Nuevos sistemas de carga


Los cables microUSB, se han convertido  en un estándar de de facto para cargar no solo nuestro smartphone  sino todos nuestros gadgets como cámaras,navegadores,reproductores de mp3,etc. Desgraciadamente estos cables  terminados en microusb no son tan ergonómicos como podría esperarse  , quizás  por culpa de su reducido espacio ,  haciendo que tengamos que rotarlos muchas  veces 180 grados para que encaje: da igual lo que hagamos, es algo que está por encima de la comprensión humana.

En efecto los cables microusb son un engorro pues para empezar necesitamos las dos manos libres para realizar la conexión y un buen ojo para encajar el conector en su posición correcta, ademas es sabida esta molestia por parte de los fabricante que de hecho todo parece  apuntar que desaparecerá  en  el futuro el conector microusb realizándose la carga de modo inalámbrico ( de hecho ya  se puede acoplar un receptor de carga   a cualquier smartphone como vimos en este post).

Mientras tengamos este conector , no obstante surgen nuevas ideas que nos pueden aliviar esa molestia  como la que vamos a ver …

Fruto de la innovación intentado solucionar los  muchos problemas de los conectores  micro-usb en efecto han surgido los sistemas de carga magnéticos  basado en un pequeño “tapón” magnético que se conecta a la entrada USB del terminal y un simple adaptador que se coloca en el cable, de forma que basta con acercar el cable al terminal  éste encajará automáticamente solo gracias a la “magia” del magnetismo. Además, permite sincronizar datos perfectamente.

Ademas, este  sistema es reversible, por lo que da igual de que lado acerquemos el cable, pues en  ambos lados  se enchufará igualmente, lo cual es ciertamente interesante para no  estar pendiente de   revisar de que lado ponemos el conector

El “tapon -conector” que introducimos en el terminal mide 9,25 milímetros de ancho, y sobresale  muy poco (1,5 de profundo y 4,75 mm de alto), mientras que el adaptador del cable  propiamente dicho mide 12 mm( mas o  menos lo que mide un conector “normal”) .
cable-magnetico

Pero la comodidad de este sistema  no es la única ventaja,  pues hay otra ventaja ya que  estos  adaptadores  son a prueba de polvo y suciedad, y por supuesto  también de agua o líquidos  por lo que protegerá nuestro  terminal de  posible salpicaduras en la zona del conector de carga

!ah y por cierto algunos modelos de cables magnéticos  incluyen  una luz LED que nos confirmará que el teléfono está cargando correctamente.

Respecto al precio no es muy disparatado pues por menos  5€  con gastos de envió se puede conseguir en Amazon 

 

Posiblemente este tipo de cables sea la mejor opción para todas aquellas personas que tengan dificultades para cargar no solo  teléfonos Android sino  tabletas que se carguen por el  puerto Micro USB( como la mayoria de modelos de Samsung, Xiaomi, Meizu, Huawei, HTC, Oneplus, Google, Blackberry,etc )  o incluso para cámaras digitales, juguetes o  iPad.

Cómo reparar un all in one


La oferta es tan variada que lo cierto es que da vértigo acercarse a la tienda si no se tienen las ideas más o menos claras. En realidad, la pregunta  a estas alturas es decidirse en    comprarse un portátil o un All in one pues en efecto los ordenadores cada vez   son mas elegidos para un uso fijo  .Ademas aunque estos equipos son muy valorados en oficinas con poco espacio dado lo compacto de su tamaño, se están convirtiendo en una opción cada vez más interesante  también en los hogares también por este mismo motivo, pero sobre todo por su sencillez: se enchufa y se comienza a utilizar  sin tener que ir andando de cables  ni  conexiones . Las marcas lo saben y han reforzado el apartado multimedia de los AIO, para convertir a este ordenador como centro de ocio para toda la familia.

En el post de hoy vamos a ver como arreglar un ordenador todo en uno que por un golpe súbito accidental    ha quedado inservible la pantalla TFT   por lo que no esta accesible   ya que la mayoría de este tipo de ordenadores   no dispone de una salida  de video independiente  

 

 

En este post vamos a  reparar un ordenador all in one  que presenta fallos generalizados en la pantalla provocados por un golpe accidental  funcionando  toda la electrónica adicional bien.

Un problema de este tipo   es grave  pues  no queda accesible el contenido del ordenador   ( a no ser que le queremos el Hdd),   ya que la mayoría de este tipo de ordenadores   no dispone de una salida  de video independiente  y por tanto no podremos usarlo nada 

Un fallo físico en el lcd de la pantalla  producido por un golpe súbito accidental  , caída ,etc  se puede manifestar de muchas maneras: grietas, rajas , tiras no iluminadas , trozos de la pantalla sin iluminar , etc , todos ellos indicio que necesita un reemplazo de la pantalla LCD en su conjunto  .

La mayoría  de los servicios técnicos  suelen ofrecer un alto precio por reemplazar  una pantalla de un portátil  o un all in one  básicamente porque normalmente montaran exactamente el repuesto original y estos tienen  un elevado precio, pero  como vamos a  ver, es factible cambiar nosotros mismos la pantalla por una nueva por  un tercio  de lo podría costar  por un servicio oficial.

 

Vayamos al grano , empezamos viendo por donde quitar el marco destornillando primero los tornillos de la parte de atrás:

img_20161213_155119

 

En este caso quitando dos tornillos atrás podemos liberar el marco delantero con una navaja de plástico  o un destornillador:

img_20161213_155137

Quitado el marco pues ,nos toca  quitar  l a tapa posterior  asi como soltar los alatavoces

img_20161213_155259

Ahora toca  desmontar la pantalla en bloque que va fijada al armazón central por los 4 lados:

img_20161213_155436

 

Como se puede observar hay que quitar el conector que viene de la placa madre con mucho cuidado

img_20161213_155556

En esta imagen podemos ver mas en detalle del conector en el que debemos extremar el cuidado al soltarlo:

img_20161213_155604

Ojo  pues suelen tener un segundo cable que suele ser el de la retroiluminacion y va en otro conector al lado de este (normalmente cerca de una esquina)

img_20161213_155815

Detalla del otro conector  asomando  en una esquina:

img_20161213_160021

 

img_20161213_160114 img_20161213_160135

img_20161213_160144

Ahora  ya podemos sacar la pantalla completa  y reemplazarla por una nueva. Para seleccionar una nueva lo importante es la numeración superior, es decir , en este caso LTM200KT10 20  .  

Un sitio en internet  donde suele haber este tipo de repuestos es Aliexpress (este modelo   concretamente) cuyo precio es contenido

 

pantalla

Ahora toca el proceso inverso: colocaremos ahora el nuevo en su posición correcta

img_20161213_160239

Ahora conectaremos el conector  grande:

img_20161213_160340

No debemos olvidar el segundo conector

img_20161213_160454

img_20161213_160525

 

Ya solo tenemos que  fijar el lcd  al armazón con los tornillos correspondientes:

img_20161213_160723

También es el momento de quitar la protección de plástico del LCD ( pues con  el marco sera mucho mas difícil eliminarlo):

 

img_20161213_160950

Ahora fijaremos el cuerpo a la carcasa inferior

img_20161213_161043

Mucho cuidado con olvidar el conector del segundo cable del TFT ( el de retroiluminacion)

img_20161213_161333

Fijaremos el resto de tornillos del cuerpo

img_20161213_161732

No olvidar los altavoces

img_20161213_162058

Ya solo nos queda poner el marco superior    y atornillar la tapa

img_20161213_162141

Y ya esta

img_20161213_162335

Y ahora toca probarlo  !y funciona nuevamente!

img-20161213-wa0012

 

En realidad  no ha sido  tan difícil esta reparación ¿verdad?

Regalos para apasionados de la tecnologia


En  la actualidad  se pueden encontrar todo tipo de artilugios tecnológicos a cualquier precio y para todos los gustos, pero a veces queremos llegar más lejos  construyendo nosotros mismos muestras propias creaciones . En esta linea, tanto para  potenciar nuestra creatividad ,como ayudarnos en nuestros proyectos hemos pensado en una lista de regalos tecnológicos que  quizás puedan servir de inspiración  .

Raspberri Pi 3

Actualmente es una de las placas mas potentes que existe (incluso mucho mas que Arduino y todos sus clones) gracias a su potente chipset Broadcom a 1.2 GHz con procesador ARM Cortex-A53 de 64 bits y cuatro núcleos,coprocesador multimedia de doble núcleo Videocore IV, memoria de 1 GB LPDDR2 y Bluetooth v4.1 así como sus conexiones :

  • Ethernet,
  • HDMI
  • VGA
  •  CSI,
  •  USB ( 4 puertos)
Esta nueva versión  integra un chip que la dota con conectividad Wifi y Bluetooth 4.1 de bajo consumo y cuenta con administración de energía mejorada que permite trabajar con más dispositivos USB,Permite usar más energía a los puertos USB. Podrás conectar más dispositivos a los puertos USB sin necesidad de usar hubs USB alimentados. También al no necesitar usar adaptadores WiFi por USB, tendrá más energía disponible en los puertos.
Raspberry pi 3
Para empezar a usar esta estupenda placa  tendremos que crear la imagen del SO en una SD  como describimos en este post. En cuanto a periféricos ,podemos conectar un ratón o teclado convencional con conexión usb ,  o la mejor opción ,optar por  un mini teclado y ratón  inalambricos a 2.4GHz que se pueden comprar por 15€ .Esta opción alimentada por baterías de litio , simplificará las conexiones al usar un sólo puerto usb para el dongle  y nos permitirá interactuar con la RPIII con mayor libertad.
raton y teclado en dongle
En cuanto a  la alimentación  podemos usar  un  cargador de móvil  convencional siempre que suministre al menos 1Amp (5VDC)  y si se pregunta por la caja , aunque se puede comprar lo mejor es construirnosla nosotros mismos ,al puro estilo maker.
La RPI como podemos ver en este blog , permite desde crear un ordenador económico  con Pixel (Debian) hasta un emulador de juegos clásicos ,un NAS, un hub domótico ,aplicaciones de IoT o el centro multimedia definitivo. Sale por 40 euros.

 

Kuman K11 Arduino

Para aquellas personas que opte por Arduino , exite un Kit de iniciación para Arduino con 31 componentes donde se incluye como no podia ser otra manera el corazón :na placa compatible con Arduino UNO R3.

Ademas por supuesto ,si le e gusta puede ir ampliando con más componentes. El precio del kit  básico incluido el Ardunino Uno R3 cuesta 46 euros.

 

 

Kit de inicacion para Arduino

Los componentes que incluye este kit son los siguientes;

  •  UNO R3 + cable USB x1
  •  Desarrollo Junta de Expansión x1
  • Mini tabla de pan x1
  •  Placa de pan 830 Point Solderless x1
  •  Caja de componentes SMD x1
  • LED (rojo) x5
  •  LED (amarillo) x5
  •  LED (verde) x5
  •  Buzzer activo x1
  •  Buzzer pasivo x1
  •  Mini botón x4
  •  Displays LED de siete segmentos (1 dígito) x2
  • Interruptores de bola x2
  • LDR (Resistencia dependientes de la luz) x3
  •  Potenciómetro x1
  •  Sensor de temperatura LM35 x1
  •  Sensor de llama x1
  • Sensor infrarrojo x1
  •  Resistencias de 220 ohmios x8
  • Resistencias de 1k ohmio x5
  • Resistencia de 10k ohmios x5
  • Cabezal de 40 pines x1
  • Hembra de 4pcs los 20cm al cable femenino x1 de Dupont
  •  Cables de puente x20
  • Batería 9V x1
  •  Clip de batería de 9V x1
  •  Control Remoto IR x1
  •  1602 Módulos LCD x1
  •  Servomotores SG90 9G x1
  •  Tarjeta de conductor ULN2003 x1
  •  Motor paso a paso 5V x1
  •  Caja de almacenaje x1

Este es un Super Starter Kit actualizado, desarrollado especialmente para aquellos principiantes que estén interesados en Arduino  con componentes de alta calidad,  pues como vemos, incluye un conjunto completo de componentes electrónicos útiles para Arduino conteniendo todos los componentes que necesita para comenzar su aprendizaje de programación para Arduino .

Es perfecto para las personas que desean iniciarse en el mundo del arduino o tengan alguna asignatura en sus estudios, ya que tiene una gran variedad de accesorios que le permiten “trastear” en el increíble mundo de Arduino ( la verdad no he visto que fuera necesario comprar nada mas). Todos los componentes ademas están organizados en una caja de plástico con separadores ,lo cual   se agradece para tenerlo todo recogido.

Los tutoriales detallados incluyendo la introducción del proyecto y el código fuente, contactando con el vendedor,   aunque en este humilde blog, o en Internet, encontrará miles de ejemplos para sacarle el máximo partido a este kit.

 

 

Memoria diminuta

Si su televisor o centro multimedia tiene capacidad para reproducir contenido desde una memoria USB, este modelo de Sandisk es USB 3.0 para una transferencia rápida de archivos desde su ordenador, y a la vez muy pequeño para que pase desapercibido en el puerto de su televisor.

El modelo de  64GB  sale por unos  17€  ,pero las hay de  128 GB  por  30€. ( o de capacidades inferiores de 16GB o 32GB rondando los precios entre 6€ y 10€)

 

memoria diminuta

SSD de 120 GB

Gracias a un disco sólido se  puede ampliar la vida útil de un ordenador y maximizar la inversión actual al sustituir la unidad de disco duro convencional ( que podrá seguir usando gracias a una económica  caja )   por una unidad de estado sólido (SSD) Kingston.

Esta es  la forma más rentable de mejorar de manera espectacular la capacidad de respuesta del sistema mejorando machismo el tiempo de arranque y en general el rendimiento  ya que el tiempo de acceso a disco  es espectacularmente mejor que en los discos convencionales.

Este modelo  incluyen una controladora LSI SandForce optimizada para memoria Flash de nueva generación con la que ofrecen el súmmum de la calidad y la fiabilidad de dos marcas líder de SSD. Al estar constituidas por componentes de estado sólido y no tener piezas móviles, son resistentes a los golpes y las caídas. Las unidades de estado sólido Kingston están respaldadas por soporte técnico gratuito y la legendaria fiabilidad Kingston

Este modelo de  SSD  con una capacidad de 120GB ( mas que suficiente para contener Windows 10) o de 2.5 pulgadas para potenciar su PC o para incluirlo en un NAS, sale por por poco dinero: 48 euros.

ssd de 12GB

Kit de herramientas

Ya sea para montar la última gráfica que le ha llegado ,así como para cambiar la pantalla rota de su smarthone ,la verdad es que  uno nunca sabe cuándo necesitará un set de herramientas tan completo pues incluye diferentes puntas para diferentes propósitos: puntiaguda para alta precisión, curvada para exactitud ergonómica y redondeada para levantar componentes más pesados

Son perfectas para tareas que requieran coger, sujetar, extraer y/o apretar con componentes .Incluye capa protectora contra la ESD para evitar dañar los componentes electrónicos sensibles

 

De iFixit y cuesta 55 euros. quizás un poco alto pero es sabido que esta marca destaca por su alta calidad ,asi que deberíamos  sopesar esta importante característica pues a veces nuestras herramientas no están a la altura de lo que esperamos de  ellas.

Clon de hromecast

La manera más sencilla y con más compatibilidad para ver contenido en un televisor controlando la fuente desde un smartphone. El original de Google cuesta sobre los 40€  pero hay  muchas versiones clónicas que hacen prácticamente la misma función  , por muchísimo  menos coste como por ejemplo el MiraScreen que cuesta sólo  14 euros. 

Este dispositivo soporta compartir Pantalla pudiendo usar Airplay, miracast o  DLNA (DLNA: Estándar) y la conectividad apoyada es  Wi-Fi: 802.11b / g / n inalámbrica de 2.4GHz WiFi 150Mbps  y  lleva  antena externa  WiFi para proporcionar 10M cobertura

La salida de vídeo es hasta 1080p HDMI de salida soportando  los formatos :

  • Video :AVI / DIVX / MKV / TS / DAT / MPG / MPRG / MOV / MP4 / RM / RMVB / WMV. Soporte de formatos de audio: MP1 / MP2 / MP3 / WMA / OGG / ADPCM-WAV / PCM-WAV / AAC.
  • Audio : .MP3, WAV.
  • Fotos : JPEG / BMP.

 

 

Mirascreen

El consumo de energía ultra bajo, consumiendo  pocas mA y es portátil compacto  para facilitar su transporte.

Hay  personas que lo usan en el coche  pues muchos reproductores de coche cuentan con soporte HDMI, de esta forma desde un teléfono inalámbrico podemos conectarlo  a la pantalla del coche convirtiendo su coche al instante en vehículo inteligente. Otras utilidad  de  est dispositivo es el  E-learning, reunión de negocios pues  nos liberamos de las ataduras de cable, siendo  las reuniones en inteligentes y eficientes. Tambien son perfectas para disfrutar de la gran pantalla como  Ver películas, jugar, crear su propio cine exclusivo,ver fotos juegos ,etc  .

Por cierto el mando a distancia se hace desde el propio  Teléfono ,Labtop o Tablet PC.

 

Sable electrónico Kylo Ren

Para terminar para los mas pequeños   ( o no ) , para practicar de cara a nuevos juegos de Star Wars o simplemente porque quiere ser  como un niño con zapatos nuevos. Este sable se ilumina y lo componen diferentes piezas teniendo el  mismo aspecto que la película.Incluye daga de luz  simulando clásicos sonidos y luces. Es ademas combinable con otros sables Master Jedi (se venden por separado)

Cuesta 30 euros.

sable laser

 

 

Conversión de carga inalámbrica para smartphones


La utopía de carga inalámbrica que describía Tesla hace muchos años con su famosas bobinas Tesla, esta  cada vez esta  mas cerca de ser factible  gracias a  la evolución de los sistemas de carga  inalámbrica no solo empleados en pequeños dispositivos electrónicos como pueden ser smartphones de gama alta  sino también en todo  tipo de aparatos eléctricos como pueden ser  los cepillos eléctricos o los actuales coches eléctricos

Realmente, con la tecnologia actual, podemos hablar de dos sistemas de carga  :

  1. Carga Electromagnética: Este tipo de carga es inductiva y utiliza un campo electromagnético para la transferencia de energía  asi que podríamos decir que usa un principio similar al usados en los transformadores tradicionales  con dos  bobinas donde ahora el primario esta fuera  y el secundario en dispositivo a cargar. Hablamos pues de carga  a corta distancia que  requiere casi contacto con los dispositivos.Hasta no hace mucho había tres contendientes en el mercado, pero Power Matters Alliance (PMA) y la Alliance for Wireless Powery aunaron sus fuerzas dando lugar al Wireless Power Consortium   dando lugar al standard   Qi que es usado en muchos  smartphones de alta gama de modo nativo (Nexus 4/5,Nokia Lumia Icon/810/822/920/928/1520,LG Optimus F5/Lucid2,Motorola Droid Maxx,Motorola Droid Mini y HTC Droid DNA Butterfly)   o  con carcasas especiales (LG G2,iPhone 4/4S/5/5C/5S,Nokia Lumia 820/925/1020,Moto X,Samsung Galaxy S3/S4/S5,Sony Xperia Z2,etc)  y  también  en el nuevo sistemas de carga inalambrico integrado en los muebles  de Ikea
    1. Algunas ventajas: No hay un riesgo de recibir una descarga ya que no hay contacto directo con la fuente de energía. Es segura incluso en contacto con agua.Es muy cómodo y evita averiar el conector del puerto microusb
    2. Algunos puntos debiles: El dispositivo que se encarga de la transferencia de energía en comparación con un sistema de carga cableado es sensiblemente inferior
  1. Carga por Resonancia: Este tipo de carga se da a una distancia de 50 centímetros. Se utilizan dos bobinas de cobre, una que hace el trabajo de enviar la energía de la fuente y otra que recibe la energía y que va conectada al dispositivo a cargar. La transferencia de energía se da cuando las dos bobinas tienen la misma frecuencia y están cerca.

 

En este post vamos a ver como es posible añadir  un cargador inalámbrico por inducción a cualquier smartphone  aunque este no venga preparado  para este tipo de  carga   .

Realmente el principio es sencillo pues la corriente continua producida por el cargador tradicional del móvil se volverá a transformar en corriente alterna por medio de un oscilador  y una bobina , y dicha energía se inducirá  desde la bobina transmisora hasta la bobina receptora que colocaremos en el dispositivo  a cargar junto a un  circuito convertidor ca /cc.

Aunque es posible fabricar tanto el transmisor como el receptor de carga inalámbrico uno mismo con  una bobina de cobre  un transistor  2sc5200  y una resistencia de 6k2 en el lado energizador  y otra bobina ,un puente de diodos ,un diodo zenner y un pequeño condenador electrolítico en la parte receptora ,  como podemos ver en este diseño de cargador inalámbrico  y otros muchos diseños más , realmente es complicado llegar a hacer un circuito discreto  que no se vea  y que sea  realmente practico.

Gracias a la miniaturización  y las placas con  tinta conductora   han aparecido realmente diseños  muy  interesantes para el lado receptor    , tal  y como el  diseño  de Xcsorce    pues gracias a su delgadez  extrema puede colocarse entre la batería  y la carcasa de cualquier  teléfono    con Micro USB como puerto de carga, no aumentando el peso adicional del móvil.

2016-12-12_23h26_10.png

El diseño trabaja  en la banda de  100-200KHz (la banda de Qi)  por lo que para el transmisor  podemos usar cualquier cargador inalámbrico , necesitando ,eso si,  una distancia de 5mm entre la bobina integrada del cargador inalámbrico y éste , distancia suficiente  “alta” como  para colocarlo dentro de la carcasa del terminal ,no quedando asi visible .

 

Este modelo  permite un fácil montaje y desmontaje, cómodo de usar en solo 4 pasos de la siguiente manera:

  1. Retirar la tapa posterior
  2. Enchufar en la cabeza usb micro
  3. Colocar la bobina  y el circuito sobre la batería(¡Ojo! Las bobinas solo cargan por una cara, por este motivo es “MUY IMPORTANTE” saber que tipo/posición de conector tenemos.)
  4. Poner en la contraportada.

2016-12-12_20h43_10

 

Obviamente  el cargador  puede estar unido en todo momento sin tener que sacar el conector de modo  que  se puede alargar la vida del propio conector microusb  del terminal  y ademas  protegerlo  porque no hace falta quitarlo en el uso normal .Las “fajas” de estas bobinas suelen ser muy finas, lo que nos permite cerrar la tapa y que quede totalmente oculta.Como es lógico, se “pierde” un conector microusb, pero se gana la carga por inducción.

Este  receptor inalámbrico WPC Qi es compatible pues con móviles que usan usb micro siendo esta la forma más eficiente para que cualquier  dispositivo pueda  convertirse en compatible con carga inalámbrica  teniendo  un impacto mínimo en el precio, sin necesidad de comprar accesorios de alimentación inalámbrica externos o módulos integrados en el dispositivo.

Respecto si el micro usb del terminal si es hacia arriba o hacia abajo  no importa si el USB va al derecho o al revés ya que puede doblar el cable que trae y se adapta; tan solo no sirve para los móviles que tengan el conector enfrente de la cámara como es el caso del MLAIS M52 Red Note porque tapa esta al conectarlo.

Para terminar , aunque ya se ha comentado, como el receptor trabajar con la plataforma de carga inalámbrica Qi , el cargador inalámbrico también lo deberá hacer ( es decir los modelos estándard).

 

I

 

 

Acceso web de Sensores Analogicos para Raspberry Pi (parte 1)


En un post anterior veíamos algunas de las posibilidades de  conexión de sensores digitales  a nuestra Raspberry Pi como puede ser añadir sensores I2C con el CI DS1820 , sensores de Co2 basados en el Mq4, sensores genéricos,sensores de presión con el BMP180,sensores de temperatura basados en el TMP102, sensores de proximidad basados en el VCNL 4000o  o los sensores de luminosidad basados en el  TSL2561.

Como todos sabemos  existen también una cantidad muy alta de sensores cuya salida no es digital , lo cual en principio no se podrían conectar directamente a nuestra Raspberry,pero esto no es exactamente así porque si podemos conectarlos por medio de convertidores A/D y D/A  como vamos a ver a continuación

 

PCA9685 PWM

pca9685.png

En efecto con este CI  que podemos comprar por unos 12€  en Amazon podemos ajustar el brillo por ejemplo de 12 leds mediante PWM o por supuesto también controlar hasta 12 servos con esta placa

El  circuito contiene un controlador PWM controlado por I2C con un reloj incorporado. A diferencia de la familia TLC5940, no es necesario enviar continuamente señales pues es gestionado  utilizando sólo dos pines para controlar 16 salidas PWM de funcionamiento libre e  incluso puede encadenar 62 salidas para controlar hasta 992 salidas PWM

Funciona a 5V, lo que significa que puede controlarlo desde 3,3V y seguir con seguridad hasta 6V salidas (esto es bueno cuando se desea controlar LEDs blancos o azules con 3,4+ voltajes hacia adelante)

Lleva 3 conectores de clavija en grupos de 4, así que usted puede enchufar 16 servos a la vez (los enchufes del servo son levemente más anchos de 0.1 “por lo que usted puede apilar solamente 4 al lado de uno a en 0.1”)
La  resolución es de 12 bits para cada salida – para servos, lo que significa una resolución de 4us a 60Hz

 

Un par de notas antes de comenzar:
  • Para agregar un actuador de luminosidad necesita un controlador PWM. Para este ejemplo vamos a utilizar un regulador de la entrada-salida de PCA9685 PWM. Este tutorial asume que usted ya tiene el PCA9685 conectado. Consulte el Tutorial de PCA9685 si necesita ayuda con la parte.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunos placas de prototipos tamaño completo (usados en los diagramas a continuación) tienen una linea de alimntación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como tu pastel de Pi.

Use el siguiente diagrama para conectar un LED a su frambuesa Pi y ajustar su brillo mediante PWM.

Paso 1

Conecte uno de los pines PWM de la PCA9685 a lo LED, a través de un resistor conectado al cable (positivo) más. En este caso, utilizaremos canal 0 en el PCA9685.
Luminosity

Paso 2

Conecte tierra del canal 0 de la PCA9685 de los LEDs más corto (negativo).
Luminosity

Paso 3

¡Listo! Ahora puede Agregar el actuador de luminosidad a su panel de control, utilizando el canal 0 en el PCA9685 para ajustar el brillo de los LEDs.

TMP36

TMP36

Antes de comenzar,para poder utilizar un sensor análogo del tipo  TMP36  con la RP Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado.

Use el siguiente diagrama para conectar un sensor de temperatura de analógico TMP36.

 

Paso 1

Conecte la energía eléctrica desde el  Pi al TMP36 pin 1 (+ VS).
TMP36

Paso 2

Conectar la tierra de la Pi al TMP36 pin 3 (GND).
TMP36

Paso 3

Conectar la clavija de TMP36 2 (VOUT) en uno de los 8 canales de la MCP3008. Para este ejemplo, CH0.
TMP36

Paso 4

¡Listo! Ahora puede añadir el sensor TMP36 al tablero de Cayenne, usando canal de la MCP3008  para leer el valor del sensor.

 

MCP3004

MCP3004

El  MCP3004  es  un conversor A/D de canales de 10 bits de resolución

Use el siguiente diagrama para conectar su Convertidor A/D de MCP3004 con interfaz en serie SPI.

Paso 1

Desde el pastel de Pi para alimentar el pin MCP3004 14 (VDD) y 13 (VREF).
MCP3004

Paso 2

Conectar la tierra de la Pi al MCP3004 pin 7 (DGND) y 12 (AGND).
MCP3004

Paso 3

Conectar patillas SCLK de la Pi y el MCP3004 11 (CLK).
MCP3004

Paso 4

Conectar patillas MISO de la  Pi y el MCP3004 10 (DUDA).
MCP3004

Paso 5

Conectar patillas MOSI de la Pi y el MCP3004 9 (DIN).
MCP3004

Paso 6

Conecte la clavija de la entrada de la selección de chip MCP3004 8 (CS/SHDN) a uno de los pines del chip select Pi, CE0 en este ejemplo
MCP3004

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3004 a tu panel de control usando el chip-select 0.

MCP3204

MCP3204

Use el siguiente diagrama para conectar su Convertidor de A/D MCP3204 con interfaz en serie SPI.

Paso 1

Desde  Pi puede alimentar el pin MCP3204 14 (VDD) y 13 (VREF).
MCP3204

Paso 2

Conectar la tierra del  Pi al MCP3204 pin 7 (DGND) y 12 (AGND).
MCP3204

Paso 3

Conectar patillas SCLK del Pi y la MCP3204 11 (CLK).
MCP3204

Paso 4

Conectar patillas MISO del Pi y la MCP3204 10 (MOSI).
MCP3204

Paso 5

Conectar patillas MOSI del Pi y la MCP3204 9 (DIN).
MCP3204

Paso 6

Conecte la clavija de la entrada de la selección de chip MCP3204 8 (CS/SHDN) a uno de los pines del chip select del Pi , CE0 en este ejemplo.
MCP3204

Paso 7

¡Listo! Ahora puede Agregar el convertidor MCP3204 a su panel de control usando el chip-select 0.

MCP3208

MCP3208

El  MCP3008  es  un conversor A/D de 8 canales de 10 bits de resolución

Use el siguiente diagrama para conectar su Convertidor A/D de MCP3208 con interfaz en serie SPI.

 

Paso 1

Desde el  Pi alimentar el pin MCP3208 16 (VDD) y 15 (VREF).
MCP3208

Paso 2

Conectar la tierra del pastel de Pi al MCP3208 pin 9 (DGND) y 14 (AGND).
MCP3208

Paso 3

Conectar patillas SCLK del  Pi y el MCP3208 13 (CLK).
MCP3208

Paso 4

Conectar patillas MISO del  Pi y el MCP3208 12 (MOSI).
MCP3208

Paso 5

Conectar patillas MOSI del Pi y el MCP3208 11 (DIN).
MCP3208

Paso 6

Conecte la clavija de entrada MCP3208 chip select (CS/SHDN) de 10 a uno de los pines del chip select del Pi , CE0 en este ejemplo.
MCP3208

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3208 a su panel de control usando el chip-select 0.

MCP3008

MCP3008

El  MCP3008  es  un conversor A/D de 8 canales de 10 bits de resolución  de bajo coste (6€)

Use el siguiente diagrama para conectar su convertidor A/D de MCP3008 con interfaz en serie SPI.

Paso 1

Desde el Pi alimentar el pin MCP3008 16 (VDD) y 15 (VREF).
MCP3008

Paso 2

Conectar la tierra del Pi al MCP3008 pin 9 (DGND) y 14 (AGND).
MCP3008

Paso 3

Conectar patillas SCLK del Pi y el MCP3008 13 (CLK).
MCP3008

Paso 4

Conectar patillas MISO del  Pi y el MCP3008 12 (MOSI).
MCP3008

Paso 5

Conectar patillas MOSI del  Pi y el MCP3008 11 (DIN).
MCP3008

Paso 6

Conecte la clavija de entrada MCP3008 chip select (CS/SHDN) de 10 a uno de los pines del chip select Pi Zapatero, CE0 en este ejemplo.
MCP3008

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3008 a su panel de control, usando el chip-select 0.

ADS1115

ADS1115

El  ADS1115 es un convertidor A/D de alta resolucion de 16 bits de 4 canales de un coste muy contenido (unos 4,25€).

El ADS1115 le permite seleccionar esclavo diferentes direcciones para el convertidor. Para este ejemplo usaremos 0x48.

Use el siguiente diagrama para conectar su convertidor A/D de ADS1115.

 

Paso 1

Desde el Pi para alimentar el ADS1115.
ADS1115

Paso 2

Conectar la tierra del  Pi a la ADS1115.
ADS1115

Paso 3

Conecte los pines SCL de la ADS1115   a la  Pi.
ADS1115

Paso 4

Conecte las clavijas SDA de la ADS1115 de  la Pi.
ADS1115

Paso 5

Conecte los pines GND y ADDR en la ADS1115. Esto resultará en una dirección de I2C del 0x48.
ADS1115

Paso 6

¡Listo! Ahora puede Agregar el convertidor de ADS1115 en el tablero de Cayenne, con dirección por defecto de 0x48.

ADS1015

ADS1015

Hablamos del ADS1015  un conversor  A/D de 12 bits  de 5 canales .El ADS1015 le permite seleccionar esclavo diferentes direcciones para el convertidor. Para este ejemplo usaremos 0x48.

Use el siguiente diagrama para conectar su convertidor A/D de ADS1015.

 

Paso 1

Desde el pastel de Pi para alimentar el ADS1015.
ADS1015

Paso 2

Conectar la tierra del  Pi a la ADS1015.
ADS1015

Paso 3

Conecte los pines SCL de la ADS1015 a la Pi.
ADS1015

Paso 4

Conecte las clavijas SDA de la ADS1015 a la  Pi.
ADS1015

Paso 5

Conecte los pines GND y ADDR en la ADS1015. Esto resultará en una dirección de I2C del 0x48.
ADS1015

¡Listo! Ahora puede Agregar el convertidor de ADS1015 en el panel de Cayenne, con dirección por defecto de 0x48.

 

MCP23018

MCP23018

El MCP23018 es un convesor A/D de 12bits de 4 canales  de alta precisión .Use el siguiente diagrama para conectar su MCP23018 IO expansor.

Paso 1

Alimentar 5V desde el zapatero de Pi a VDD (pin 11) en el MCP23018.
MCP23018

Paso 2

Conectarse tierra del Pi el VSS (pin 1) en el MCP23018.
MCP23018

Paso 3

Conectar los pines SCL de la MCP23018 (pin 12)  de su Pi.
MCP23018

Paso 4

Conecte las clavijas SDA de la MCP23018 (pin 13)  a la  Pi.
MCP23018

Paso 5

Alimentar el reset (pin 16) en el MCP23018. Tira de alta Reset es necesario para el funcionamiento normal.
MCP23018

Paso 6

Conectar toma de tierra al pin de dirección (pin 15) en el MCP23018. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23018

Paso 7

¡Listo! Ahora puede Agregar el MCP23018 en el panel de Cayenne, con dirección por defecto de 0 x 20.

No se preocupe  hay muchos mas posibilidades  que hablaremos en proximos post

Grabador de EPROM para Nintendo


 La tendencia actual en muchos  equipos electrónicos es que estos se asemejan cada día mas a las ordenadores, pues televisores de última generación (LCD’s, retroproyectores, etc.),televisores, equipos de audio, DVD, cámaras digitales, reproductores de mp3 ,teléfonos,etc   incorporan en su electronica , memorias  con el software grabado en su interior..Es así como en los electrodomésticos actuales se incluye unos circuitos de memoria del tipo EEPROM los cuales en su gran mayoría manejan la serie 24XX , 93Cxx pero también memorias clásicas memorias  como son las  estándar 27C64 y 27C128.

Muchas de los fallos que presentan los equipos electrónicos,  donde también incluimos casi todos los antiguos juegos en formato cartucho, se deben a problemas en las memorias EEPROM que utilizan.

En efecto, una memoria puede resultar dañada y dejar de funcionar correctamente, pero en la mayoría de los casos, el problema es que se ha alterado o perdido su contenido o información binaria, es decir, los datos que tenía grabados en su interior. Eso es lo que mayormente provoca fallos de funcionamiento en el equipo que  la utiliza.

Lo interesante es que reescribiendo el contenido original de la memoria, ya sea en la misma o en una nueva, el mal funcionamiento del equipo desaparece y la avería queda resuelta.Ademas no solo nos podemos limitar a copiar el contenido origina, pues adelantándonos  un paso más incluso podemos incluso cambiar el contenido original por otro que nos interese.

El autor del programador  que vamos ver, Robson Couto, tomó la decisión de fabricarse su propio cartucho  cuando se compró una consola SNES, descubriendo   al poco tiempo que la mayoría de los cartuchos que se venden  actualmente para esta consola  supuestamente “originales” en realidad no lo son pues  tienen la ROM cambiada y los vendedores  pretenden cobrarlo a precio original  sin por supuesto carecer de los derechos del software original .

cartucho.png

Couto , molesto con esta actitud ,entendió que se no deberia  sobrevalorar algo que en esencia no es demasiado licito  pues no se puede vender  software  del que no se posee  licencia, por muy antiguo que sea,  así  que  decidió  crear  sus propios cartuchos usando para ello su Arduino Mega para programar la memoria EEPROM,   que es realmente la memoria donde se almacena el juego  dentro de cada cartucho.

Para gestionar la grabación de la EEPROM con su Arduino, eligió el lenguage  Python  para hacer el programa de grabación  de las memorias EEPROM , las cuales, por cierto se pueden encontrar por un módico precio en ebay.

Robson ha necesitado hacer bastante trabajo de programación e ingeniería inversa para conseguirlo, pero finalmente lo consiguió   y ha  decidido compartirlos con toda la comunidad  tanto los esquemas del circuito como sobre todo  el software que permite hacerlo funcionar.

¿Cómo se fabrican los cartuchos de repro (normalmente) que hay disponibles en el mercado?

  1. Se busca  un cartucho de juego aburrido (deportes especialmente);
  2. Se graba una EPROM con el archivo ROM deseado;
  3. Se cambia la ROM del cartucho con la ROM programada.

Bien, pero entonces ¿por qué no todos están haciendo sus propias repros ?

Pues por el precio , dado que un programador no es tan barato,ya que incluso los chinos tampoco lo son ( ademas  dependiendo del lugar habra que pagar impuestos,etc)

Todo tiene una relación costo-beneficio y los fabricantes / hackers están siempre creando herramientas super útiles con materiales baratos. En 2014, se fijo el cartucho de  Mega Drive  utilizando chips  BIOS que se encuentran en la chatarra. Escribir memoria flash no es trivial, hay un cierto algoritmo, pero sigue siendo un proceso relativamente simple, asi que escribir en una memoria EPROM no debería ser mas complicado.

El programador

Una EPROM también es una memoria,y en realidad es aún más fácil de programar que las memorias flash. Para escribir un byte en EPROM tenemos que seguir lo siguientes pasos:

  1. Seleccione la dirección a través de los pines A0, A1, A2 … y así sucesivamente
  2. Poner el byte de datos para ser escrito en Q0 pines, Q1, Q2 … etc,
  3. Dar un pulso de al menos 50ms  con una tensión de  13V en el pin Vpp
  4. Repetir el proceso para toda la memoria  ( en caso de de la eprom 27C801  son  8 * 1024 * 1024 = 8388608 direcciones)
  5. También, debe ser observado que el Eprom necesita ser alimentado 6V cuando está programado(motivo por el que se ha incluido  un  interruptor en el esquema de mas abajo aunque se puede utilizar  en su lugar  un simple puente simple y cambiar manualmente Vcc cuando era necesario).

 

Para continuar es sumamente interesante comprender el pinout de una memoria típica  con las típicas señales de control : VSS,Enable y GVPP

27c801

 

Los 13 voltios son proporcionados por un módulo de refuerzo ( boost) que puede conseguirse ya montado el cual básicamente es un convertidor DC-DC de 5V a 12V, pero claramente se puede usar una simple fuente de 12 voltios,aunque esto hará necesario conexiones externas al montaje

De la salida de 13V del modulo Boost , gracias a un regulador LM317  y dos resistencias de 1K  ajustable y una de 220 ohmios  , podemos obtener los 6V para alimentar el circuito en modo programación ,aunque claramente también se podría  haber optado por  un simple LM 7806 , regulador que como sabemos no necesita ajustes.

Por ultimo ,para conmutar la señal de programación G/VPP que conectaremos al pin 24 del zocalo ZIF necesitamos dos circuitos  de conmutación cuyas salidas  conectaremos a dicho pin. Ambos circuitos están  basados en dos transistores de pequeña señal NPN y  PNP (por ejemplo BC557 para el PNP y un BC547pra NPN) alimentandos por 13v y 5V respectivamente usando como señales de control las señales 3(13V) y 5(5v) del Arduino Uno

A continuación se muestra el esquema final del programador:

grabador

Como vemos el circuito gira alrededor de un zocalo ZIF de inserción nula para que no dañe las patas de la EPROM , y  se conectan  30  pines del Arduino  UNO  al  bus de direcciones  de 20 bits (son los pines numerados con A0 ,A1,,..A19)  y el bus de datos de 8 bits  (son los pines numerados con q0,q1,..q7)  de  la EEPROM.

Las conexiones que se usan en este circuito son casi todas las salidas binarias del bus de expansión del Arduino Mega:

arduino-uno

Las conexiones entre el zocalo ZIF y el arduino Mega utilizadas son las siguientes:

27c801

ARDUINO MEGA

1-A19 39
2-A16> 40
3-A15 37
4-A12 34
5-A7 29
6-A6 28
7-A5 27
8-A4 26
9-A3 25
10-A2 24
11-A1 22
12-A0 5
13-Q0 5
14-Q1 6
15-Q2 7
16-VSS GND
17-Q3 8
18-Q4 9
19-Q5 10
20-Q6 11
21-Q7 12
22-ENABLE(NEGADO) 2
23-A10
24-G/vPP VER CIRCUITO
25-A11 33
26-A9 31
27-A8 30
28-A13 35
29-A14 36
30-A17 41
31-A18 38
31/VCC 5V ó 6V

 

 

El montaje podemos soldarlo  directamente  en un escudo de prototipos para un Arduino Mega que enchufaremos encima del propio Arduino

Como comentábamoses muy interesante usar  un zócalo ZIF, lo cual hará mas facil   conectar  y quitar la Eprom.

 

Software

Obviamente el circuito montado sin sw no podemos hacer nada , así que el autor ha escrito tanto un script ,como un sketch para ayudar a la lectura o grabacion de la Eeprom usando para ello un  script en  Python que lee los datos de un archivo y los nvía estos al Arduino Mega, que recibe los datos y los escribe en la memoria

Python 3 y pyserial son necesarios para cargar datos a la eprom pues como vemos el sw en realidad se compone de dos partes:

  • El script en python para leer el fichero  y enviarlo al Arduino por el puerto serie  y también para leer el contenido de la EEPROM via peticion al Arduinoi
  • Un sketch  para  Arduino para permitir leer y escribir en  la Eeprom, donde como hemos comentado ,para la programación, se debe aplicar un vpp de 12V y un vcc de 6V a la eprom

Los archivos del proyecto están disponibles en el repositorio de github del autor.

Ahora usted ya sabe que puede programar EPROMS con sólo un Arduino Mega y algunos componentes adicionales( y no se preocupe si se equivoca,!pues  puede borrarlos simplemnte liberando la ventanita y exponiendo esta  con luz UV ! )

 

Fuente aqui

Reparar un sensor nike+


Inicialmente lanzado para correr en 2006, la comunidad Nike + ha crecido para incluir aproximadamente 7 millones corredores. Desde sus inicios, Nike + ha ampliado en un ecosistema deportivo que incluye baloncesto Nike +, Nike + y el recientemente lanzado Nike + Kinect. Los atletas de cualquier nivel pueden encontrar una gran variedad de productos que incluyen una nueva gama de colores en el Nike + SportWatch GPS Powered by TomTom y el Nike + FuelBand, Nike + Sportband Nike + corriendo aplicaciones y nano iPod con Nike +. Los usuarios deportivos pueden visitar solo destino nikeplus.com para acceder a todos sus datos incluyendo NikeFuel puntos acumulados de todos los dispositivos de Nike +, creando una comunidad globalmente conectada del deporte de por vida .

La pieza angular de este subsistema lo constituye el sensor  Nike +  , que con solo 6,5 gr  mide ritmo, distancia, tiempo transcurrido y calorías quemadas enviando la información   mediante un enlace  de  radio a un receptor que en principio solo puede ser gestionado por un dispositivo  compatible con tecnología  Apple como son  Nike + SportWatch GPS alimentado por TomTom (sensor incluido y opcional),Nike + SportBand (sensor incluido),IPod nano ,IPod touch,IPhone 3GS o iPhone 4 , todos ellos usando  la aplicación Nike+ iPod dado que la aplicación Nike+ running  no necesita el sensor) .

En  un post anterior  hablábamos de la pulsera  Nike+ sportband dando las pistas para su reparación   ..¿Pero que podemos hacer   cuando deja de funcionar el sensor nike+ o  falla?.

 

El sistema Nike+ se basa en colocar o fijar el sensor nike+  correctamente en las zapatillas Nike, fabricadas especialmente para el dispositivo ( es decir con la plantilla preparada para albergar el sensor), o bien de otra marca a través de un soporte una vez en el lugar, el sensor funcionara de forma automática

El sensor Nike+   en efecto  se vende de forma individual, (unos 10€) por lo que es ideal si tiene que reemplazarlo,  o  para un segundo par de zapatos listos para Nike + o necesita conectarlo a su dispositivo Apple

Antes de comprobar nada, lo mejor es seguir  los pasos que nos recomienda Nike para conectar el sensor nike+  :

  • Quitar la plantilla del zapato izquierdo de cualquier par de zapatillas Nike para acceder al compartimiento que puede contener el sensor.
  • Colocar el sensor en el compartimento con los logotipos hacia arriba y luego vuelve a colocar la plantilla (asío el sensor estará en su lugar y listo para funcionar).
  • Moverse  para activar el sensor, el cual automáticamente comenzará a transmitir cuando detecte el movimiento, y dejará de transmitir cuando no lo haga.
  • Apagar la batería del sensor presionando el botón en el lado opuesto del logo y manteniendo pulsado el botón durante tres segundos. Esto sólo debería ser necesario cuando se pasa por la seguridad del aeropuerto y en los aviones, de acuerdo con Nike y Apple, ya que la batería entra en modo de espera automáticamente  cuando no está en uso. Si desconecta la batería, recuerda que deberás activarla antes del próximo uso presionando el botón en el lado opuesto del logo y manteniendo pulsado el botón durante tres segundos. Nike y Apple recomiendan hacerlo presionando el mismo botón con un clip o un bolígrafo.

 

 

Si bien Nike y Apple dicen que la batería no es reemplazable y un nuevo sensor completo debe ser comprado, el proceso  que ya a describimos  para reparar  la Nike+ sportband  igualmente ,también   puede ser replicado para este a fin de reemplazar  la batería del propio sensor

 

En teoría se debe adquirir un nuevo sensor de Nike+, cuando se recibe un mensaje de que la batería se está agotado o simplemente si seguimos los pasos descritos y no vemos actividad en cualquiera de los receptores descritos(Nike + SportWatch GPS alimentado por TomTom (sensor incluido y opcional),Nike + SportBand (sensor incluido),IPod nano ,IPod touch,IPhone 3GS o iPhone 4.) . De acuerdo con Nike, la batería tiene una duración de cerca de 1000 horas de “uso activo”, y enviará una señal de batería baja a su receptor aproximadamente dos semanas antes de que se quede sin energía,pero evidentemente si pasa ese tiempo y no lo usamos ,no veremos esa información  .Asimismo por poco que hayamos usado el sensor ,si este lo tenemos desde hace unos años también es un signo inequívoco de que puede haberse agotado la batería

 

Aunque el dispositivo en teoría es irreparable al estar sellado herméticamente , lo cierto  si es posible repararlo como vamos a ver  a continuación :

Cortar entre la unión de las partes superior e inferior con un cutter teniendo un cuidado especial de no penetrar en el interior rompiendo la electrónica

img_20161121_1657461

Una vez se  haya conseguido practicar una abertura ,abrir finalmente la caja  con mucho cuidado.

 

 

img_20161121_1657301

Ahora abierta la tapa con mucho cuidado soltar el cuerpo con toda la electrónica y ahí veremos dos pequeños tornillos que deberemos aflojar

 

img_20161121_1659151

 

 

Quitado los 2 tornillos ,tenga un cuidado especial con los 4 cables que salen de la placa hacia el sensor  y la batería

img_20161121_1700371

 

Ya vemos el modelo de la batería incluida  :CRC2032 el cual por cierto deberemos soltar del sensor de fuerza que lleva adherido en su parte superior con un arandela adhesiva  . Por ejemplo se puede soltar el sensor de fuerza  con cuidado usando  un cortante presionando en  la parte de contacto.

 

img_20161121_1703261

Ahora soltamos la batería por completo y medimos con un polímetro la tensión de la batería cuya tensión debería ser cercana a los 3V

 

img_20161121_1706001

 

Si la tensión es inferior a 3V  debemos eliminar la vieja  batería  y reemplazarla por una nueva del mismo modelo CRC2032 que podemos  conseguir en cualquier tienda

 

 

Una vez conseguida la batería de recambio, desoldaremos la antigua, soldaremos la nueva respetando la polaridad y haremos los mismos pasos descritos anteriormente pero, a la inversa:

  • Ubicaremos la batería dentro de la carcasa,
  • Pegaremos el sensor de fuerza encima de la batería
  • Colocaremos los 2 tornillos
  • Atornillaremos estos a la caja.
  • Fijaremos el mecanismo a la caja inferior  ,
  • Colocaremos la tapa
  • Cerraremos el conjunto ,
  • Debemos volver a sellar la unión con pegamento  o con silicona

 

 

 

 

Por cierto ,fijar el sensor  Nike+ a una zapatilla que no sea Nike también es posible  usando alguno  de los muchos métodos caseros:

  •  Cortando un agujero del tamaño del sensor en la suela interior de la zapatilla izquierda, imitando la cavidad que puede encontrar en una zapatilla Nike, desliza el sensor en los cordones en la parte superior de la lengua de la zapatilla o
  • Adhiriendo el sensor a la parte superior de la misma con cinta adhesiva.
  • Comprando un soporte de terceros para mantener el sensor en su lugar en una zapatilla que no sea Nike de modo que el sensor se adapta en una bolsa que se coloca en los cordones de las zapatillas y se mantiene cerrado con Velcro    como el siguiente diseño    que puede comprarse por unos 12€                                                                nikess
  • Las posibilidades son infinitas, pero debe tener varios puntos importantes en mente para garantizar resultados precisos: el sensor debe estar colocado con el logotipo hacia arriba en la zapatilla izquierda, y  debe estar  fijado  firmemente en su lugar, y debe colocarse bastante paralelo al suelo.

 

 

!Es sorprendente la sensación de volver a ver funcionando un dispositivo que según el fabricante debería desecharse cuando en realidad puede tener una vida aun mas larga!