Rory ) necesitaba una gran batería de litio  que encajasen  en su presupuesto según sus  especificaciones:

  • Barato: solo se planea si es a bajo  coste
  • Confiable : deberia  poder ofrecer  más de 500 pares de soldaduras por puntos para hacer
  • Fácil y rápido de hacer -:idealmente usando piezas que se pueda  disponer r
  • Relativamente seguro: No hay altos voltajes presentes

Rory necesitaba ser capaz de soldar la tira de níquel a los terminales celulares 18650 para fabricar   su soldador ocasional  .   Los soldadores  18650  de punto están ampliamente disponibles en la red y probablemente valga la pena la inversión si usted tiene la demanda para ello. Sin embargo, como Rory sólo planeaba construir una batería, realizó su propio soldador de puntos  sin tener que adquirir uno comercial.

Para situarnos ,una búsqueda rápida de YouTube nos ofrece  el canal de darkkevind  donde demuestra su soldador basado  en  una batería de coche estándar conectada a un solenoide motor de arranque de moto. El solenoide se activa mediante un pulsador que cambia la potencia a dos electrodos de soldadura hechos de clavos de cobre. Su diseño es funcional  pero como todo en este mundo  se puede mejorar para  hacer un sistema más confiable  como el que vamos a ver en las líneas siguiente con el diseño de Rory.

 

 

Soldador con bateria de 12V 

El diseño de Rory  cuenta con un solenoide de arranque DELCO 130493  como  interruptor   de potencia para conectar  momentáneamente las bornas de la batería a las puntas de soldadura .Como el lector puede adivinar  en realidad   para este proyecto en realidad   puede usar   cualquier solenoide de motor de arranque de 12V  ( incluso aunque sea para motocicleta) .

En este modelo en concreto es  muy interesante   el diseño de los terminales que pueden  ser vinculados muy bien a una abrazadera de terminal directamente a la batería y además el soporte también permite montar el gabinete de electrónica junto a este  .

Como puede apreciarse en la imagen los terminales laterales  son los de interruptor del relé, es decir las conexiones de potencia que conmutará el solenoide  .Obviamente do las  conexiones centrales  son las de la bobina del solenoide ( de ahí su menor dimensión) 

 

Como se puede apreciar los pernos de terminales solenoide de 8 mm se sujetan muy bien en los terminales de la batería y la bobina solenoide está entre el perno pequeño en el soporte derecho y el soporte de montaje

En el  montaje del Rory el  solenoide es controlado por un circuito de temporizador construido alrededor del multivibrador monoestable dual de precisión  CD14538BE  de Texas Instrument que funciona en modo “no refrigerable”. 

Como rory no ha compartido la configuración del circuito  vemos   abajo  un multivibrador monoestable usando IC CD4538. Es un IC multivibrador monoestable/aestable de precisión libre de activación falsa. Esto se puede utilizar para varias aplicaciones en las que se requiere un ciclo de sincronización preciso.  CD4538 es el IC multivibrador monoestable/estable de precisión que está libre de activación falsa y es más fiable que el popular temporizador IC 555.

Aquí el IC se conecta como temporizador monoestable de corta duración usando el r1 y el C1 como componentes de sincronización. Con los valores dados, la salida de IC1 permanece baja durante tres minutos. Cambiando el valor de C1 o R1 se pueden obtener varios intervalos de tiempo, que  son los valores   que deberemos ajustar para unos 20ms   ( idealmente 10 y 110 ms a través de un potenciómetro) .

A diferencia de 555 IC en el modo monoestable, aquí en CD4530, la salida de IC se vuelve alta en el encendido y se vuelve baja cuando el pin 5 del gatillo consigue un pulso de transición bajo a alto. Cuando se presiona S1, el pulso de alta marcha activa el IC y su salida baja. Esto impulsa la carga a través del transistor PNP T1. La carga puede ser un LED, zumbador, etc.  Lógicamente para cargas más grandes ( como es en este ejemplo) no basta un simple transistor de pequeña  potencia( como en el esquem  de abajo)  pues la bobina solenoide deberia ser  accionada con un transistor de potencia  como por ejemplo  un mosfet FQP30N06L. 

En la solución final basada en el circuito anterior  y que el autor no ha compartido , además   usa algunos  componentes  pasivos adicionales para eliminar el rebote de un interruptor de pie básico . La bobina solenoide es accionada por un mosfet FQP30N06L  ( con su correspondiente diodo en paralelo)  . Además  el temporizador es ajustable entre 10 y 110 ms a través de un potenciómetro estando el circuito  alimentado por una batería separada de 9V aunque podría ser alimentado por la propia  batería del coche con el desacoplamiento adecuado.

De todos modos aunque no sepamos los valores exactos del esquema  del monoestable  que uso Roru ,    este montaje   se puede comprar ya montado  y probado  (buscar 12v DC Delay Relay Timer) por unos 6€  , lo  cual es importante no sustituye  al delco puesto qeu lso contactos del rele   de este tipo de circuitos  no supera 10A con 220V en ac (2200w) , claramente insuficiente para la corriente de soldadura que sera a 12V pero en CC  

A pesar de la conmutación lenta del solenoide, los contactos permanecerán cerrados durante la misma duración que la corriente que se suministró a la bobina. En este caso  el solenoide tarda alrededor de 5 ms para cerrarse, pero el diodo a través de la bobina mantiene el campo magnético activo, permitiendo   enviar  pulsos precisos en el ajuste mínimo de 10 ms del temporizador

Todo esto está montado en una carcasa de aluminio fundido a presión. Tenga en cuenta que la bobina solenoide está conectada entre el terminal de tornillo ‘S’ y el soporte de montaje. El terminal ‘I’ es el contacto NC del solenoide, no una conexión de bobina…

Otros aspectos interesantes constructivos  es  que los electrodos se fabrican utilizando clavos de cobre soldados a longitudes cortas de cable trenzado de 8 awg. Las uñas de cobre se pueden afilar rápidamente utilizando un archivo, por lo tanto, no requieren que sean reemplazables. Unas pocas capas de termorretráctil proporcionan aislamiento térmico y eléctrico.

 

 

Como en las primeras pruebas se hicieron con una batería nueva y la resistencia interna es muy baja, el  resultado fueron  pulsos de corriente muy altos que destruyen las tiras de níquel si el pulso superaba los 20 ms ,  Rory  experimentó con una “resistencia limitante de corriente” formada por una longitud de alambre de relleno de soldadura TIG de 1,6 mm lo cual le  permitia ejecutar pulsos de soldadura de corriente más baja y así encontró que el resultado era una soldadura mucho más fuerte con  un pulso de corriente más corto (  usó un conductor con una longitud aproximada de 50 cm).

Como después del primer pulso la resistencia estaba muy caliente, aumentando la resistencia lo que  hizo que el rendimiento no fuese fiable en las siguientes soldaduras   la solución fue sumergir el cable en agua  mediante un buen vaso de plástico Ikea ( con una base muy gruesa y algunos pernos M8 que aseguraron todo juntos y mantuvieron el agua dentro).

 

 

 

Cabe señalar algunos puntos interesantes de este montaje:

  • Un pulso de alrededor de 40ms produce las mejores soldaduras con esta  configuración. Arrancar la tira de níquel de la 18650 dejaría la parte soldada todavía unida a la batería rasgando el níquel circundante.
  • La batería del coche debe estar conectada a un cargador durante el uso si se hace una gran cantidad de soldaduras. De lo contrario, el voltaje caerá, causando corriente de soldadura poco fiable. Puede usarse  un cargador de corriente constante 5A que se puede dejar conectado durante la soldadura aunque aunque un cargador de 2A más o menos estaría bien.
  • Se requiere una presión uniforme firme en cada electrodo para hacer que cada soldadura por puntos sea de igual resistencia. Los electrodos de soldadura se calientan mucho lo cual debe tener en cuenta para no quemarse .
  • A medida que el agua que enfría la resistencia se calienta hacia su punto de ebullición, no puede eliminar el calor tan rápidamente de la resistencia debido al efecto Leidenfrost (donde las burbujas de vapor aíslan el alambre). Esto permite que la resistencia funcione más caliente, lo que reduce la corriente de soldadura. Suba  el temporizador de pulso a 50mS en este punto. El agua podría ser reemplazada, o un recipiente más grande utilizado para contener el agua de refrigeración.
  • Relativamente el proyecto es  seguro ,aunque es recomendable usar gafas de seguridad debido a las chispas  ocasionales. Guantes también sería una buena idea, así como trabajar fuera lejos de cualquier cosa inflamable.

 

 

Fuente original en  hackaday.io