Regalos para apasionados de la tecnologia


En  la actualidad  se pueden encontrar todo tipo de artilugios tecnológicos a cualquier precio y para todos los gustos, pero a veces queremos llegar más lejos  construyendo nosotros mismos muestras propias creaciones . En esta linea, tanto para  potenciar nuestra creatividad ,como ayudarnos en nuestros proyectos hemos pensado en una lista de regalos tecnológicos que  quizás puedan servir de inspiración  .

Raspberri Pi 3

Actualmente es una de las placas mas potentes que existe (incluso mucho mas que Arduino y todos sus clones) gracias a su potente chipset Broadcom a 1.2 GHz con procesador ARM Cortex-A53 de 64 bits y cuatro núcleos,coprocesador multimedia de doble núcleo Videocore IV, memoria de 1 GB LPDDR2 y Bluetooth v4.1 así como sus conexiones :

  • Ethernet,
  • HDMI
  • VGA
  •  CSI,
  •  USB ( 4 puertos)
Esta nueva versión  integra un chip que la dota con conectividad Wifi y Bluetooth 4.1 de bajo consumo y cuenta con administración de energía mejorada que permite trabajar con más dispositivos USB,Permite usar más energía a los puertos USB. Podrás conectar más dispositivos a los puertos USB sin necesidad de usar hubs USB alimentados. También al no necesitar usar adaptadores WiFi por USB, tendrá más energía disponible en los puertos.
Raspberry pi 3
Para empezar a usar esta estupenda placa  tendremos que crear la imagen del SO en una SD  como describimos en este post. En cuanto a periféricos ,podemos conectar un ratón o teclado convencional con conexión usb ,  o la mejor opción ,optar por  un mini teclado y ratón  inalambricos a 2.4GHz que se pueden comprar por 15€ .Esta opción alimentada por baterías de litio , simplificará las conexiones al usar un sólo puerto usb para el dongle  y nos permitirá interactuar con la RPIII con mayor libertad.
raton y teclado en dongle
En cuanto a  la alimentación  podemos usar  un  cargador de móvil  convencional siempre que suministre al menos 1Amp (5VDC)  y si se pregunta por la caja , aunque se puede comprar lo mejor es construirnosla nosotros mismos ,al puro estilo maker.
La RPI como podemos ver en este blog , permite desde crear un ordenador económico  con Pixel (Debian) hasta un emulador de juegos clásicos ,un NAS, un hub domótico ,aplicaciones de IoT o el centro multimedia definitivo. Sale por 40 euros.

 

Kuman K11 Arduino

Para aquellas personas que opte por Arduino , exite un Kit de iniciación para Arduino con 31 componentes donde se incluye como no podia ser otra manera el corazón :na placa compatible con Arduino UNO R3.

Ademas por supuesto ,si le e gusta puede ir ampliando con más componentes. El precio del kit  básico incluido el Ardunino Uno R3 cuesta 46 euros.

 

 

Kit de inicacion para Arduino

Los componentes que incluye este kit son los siguientes;

  •  UNO R3 + cable USB x1
  •  Desarrollo Junta de Expansión x1
  • Mini tabla de pan x1
  •  Placa de pan 830 Point Solderless x1
  •  Caja de componentes SMD x1
  • LED (rojo) x5
  •  LED (amarillo) x5
  •  LED (verde) x5
  •  Buzzer activo x1
  •  Buzzer pasivo x1
  •  Mini botón x4
  •  Displays LED de siete segmentos (1 dígito) x2
  • Interruptores de bola x2
  • LDR (Resistencia dependientes de la luz) x3
  •  Potenciómetro x1
  •  Sensor de temperatura LM35 x1
  •  Sensor de llama x1
  • Sensor infrarrojo x1
  •  Resistencias de 220 ohmios x8
  • Resistencias de 1k ohmio x5
  • Resistencia de 10k ohmios x5
  • Cabezal de 40 pines x1
  • Hembra de 4pcs los 20cm al cable femenino x1 de Dupont
  •  Cables de puente x20
  • Batería 9V x1
  •  Clip de batería de 9V x1
  •  Control Remoto IR x1
  •  1602 Módulos LCD x1
  •  Servomotores SG90 9G x1
  •  Tarjeta de conductor ULN2003 x1
  •  Motor paso a paso 5V x1
  •  Caja de almacenaje x1

Este es un Super Starter Kit actualizado, desarrollado especialmente para aquellos principiantes que estén interesados en Arduino  con componentes de alta calidad,  pues como vemos, incluye un conjunto completo de componentes electrónicos útiles para Arduino conteniendo todos los componentes que necesita para comenzar su aprendizaje de programación para Arduino .

Es perfecto para las personas que desean iniciarse en el mundo del arduino o tengan alguna asignatura en sus estudios, ya que tiene una gran variedad de accesorios que le permiten “trastear” en el increíble mundo de Arduino ( la verdad no he visto que fuera necesario comprar nada mas). Todos los componentes ademas están organizados en una caja de plástico con separadores ,lo cual   se agradece para tenerlo todo recogido.

Los tutoriales detallados incluyendo la introducción del proyecto y el código fuente, contactando con el vendedor,   aunque en este humilde blog, o en Internet, encontrará miles de ejemplos para sacarle el máximo partido a este kit.

 

 

Memoria diminuta

Si su televisor o centro multimedia tiene capacidad para reproducir contenido desde una memoria USB, este modelo de Sandisk es USB 3.0 para una transferencia rápida de archivos desde su ordenador, y a la vez muy pequeño para que pase desapercibido en el puerto de su televisor.

El modelo de  64GB  sale por unos  17€  ,pero las hay de  128 GB  por  30€. ( o de capacidades inferiores de 16GB o 32GB rondando los precios entre 6€ y 10€)

 

memoria diminuta

SSD de 120 GB

Gracias a un disco sólido se  puede ampliar la vida útil de un ordenador y maximizar la inversión actual al sustituir la unidad de disco duro convencional ( que podrá seguir usando gracias a una económica  caja )   por una unidad de estado sólido (SSD) Kingston.

Esta es  la forma más rentable de mejorar de manera espectacular la capacidad de respuesta del sistema mejorando machismo el tiempo de arranque y en general el rendimiento  ya que el tiempo de acceso a disco  es espectacularmente mejor que en los discos convencionales.

Este modelo  incluyen una controladora LSI SandForce optimizada para memoria Flash de nueva generación con la que ofrecen el súmmum de la calidad y la fiabilidad de dos marcas líder de SSD. Al estar constituidas por componentes de estado sólido y no tener piezas móviles, son resistentes a los golpes y las caídas. Las unidades de estado sólido Kingston están respaldadas por soporte técnico gratuito y la legendaria fiabilidad Kingston

Este modelo de  SSD  con una capacidad de 120GB ( mas que suficiente para contener Windows 10) o de 2.5 pulgadas para potenciar su PC o para incluirlo en un NAS, sale por por poco dinero: 48 euros.

ssd de 12GB

Kit de herramientas

Ya sea para montar la última gráfica que le ha llegado ,así como para cambiar la pantalla rota de su smarthone ,la verdad es que  uno nunca sabe cuándo necesitará un set de herramientas tan completo pues incluye diferentes puntas para diferentes propósitos: puntiaguda para alta precisión, curvada para exactitud ergonómica y redondeada para levantar componentes más pesados

Son perfectas para tareas que requieran coger, sujetar, extraer y/o apretar con componentes .Incluye capa protectora contra la ESD para evitar dañar los componentes electrónicos sensibles

 

De iFixit y cuesta 55 euros. quizás un poco alto pero es sabido que esta marca destaca por su alta calidad ,asi que deberíamos  sopesar esta importante característica pues a veces nuestras herramientas no están a la altura de lo que esperamos de  ellas.

Clon de hromecast

La manera más sencilla y con más compatibilidad para ver contenido en un televisor controlando la fuente desde un smartphone. El original de Google cuesta sobre los 40€  pero hay  muchas versiones clónicas que hacen prácticamente la misma función  , por muchísimo  menos coste como por ejemplo el MiraScreen que cuesta sólo  14 euros. 

Este dispositivo soporta compartir Pantalla pudiendo usar Airplay, miracast o  DLNA (DLNA: Estándar) y la conectividad apoyada es  Wi-Fi: 802.11b / g / n inalámbrica de 2.4GHz WiFi 150Mbps  y  lleva  antena externa  WiFi para proporcionar 10M cobertura

La salida de vídeo es hasta 1080p HDMI de salida soportando  los formatos :

  • Video :AVI / DIVX / MKV / TS / DAT / MPG / MPRG / MOV / MP4 / RM / RMVB / WMV. Soporte de formatos de audio: MP1 / MP2 / MP3 / WMA / OGG / ADPCM-WAV / PCM-WAV / AAC.
  • Audio : .MP3, WAV.
  • Fotos : JPEG / BMP.

 

 

Mirascreen

El consumo de energía ultra bajo, consumiendo  pocas mA y es portátil compacto  para facilitar su transporte.

Hay  personas que lo usan en el coche  pues muchos reproductores de coche cuentan con soporte HDMI, de esta forma desde un teléfono inalámbrico podemos conectarlo  a la pantalla del coche convirtiendo su coche al instante en vehículo inteligente. Otras utilidad  de  est dispositivo es el  E-learning, reunión de negocios pues  nos liberamos de las ataduras de cable, siendo  las reuniones en inteligentes y eficientes. Tambien son perfectas para disfrutar de la gran pantalla como  Ver películas, jugar, crear su propio cine exclusivo,ver fotos juegos ,etc  .

Por cierto el mando a distancia se hace desde el propio  Teléfono ,Labtop o Tablet PC.

 

Sable electrónico Kylo Ren

Para terminar para los mas pequeños   ( o no ) , para practicar de cara a nuevos juegos de Star Wars o simplemente porque quiere ser  como un niño con zapatos nuevos. Este sable se ilumina y lo componen diferentes piezas teniendo el  mismo aspecto que la película.Incluye daga de luz  simulando clásicos sonidos y luces. Es ademas combinable con otros sables Master Jedi (se venden por separado)

Cuesta 30 euros.

sable laser

 

 

Construcción de una imagen para Orange Pi


En este post vamos a describir el proceso para combinar sunxi u-boot, kernel de linux y otros bits para crear la base de un sistema operativo de  arranque desde cero y también la base para crear otro para la placa Orange PI.
Por supuesto no construiremos una distribución completa, sólo construimos una imagen que contiene el   u-boot, el núcleo y un puñado de herramientas de modo que  luego usaremos un sistema de archivos raíz existente para obtener un sistema útil.

Dependiendo del tamaño de sistema de archivos raíz, lo ideal es  que utilice una tarjeta SD de  4 GB  o más , tipo clase 10  porque será más estable ,la cual por cierto  previamente habrá particionado y formateado  antes con las herramientas habituales (hard disk low level format  o SDFormater) .
Tenemos dos métodos para construir todo lo que necesitamos, esta guía , el otro es la manera más fácil mediante el uso de sunxi BSP.

orangepi

Haga una cruz toolchain

La cadena de herramientas es un conjunto de binarios, bibliotecas de sistema y herramientas que permiten crear (en nuestro caso, cross-compilar) un  u-boot y kernel para una plataforma de destino. Esto, hasta cierto punto limitada, tendrá que coincidir el rootfs objetivo.

Si usa  Ubuntu o Debian, puede obtener todo lo que necesita por instalar ,  ejecutando las siguientes herramientas:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install build-essential u-boot-tools uboot-mkimage binutils-arm-linux-gnueabihf gcc-4.7-arm-linux-gnueabihf-base \
                     g++-4.7-arm-linux-gnueabihf
sudo apt-get install gcc-arm-linux-gnueabihf cpp-arm-linux-gnueabihf libusb-1.0-0 libusb-1.0-0-dev git wget fakeroot kernel-package \
                     zlib1g-dev libncurses5-dev

Nota: En Debian (sibilancias) Ubuntu 13.10 (picantes), paquete uboot-mkimage es quitado, el comando mkimage incluido en el paquete de u-boot-tools . En Ubuntu 12.04, cambiar gcc-4.7-arm-linux-gnueabihf-base y g ++-4.7-arm-linux-gnueabihf a gcc-4.6-arm-linux-gnueabihf-base y g ++-4.6-arm-linux-gnueabih.
También puede utilizar la herramienta de Linaro la cadena o cadena de herramientas de código Sourcery, son toolchains independiente con grandes archivos que vienen con todo que lo necesario.

Utilize Orange Pi BSP

BSP significa “Paquete de apoyo de la placa”.

Instalación

Obtener el repositorio BSP:

git clone https://github.com/orangepi-xunlong/orangepi-bsp.git

Construcción

Después de obtener el BSP, luego clonado al  directorio de sunxi bsp , ejecutar comando de compilación:

./configure OrangePi
make

Este comando  tomará un tiempo para construir todas las cosas. Después de que todo haya sido construido, usted conseguirá todo lo que quiera en el directorio build/OrangePi_hwpack , como u-boot-sunxi-con-spl.bin, scritp.bin, uImage y módulos. También puede modificar su configuración de kernel ejecutando:

make linux-config

Esto sobrescribirá el archivo .config en el /build/sun7i_defconfig-linux.

Paso a paso

Construir u-boot

U-boot es el gestor de arranque utilizado comúnmente en los allwinner SoCs. Similar a muchos otros, proporciona la infraestructura básica para llevar un SBC (sola computadora de la placa ) hasta un punto donde puede cargar un kernel Linux y comenzar a arrancar el sistema operativo.
Primero necesita clonar el repositorio de Github:

git clone https://github.com/orangepi-xunlong/u-boot-orangepi.git

Después de que el repositorio haya  sido clonado , usted puede construir el u-boot
Primero configurar el u-boot :

make CROSS_COMPILE=arm-linux-gnueabihf- Orangepi_config

Y luego el u-boot:

make CROSS_COMPILE=arm-linux-gnueabihf-

Después usted puede conseguir el u-boot-sunxi-con-spl.bin u-boot.img, u-boot.bin, sunxi/spl-spl.bin. Aquí utilizamos solamente archivo u-boot-sunxi-con-spl.bin.

Construir el fichero  script.bin

En primer lugar, obtener los siguientes repositorios:

git clone https://github.com/orangepi-xunlong/sunxi-tools.git
git clone https://github.com/orangepi-xunlong/sunxi-boards.git

Ir a sunxi-tools y ejecutar el comando

make

Usted puede necesitar instalar los paquetes dependientes:

sudo apt-get install pkg-config

De este modo obtendrá la herramienta fex2bin, bin2fex y otros.
Entonces en el árbol de sunxi-tableros , buscar el archivo OrangePi.fex .  Podemos modificar algunas de las configuraciones en el archivo, como [gmac_para], [usb_wifi_para], etc..

Ya  podemos crear el archivo script.bin:

${sunxi-tools}/fex2bin OrangePi.fex script.bin

El prefijo ${herramientas de sunxi} indica que se encuentra en su árbol de sunxi-herramientas.

Necesitará este archivo script.bin más tarde al terminar la instalación de u-boot.

El núcleo de la construcción

En primer lugar, obtener el repositorio del kernel de linux después de ejecutar :

git clone https://github.com/orangepi-xunlong/linux-orangepi.git

En segundo lugar, establecer la configuración predeterminada:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- sun7i_defconfig

En tercer lugar, ajustar la configuración. Para  abrir un núcleo es necesario configurar o cerrar el kernel inútil configurando o  editando su configuración de kernel:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig

Contruccion de uImage cons  módulos:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- uImage modules

Como paso final, crear el árbol completo de módulo:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- INSTALL_MOD_PATH=output modules_install

La opción de INSTALL_MOD_PATH especifica el directorio donde el árbol completo del módulo estarán disponible. En este ejemplo, será el directorio de salida bajo el núcleo crear directorio.
Ahora tiene el siguiente que residen en el árbol del kernel:

arch/arm/boot/uImage
output/lib/modules/3.4.XX/

El archivo uImage Iniciado por u-boot, y el directorio de módulos que se copiarán a las /lib/modules en el sistema de archivos raíz de destino.

Utilizando cuatro archivos

A través de “paso a paso” o “uso de sunxi bsp”, obtendrá al menos cuatro archivos o paquetes que necesitas, son:

u-boot-sunxi-with-spl.bin
uImage
script.bin
modules/3.4.XX

Utilizamos estos cuatro archivos para configurar la tarjeta SD bootable.

Referencia

1. http://sunxi.org/Manual_build_howto
2. http://sunxi.org/U-Boot#Compilation
3. http://sunxi.org/Linux_Kernel#Compilation
4. http://sunxi.org/BSP

 

Fuente orangepi.org

Acceso web de Sensores Analogicos para Raspberry Pi (parte 3)


En un post anterior veíamos algunas de las posibilidades de  conexión de sensores digitales  a nuestra Raspberry Pi como puede ser añadir sensores I2C con el CI DS1820 , sensores de Co2 basados en el Mq4, sensores genéricos,sensores de de presion con el BMP180,sensores de temperatura basados en el TMP102, sensores de proximidad basados en el VCNL 4000o  o los sensores de luminosidad basados en el  TSL2561.

Como todos sabemos  existen también una cantidad muy alta de sensores cuya salida no es digital , los cuales en principio no se podrian conectar directamente a nuestra Raspberry, pero esto no es exactamente así porque si podemos conectarlos por medio de convertidores A/D y D/A y otros circuitos  como empezamos a  ver en  post anteriores

Hoy acabamos la entrega de conexiones analógicas  a nuestra Raspberry Pi  usando  algunos de los circuitos que se  explicaron viendo precisamente  coenctandolos por fin  aun un un mundo infinitos de posibilidades

Vemos a continuación algunos de ellos:

Termistor

Thermistor

Un termistor es un sensor de temperatura por resistencia basandose su funcionamiento en la variación de la resistividad que presenta un semiconductor con la temperatura. El término termistor proviene de Thermally Sensitive Resistor. Existen dos tipos de termistores:

  • NTC (Negative Temperature Coefficient) – coeficiente de temperatura negativo  .
  • PTC (Positive Temperature Coefficient) – coeficiente de temperatura positivo (también llamado posistor).

Cuando la temperatura aumenta, los tipo PTC aumentan su resistencia y los NTC la disminuyen, razon por la cual lo mas habitual es usar NTC’s  en todas las aplicaciones.

Un par de notas antes de comenzar:

  • Para poder utilizar un sensor análogo con la tenemos que utilizar un convertidor de analógico a Digital .Para este ejemplo vamos a utilizar el MCP3008 para esta tarea.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una lienea de alimentacion que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

Use el siguiente diagrama para conectar un termistor.

Paso 1

Conecte la línea de alimentación para el termistor a través de la resistencia  de 10K.
Thermistor

Paso 2

Conecte la línea de tierra para el termistor.
Thermistor

Paso 3

Conectar el termistor a uno de los 8 canales de la MCP3008. Para este ejemplo, CH0.
Thermistor

Paso 4

¡Listo! Ahora puede Agregar el termistor a su panel de control de Cayenne  usando canal del MCP3008

VCNL4000

Hablamos de un doble sensor de  proximidad y sensor de luminosidad integrado en una sola placa  y cuya salida puede ser procesada directamente por nuestra Pi.

Un par de notas antes de comenzar:

  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una linea de alimentación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

 

Use el siguiente diagrama para conectar un VCNL4000 de proximidad y sensor de luminosidad.

Paso 1

Conecte las líneas de energía. Conecte el 3.3V 3.3V encendido el VCNL4000 perno de la fuente (3.3) y 5V al pin emisor de IR (IR +).
VCNL4000

Paso 2

Conectar toma de tierra de laPi a VCNL4000 (GND).
VCNL4000

Paso 3

Conecte las clavijas SDA de la VCNL4000  a la Pi.
VCNL4000

Paso 4

Conecte los pines SCL de la VCNL4000  a la Pi.
VCNL4000

Paso 5

¡Listo! Ahora puede agregar el sensor de VCNL4000 en el panel de Cayenne

Fotoresistor

Photoresistor

Una fotorresistencia también llamada LDR  por ssu siglas en ingles inglés light-dependent resistor  es un componente electrónico cuya resistencia disminuye con el aumento de intensidad de luz incidente. Puede también ser llamado fotorresistor, fotoconductor, célula fotoeléctrica o resistor dependiente de la luz.

Su cuerpo está formado por una célula fotorreceptora y dos patillas siendo el valor de resistencia eléctrica  bajo cuando hay luz incidiendo en él (puede descender hasta 50 ohms) y muy alto cuando está a oscuras (varios megaohmios).

Un par de notas antes de comenzar:

  • Para poder utilizar un sensor análogo con la frambuesa Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado. Consulte el Tutorial de MCP3008 si necesita ayuda con la parte.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una lienea de alimentación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

 

Use el siguiente diagrama para conectar el fotoresistor.

Paso 1

Desde el pastel de Pi para alimentar la fotorresistencia.
Photoresistor

Paso 2

Conecte la fotorresistencia a tierra a través de un resistor de pull-down de 10K.
Photoresistor

Paso 3

Conecte la fotorresistencia a uno de los 8 canales de la MCP3008. Para este ejemplo, CH0.
Photoresistor

Paso 4

¡Listo! Ahora puede agregar  la fotorresistencia a tu panel de control, utilizando el canal de MCP3008 0 para leer valores desde el sensor.

 

Carga analógica

Analog Load

Vamos  a a ver como procesar  la salida analógico  de los sensores de fuerza resistivo circular (fsr)

Un par de notas antes de comenzar:

  • Para poder utilizar un sensor análogo con la frambuesa Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado. Consulte el Tutorial de MCP3008 si necesita ayuda con la parte.
  • Dependiendo del sensor de presión utilizado, se requiera componentes adicionales para calibrar correctamente el sensor. Un ejemplo de utilizar amplificadores operacionales para calibrar un sensor de fuerza flexibles vea el siguiente video.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una lienea de alimentacion que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

 

Use el siguiente diagrama para conectar el Sensor de presión analógico.

Paso 1

Alimentar al sensor de presión.
Analog Load

Paso 2

Conectar toma de tierra para el sensor de presión, a través de la resistencia.
Analog Load

Paso 3

Conecte el sensor de presión a uno de los canales de entrada en el MCP3008, el canal 0 para este ejemplo.
Analog Load

Paso 4

¡Listo! Ahora puede añadir el sensor de presión analógico a su tablero de instrumentos, usando el  canal o de MCP3008  para leer el sensor.

GP2Y0A21YK

Analog Distance

Hablamos ahora del   Sensor de proximidad por infrarrojos de Sharp (GP2Y0A21YK).

Este dispone de un conector JST de 3 pines y proporciona un valor analógico (voltaje) según la distancia del objeto detectado.
La salida proporciona 3,1V a 10cm hasta 0,4V a 80cm por lo que cualquier microcontrolador con una entrada ADC disponible puede fácilmente interpretar su señal sin necesidad de componentes externos como vamos a ver .

Un par de notas antes de comenzar:

  • Para poder utilizar un sensor análogo con la frambuesa Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado. Consulte el Tutorial de MCP3008 si necesita ayuda con la parte.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una lienea de alimentacion que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

 

Use el siguiente diagrama para conectar el Sensor de proximidad analógico.

Paso 1

Desde el Pi alimentar el sensor de proximidad (rojo).
Analog Distance

Paso 2

Conectar la tierra del  Pi en el sensor de proximidad (negro).
Analog Distance

Paso 3

Conecte la salida del Sensor de proximidad (amarillo) a uno de los canales de entrada en el MCP3008, el canal 0 para este ejemplo.
Analog Distance

Paso 4

¡Listo! Ahora puede añadir el Sensor de proximidad analógicos a su tablero de instrumentos, usando canal o de MCP3008  para leer el sensor.

!!Y eso  es  todo amigos!!

Con este ultimo post  sobre el tema ,  hemos intentado cubrir  toda la serie de posibilidades que nos ofrecen  algunos circuitos Integrados para poder conectar a nuestra Raspbbery Pi un infinito abanico de sensores analógicos,,,

Acceso web de Sensores Analogicos para Raspberry Pi (parte 2)


En un post anterior veíamos algunas de las posibilidades de  conexión de sensores digitales  a nuestra Raspberry Pi como puede ser añadir sensores I2C con el CI DS1820 , sensores de Co2 basados en el Mq4, sensores genéricos,sensores de de presión con el BMP180,sensores de temperatura basados en el TMP102, sensores de proximidad basados en el VCNL 4000o  o los sensores de luminosidad basados en el  TSL2561.

Como todos sabemos  existen también una cantidad muy alta de sensores cuya salida no es digital , lo cual en principio no se podrian conectar directamente a nuestra Raspberry, pero esto no es exactamente asi, porque si podemos conectarlos por medio de convertidores A/D y D/A  y otros circuitos como vamos a ver  (y empezamos a  ver en un post  posterior ).

Retomamos nuevamente el mundo analógico y la Raspberry Pi  con mas ejemplos :

 

MCP23017

MCP23017

 Este CI  de coste  contenido  permite agregar 16 salidas a una placa  conectándola al puerto I2C. La conexión es sencilla como vamos a  ver  a continuación

Use el siguiente diagrama para conectar el MCP23017 IO expansor.

Paso 1

Desde el  Pi para alimentar VDD (pin 9) en el MCP23017.
MCP23017

Paso 2

Conectar tierra  de Pi al VSS (pin 10) en el MCP23017.
MCP23017

Paso 3

Conectar los pines SCL del MCP23017 (pin 12) a la Pi.
MCP23017

Paso 4

Conecte las clavijas SDA de la MCP23017 (pin 13) a la Pi.
MCP23017

Paso 5

Conectar toma de tierra a los pines de dirección (pin 15, 16, 17) en el MCP23017. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23017

Paso 6

Para el Reset (pin 18) en el MCP23017 . Debe conectar  el pin de Reset  para el funcionamiento normal.
MCP23017

Paso 7

¡Listo! Ahora puede Agregar el MCP23017 en el panel de Caynne, con dirección por defecto de 0 x 20.

MCP23009

MCP23009

 El MCP23009-E / SS es un expansor de E / S de 8 bits con salidas de drenaje abierto. Consiste en múltiples registros de configuración de 8 bits para la selección de entrada, salida y polaridad. El maestro del sistema puede habilitar E / S como entradas o salidas escribiendo los bits de configuración de E / S. Los datos de cada entrada o salida se guardan en el registro de entrada o salida correspondiente. La polaridad del registro del puerto de entrada puede invertirse con el registro de inversión de polaridad. Todos los registros pueden ser leídos por el maestro del sistema. El registro de captura de interrupción captura los valores de puerto en el momento de la interrupción, ahorrando así la condición que causó la interrupción. El restablecimiento de encendido (POR) ajusta los registros a sus valores predeterminados e inicializa la máquina de estado del dispositivo. El pin de dirección de hardware se utiliza para determinar la dirección del dispositivo.

Use el siguiente diagrama para conectar su MCP23009 IO expansor.

Paso 1

Desde el pastel de Pi para alimentar VDD (pin 1) en el MCP23009.
MCP23009

Paso 2

Conectar la tierra de la Pi a VSS (pin 18) en el MCP23009.
MCP23009

Paso 3

Conectar los pines SCL de la MCP23009 (pin 3) y la Pi.
MCP23009

Paso 4

Conecte las clavijas SDA de la MCP23009 (pin 4) y la  Pi.
MCP23009

Paso 5

Conectar toma de tierra al pin de dirección (pin 5) en el MCP23009. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23009

Paso 6

Alimentar el reset (pin 6) en el MCP23009. Conectar  Reset es necesario para el funcionamiento normal.
MCP23009

Paso 7

¡Listo! Ahora puede Agregar el MCP23009 en el panel de cayenne, con dirección por defecto de 0 x 20.

MCP23008

MCP23008

Es un circuito muy similar al anterior que  nso proporciona 8 entradas  o salidas  binarias a traves del SDA

Use el siguiente diagrama para conectar su MCP23008 IO expansor.

Paso 1

Conecte las líneas de energía, conectando a VDD (pin 18) en el MCP23008.
MCP23008

Paso 2

Conecte las líneas de tierra, conexión de tierra al VSS (pin 9) en el MCP23008.
MCP23008

Paso 3

Conecte las clavijas SDA de la MCP23008 (pin 2) y la  Pi.
MCP23008

Paso 4

Conectar los pines SCL de la MCP23008 (pin 1) y la  Pi.
MCP23008

Paso 5

Conectar toma de tierra a los pines de dirección (pines 3, 4, 5) en el MCP23008. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23008

Paso 6

Alimentar el reset (pin 6) en el MCP23008. Conectar el pin Reset es necesario para el funcionamiento normal.
MCP23008

Paso 7

¡Listo! Ahora puede Agregar el MCP23008 en el  panel de control de Cayenne, con dirección por defecto de 0 x 20.

DS2408

ds2408

 El DS2408 es un chip de E / S 1-Wire® programable de 8 canales. Las salidas PIO se configuran como drenaje abierto y proporcionan una resistencia de 100Ω máx. Un protocolo de comunicación de acceso de canal PIO robusto garantiza que los cambios de configuración de salida PIO se produzcan sin errores. Se puede utilizar una salida estroboscópica válida para datos para bloquear estados lógicos PIO en circuitería externa tal como un convertidor D / A (DAC) o un bus de datos de microcontrolador.

Un par de notas antes de comenzar:

  • Para aprovechar las ventajas de la detección automática de cayena de dispositivos 1-wire, conecte a 4 GPIO.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunos placas de prototipos (usados en los diagramas a continuación) tienen una  linea de alimentación  que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como el Pi.

Use el siguiente diagrama para conectar su DS2408 “1-Wire” IO expansor.

Paso 1

Desde el  Pi alimentar el DS2408 VCC (pin 3). Asegúrese de que añade  una resistencia de pull-up entre la potencia (pin 3) y pines de datos (pin 4) en el DS2408.
DS2408

Paso 2

Conectar la tierra del Pi a la tierra de DS2408 (pin 5).
DS2408

Paso 3

Conectar la clavija de control DS2408 en GPIO Pin 4 en el Pi. Conexión a 4 GPIO permite la detección automática .
DS2408

Paso 4

¡Listo! Encienda su frambuesa Pi y el agente Cayenne automáticamente detectará el expansor DS2408 y agregara este a su panel de control.

MCP23S09

MCP23S09

 El MCP23S09-E / P es un expansor de E / S de 8 bits con salidas de drenaje abierto. Consiste en múltiples registros de configuración de 8 bits para la selección de entrada, salida y polaridad. El maestro del sistema puede habilitar E / S como entradas o salidas escribiendo los bits de configuración de E / S. Los datos de cada entrada o salida se guardan en el registro de entrada o salida correspondiente. La polaridad del registro del puerto de entrada puede invertirse con el registro de inversión de polaridad. Todos los registros pueden ser leídos por el maestro del sistema. El registro de captura de interrupción captura los valores de puerto en el momento de la interrupción, ahorrando así la condición que causó la interrupción. El restablecimiento de encendido (POR) ajusta los registros a sus valores por defecto e inicializa la máquina de estado del dispositivo. El pin de dirección de hardware se utiliza para determinar la dirección del dispositivo.

Use el siguiente diagrama para conectar su Convertidor A/D de MCP23S09 con interfaz de SPI.

Paso 1

Alimentar desde el  Pi al MCP23S09 pin 1 (VDD) y pin 7 (RESET).
MCP23S09

Paso 2

Conectar la tierra del  Pi al MCP23S09 pin 18 (VSS).
MCP23S09

Paso 3

Conecte la clavija de entrada MCP23S09 chip select (CS) de 3 a uno de los pines del chip select del Pi  CE0 en este ejemplo.
MCP23S09

Paso 4

Conectar patillas SCLK del  Pi y el MCP23S09 4 (SCK).
MCP23S09

Paso 5

Conectar patillas MOSI del Pi y el MCP23S09 5 (SI).
MCP23S09

Paso 6

Conectar patillas MISO del Pi y el MCP23S09 6 (SO).
MCP23S09

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP23S09 a tu panel de control usando el chip-select 0.

MCP23S08

MCP23S08

 El MCP23S08 es un “8-Bit I / O Expander con el interfaz de SPI” IC de Microchip . Este dispositivo también está disponible en variaciones I2C (MCP23008) y 16 bits (MCP23x17),

Use el siguiente diagrama para conectar su convertidor A/D de MCP23S08 con interfaz de SPI.

Paso 1

Alimentar desde el  Pi al MCP23S08 pin 18 (VDD) y la clavija 6 (RESET).
MCP23S08

Paso 2

Conectar la tierra del pastel de Pi al MCP23S08 pin 9 (VSS).
MCP23S08

Paso 3

Conectar patillas SCLK del Pi y el MCP23S08 pin 1 (SCK).
MCP23S08

Paso 4

Conectar patillas MOSI del  Pi y el MCP23S08 pin 2 (SI).
MCP23S08

Paso 5

Conectar patillas MISO del  Pi y el MCP23S08 pin 3 (SO).
MCP23S08

Paso 6

Conecte los dos de los pines de dirección de MCP23S08 (pines 4, 5) a tierra. Esto resultará en una dirección predeterminada de 0 x 20.
MCP23S08

Paso 7

Conecte la clavija de entrada MCP23S08 chip select (CS) pin 7 a uno de los pines del chip select Pi , CE0 en este ejemplo.
MCP23S08

Paso 8

¡Listo! Ahora puede Agregar el convertidor de MCP23S08 a su panel de control  de Cayenne usando el chip-select (pin  0).

MCP23S18

MCP23S18

Hablamos de un chip del fabricante MICROCHIP  que es un  Expansor de E/S de 16bit funcionando a  10 MHz con interfaz  SPI

Use el siguiente diagrama para conectar su Convertidor A/D de MCP23S18 con interfaz de SPI.

Paso 1

Alimentar de la Pi  a RESET (pin 16) y VDD (pin 11) en el MCP23S18.
MCP23S18

Paso 2

Conectar la tierra del  Pi a VSS (pin 1) en el MCP23S18.
MCP23S18

Paso 3

Conectar patillas SCLK del  Pi y el MCP23S18 13 (SCK).
MCP23S18

Paso 4

Conectar patillas MOSI del  Pi y el MCP23S18 14 (SI).
MCP23S18

Paso 5

Conecte la clavija de entrada MCP23S18 chip select (CS) del pin  12 a uno de los pines del chip select Pi Zapatero, CE(pin 0 )en este ejemplo.
MCP23S18

Paso 6

Conectar patillas MISO del  Pi y el MCP23S18 pin 15 (SO).
MCP23S18

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP23S18 a tu panel de control de Cayenee usando el chip-select 0.

MCP23S17

MCP23S17

Hablamos de un chip del fabricante MICROCHIP  que es un  Expansor de E/S de 16bit funcionando a  10 MHz con interfaz  SPI

 El MCP23s08 y MCP23s17 tiene 3 bits de selección de direcciones por lo que en teoría se puede conectar hasta 8 MCP23s08 y MCP23S17 en la misma señal de selección SPI que le da una capacidad GPIO de una señal adicional de 128 pines por SPI seleccionar cuando se utilizan estos dispositivos. (O el doble que si utiliza 8 más en la 2 ª SPI seleccionar)

Use el siguiente diagrama para conectar su Convertidor A/D de MCP23S17 con interfaz de SPI.

Paso 1

Desde el  Pi alimentar VDD (pin 9) en el MCP23S17.
MCP23S17

Paso 2

Conectar la tierra del  Pi a VSS (pin 10) en el MCP23S17.
MCP23S17

Paso 3

Conecte la clavija de entrada MCP23S17 chip select (CS) del pin  11 a uno de los pines del chip select Pi Zapatero, CE0 en este ejemplo.
MCP23S17

Paso 4

Conectar patillas SCLK del  Pi y el pin 12 del MCP23S17  (SCK).
MCP23S17

Paso 5

Conectar patillas MOSI del  Pi y el  pin 13 del MCP23S17 (SI).
MCP23S17

Paso 6

Conectar patillas MISO del  Pi y el pin  14 del MCP23S17  (SO).
MCP23S17

Paso 7

Conectar toma de tierra a los pines de dirección de MCP23S17 (15, 16, 17). Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23S17

Paso 8

Alimentar al pin de RESET (pin 18) en el MCP23S17. Conectar  el pin de Reset es necesario para el funcionamiento normal.
MCP23S17

Paso 9

¡Listo! Ahora puede Agregar el convertidor de MCP23S17 a su panel de control usando el chip-select 0.

 

Por cierto , para  mas información sobre como configurar el panel de control de Cayenne  , puede encontrar mas información en ingles  aqui 

Acceso web de Sensores Analogicos para Raspberry Pi (parte 1)


En un post anterior veíamos algunas de las posibilidades de  conexión de sensores digitales  a nuestra Raspberry Pi como puede ser añadir sensores I2C con el CI DS1820 , sensores de Co2 basados en el Mq4, sensores genéricos,sensores de presión con el BMP180,sensores de temperatura basados en el TMP102, sensores de proximidad basados en el VCNL 4000o  o los sensores de luminosidad basados en el  TSL2561.

Como todos sabemos  existen también una cantidad muy alta de sensores cuya salida no es digital , lo cual en principio no se podrían conectar directamente a nuestra Raspberry,pero esto no es exactamente así porque si podemos conectarlos por medio de convertidores A/D y D/A  como vamos a ver a continuación

 

PCA9685 PWM

pca9685.png

En efecto con este CI  que podemos comprar por unos 12€  en Amazon podemos ajustar el brillo por ejemplo de 12 leds mediante PWM o por supuesto también controlar hasta 12 servos con esta placa

El  circuito contiene un controlador PWM controlado por I2C con un reloj incorporado. A diferencia de la familia TLC5940, no es necesario enviar continuamente señales pues es gestionado  utilizando sólo dos pines para controlar 16 salidas PWM de funcionamiento libre e  incluso puede encadenar 62 salidas para controlar hasta 992 salidas PWM

Funciona a 5V, lo que significa que puede controlarlo desde 3,3V y seguir con seguridad hasta 6V salidas (esto es bueno cuando se desea controlar LEDs blancos o azules con 3,4+ voltajes hacia adelante)

Lleva 3 conectores de clavija en grupos de 4, así que usted puede enchufar 16 servos a la vez (los enchufes del servo son levemente más anchos de 0.1 “por lo que usted puede apilar solamente 4 al lado de uno a en 0.1”)
La  resolución es de 12 bits para cada salida – para servos, lo que significa una resolución de 4us a 60Hz

 

Un par de notas antes de comenzar:
  • Para agregar un actuador de luminosidad necesita un controlador PWM. Para este ejemplo vamos a utilizar un regulador de la entrada-salida de PCA9685 PWM. Este tutorial asume que usted ya tiene el PCA9685 conectado. Consulte el Tutorial de PCA9685 si necesita ayuda con la parte.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunos placas de prototipos tamaño completo (usados en los diagramas a continuación) tienen una linea de alimntación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como tu pastel de Pi.

Use el siguiente diagrama para conectar un LED a su frambuesa Pi y ajustar su brillo mediante PWM.

Paso 1

Conecte uno de los pines PWM de la PCA9685 a lo LED, a través de un resistor conectado al cable (positivo) más. En este caso, utilizaremos canal 0 en el PCA9685.
Luminosity

Paso 2

Conecte tierra del canal 0 de la PCA9685 de los LEDs más corto (negativo).
Luminosity

Paso 3

¡Listo! Ahora puede Agregar el actuador de luminosidad a su panel de control, utilizando el canal 0 en el PCA9685 para ajustar el brillo de los LEDs.

TMP36

TMP36

Antes de comenzar,para poder utilizar un sensor análogo del tipo  TMP36  con la RP Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado.

Use el siguiente diagrama para conectar un sensor de temperatura de analógico TMP36.

 

Paso 1

Conecte la energía eléctrica desde el  Pi al TMP36 pin 1 (+ VS).
TMP36

Paso 2

Conectar la tierra de la Pi al TMP36 pin 3 (GND).
TMP36

Paso 3

Conectar la clavija de TMP36 2 (VOUT) en uno de los 8 canales de la MCP3008. Para este ejemplo, CH0.
TMP36

Paso 4

¡Listo! Ahora puede añadir el sensor TMP36 al tablero de Cayenne, usando canal de la MCP3008  para leer el valor del sensor.

 

MCP3004

MCP3004

El  MCP3004  es  un conversor A/D de canales de 10 bits de resolución

Use el siguiente diagrama para conectar su Convertidor A/D de MCP3004 con interfaz en serie SPI.

Paso 1

Desde el pastel de Pi para alimentar el pin MCP3004 14 (VDD) y 13 (VREF).
MCP3004

Paso 2

Conectar la tierra de la Pi al MCP3004 pin 7 (DGND) y 12 (AGND).
MCP3004

Paso 3

Conectar patillas SCLK de la Pi y el MCP3004 11 (CLK).
MCP3004

Paso 4

Conectar patillas MISO de la  Pi y el MCP3004 10 (DUDA).
MCP3004

Paso 5

Conectar patillas MOSI de la Pi y el MCP3004 9 (DIN).
MCP3004

Paso 6

Conecte la clavija de la entrada de la selección de chip MCP3004 8 (CS/SHDN) a uno de los pines del chip select Pi, CE0 en este ejemplo
MCP3004

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3004 a tu panel de control usando el chip-select 0.

MCP3204

MCP3204

Use el siguiente diagrama para conectar su Convertidor de A/D MCP3204 con interfaz en serie SPI.

Paso 1

Desde  Pi puede alimentar el pin MCP3204 14 (VDD) y 13 (VREF).
MCP3204

Paso 2

Conectar la tierra del  Pi al MCP3204 pin 7 (DGND) y 12 (AGND).
MCP3204

Paso 3

Conectar patillas SCLK del Pi y la MCP3204 11 (CLK).
MCP3204

Paso 4

Conectar patillas MISO del Pi y la MCP3204 10 (MOSI).
MCP3204

Paso 5

Conectar patillas MOSI del Pi y la MCP3204 9 (DIN).
MCP3204

Paso 6

Conecte la clavija de la entrada de la selección de chip MCP3204 8 (CS/SHDN) a uno de los pines del chip select del Pi , CE0 en este ejemplo.
MCP3204

Paso 7

¡Listo! Ahora puede Agregar el convertidor MCP3204 a su panel de control usando el chip-select 0.

MCP3208

MCP3208

El  MCP3008  es  un conversor A/D de 8 canales de 10 bits de resolución

Use el siguiente diagrama para conectar su Convertidor A/D de MCP3208 con interfaz en serie SPI.

 

Paso 1

Desde el  Pi alimentar el pin MCP3208 16 (VDD) y 15 (VREF).
MCP3208

Paso 2

Conectar la tierra del pastel de Pi al MCP3208 pin 9 (DGND) y 14 (AGND).
MCP3208

Paso 3

Conectar patillas SCLK del  Pi y el MCP3208 13 (CLK).
MCP3208

Paso 4

Conectar patillas MISO del  Pi y el MCP3208 12 (MOSI).
MCP3208

Paso 5

Conectar patillas MOSI del Pi y el MCP3208 11 (DIN).
MCP3208

Paso 6

Conecte la clavija de entrada MCP3208 chip select (CS/SHDN) de 10 a uno de los pines del chip select del Pi , CE0 en este ejemplo.
MCP3208

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3208 a su panel de control usando el chip-select 0.

MCP3008

MCP3008

El  MCP3008  es  un conversor A/D de 8 canales de 10 bits de resolución  de bajo coste (6€)

Use el siguiente diagrama para conectar su convertidor A/D de MCP3008 con interfaz en serie SPI.

Paso 1

Desde el Pi alimentar el pin MCP3008 16 (VDD) y 15 (VREF).
MCP3008

Paso 2

Conectar la tierra del Pi al MCP3008 pin 9 (DGND) y 14 (AGND).
MCP3008

Paso 3

Conectar patillas SCLK del Pi y el MCP3008 13 (CLK).
MCP3008

Paso 4

Conectar patillas MISO del  Pi y el MCP3008 12 (MOSI).
MCP3008

Paso 5

Conectar patillas MOSI del  Pi y el MCP3008 11 (DIN).
MCP3008

Paso 6

Conecte la clavija de entrada MCP3008 chip select (CS/SHDN) de 10 a uno de los pines del chip select Pi Zapatero, CE0 en este ejemplo.
MCP3008

Paso 7

¡Listo! Ahora puede Agregar el convertidor de MCP3008 a su panel de control, usando el chip-select 0.

ADS1115

ADS1115

El  ADS1115 es un convertidor A/D de alta resolucion de 16 bits de 4 canales de un coste muy contenido (unos 4,25€).

El ADS1115 le permite seleccionar esclavo diferentes direcciones para el convertidor. Para este ejemplo usaremos 0x48.

Use el siguiente diagrama para conectar su convertidor A/D de ADS1115.

 

Paso 1

Desde el Pi para alimentar el ADS1115.
ADS1115

Paso 2

Conectar la tierra del  Pi a la ADS1115.
ADS1115

Paso 3

Conecte los pines SCL de la ADS1115   a la  Pi.
ADS1115

Paso 4

Conecte las clavijas SDA de la ADS1115 de  la Pi.
ADS1115

Paso 5

Conecte los pines GND y ADDR en la ADS1115. Esto resultará en una dirección de I2C del 0x48.
ADS1115

Paso 6

¡Listo! Ahora puede Agregar el convertidor de ADS1115 en el tablero de Cayenne, con dirección por defecto de 0x48.

ADS1015

ADS1015

Hablamos del ADS1015  un conversor  A/D de 12 bits  de 5 canales .El ADS1015 le permite seleccionar esclavo diferentes direcciones para el convertidor. Para este ejemplo usaremos 0x48.

Use el siguiente diagrama para conectar su convertidor A/D de ADS1015.

 

Paso 1

Desde el pastel de Pi para alimentar el ADS1015.
ADS1015

Paso 2

Conectar la tierra del  Pi a la ADS1015.
ADS1015

Paso 3

Conecte los pines SCL de la ADS1015 a la Pi.
ADS1015

Paso 4

Conecte las clavijas SDA de la ADS1015 a la  Pi.
ADS1015

Paso 5

Conecte los pines GND y ADDR en la ADS1015. Esto resultará en una dirección de I2C del 0x48.
ADS1015

¡Listo! Ahora puede Agregar el convertidor de ADS1015 en el panel de Cayenne, con dirección por defecto de 0x48.

 

MCP23018

MCP23018

El MCP23018 es un convesor A/D de 12bits de 4 canales  de alta precisión .Use el siguiente diagrama para conectar su MCP23018 IO expansor.

Paso 1

Alimentar 5V desde el zapatero de Pi a VDD (pin 11) en el MCP23018.
MCP23018

Paso 2

Conectarse tierra del Pi el VSS (pin 1) en el MCP23018.
MCP23018

Paso 3

Conectar los pines SCL de la MCP23018 (pin 12)  de su Pi.
MCP23018

Paso 4

Conecte las clavijas SDA de la MCP23018 (pin 13)  a la  Pi.
MCP23018

Paso 5

Alimentar el reset (pin 16) en el MCP23018. Tira de alta Reset es necesario para el funcionamiento normal.
MCP23018

Paso 6

Conectar toma de tierra al pin de dirección (pin 15) en el MCP23018. Esto le dará el expansor de una dirección predeterminada de 0 x 20.
MCP23018

Paso 7

¡Listo! Ahora puede Agregar el MCP23018 en el panel de Cayenne, con dirección por defecto de 0 x 20.

No se preocupe  hay muchos mas posibilidades  que hablaremos en proximos post

IoT con Raspberry Pi sin escribir código


 

En este ejemplo vamos a ver lo facil qeu es configurar un sensor de temperatura:el DS18B20  usando el agente de Cayenne .

Todo lo que necesita hacer es configurar el circuito y tenerlo conectado a la Pi,el cual es bastante sencillo pues  se usa un bus de 1hilo cuyo diagrama del circuito viene a continuación. También se puede agregar un LED al pin # 17 con una resistencia de 100 ohmios al carril de tierra.
Raspberry Pi Diagrama de Sensor de Temperatura
Ahora cuando lo conecte  si tiene instalado el agente de Cayenne  el sensor sera detectado automáticamente y agregado al  tablero de mandos. Lo que es bastante bueno sin embargo, si no se agrega automáticamente, entonces tendrá que agregar manualmente. Para agregarlo manualmente, haga lo siguiente.

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccione el dispositivo en el cuadro desplegable.
  3. Encuentre el dispositivo, en este caso es un sensor de temperatura DS18B20.
  4. Agrega todos los detalles del dispositivo. En este caso necesitará la dirección de esclavo para el sensor. Para obtener la dirección de esclavo introduzca lo siguiente en el terminal de Pi.
    cd /sys/bus/w1/devices ls
  5. La dirección del esclavo será similar a esta 28-000007602ffa . Simplemente copie y pegue esto en el campo de esclavo dentro del panel de Cayenne.
  6. Una vez introducida seleccione sensor de complemento.
  7. El sensor debe aparecer ahora en el tablero de instrumentos.
  8. Si necesita personalizar el sensor, presione el diente y aparecerá algunas opciones.
  9. También puede ver estadísticas / gráficos. Por ejemplo, el sensor de temperatura puede trazar datos en tiempo real y mantendrá los datos históricos también.

Si también desea agregar un LED que pueda encender y apagar a través del tablero de instrumentos, siga las siguientes instrucciones.

  1. Ahora vamos a agregar un dispositivo más. Excepto que éste será un LED.
  2. Vuelva tan para agregar el nuevo dispositivo.
  3. Ahora busque la salida digital y selecciónela.
  4. Para este dispositivo seleccione su Pi, tipo de widget es el botón, el icono puede ser lo que quieras, y luego seleccione integrado GPIO. Finalmente, el canal es el pin / canal al que está conectado nuestro LED. Para este ejemplo es el pin # 17. (Esta es la numeración GPIO de los pines).
  5. Ahora presione el botón add sensor.
  6. Ahora puede girar el pin GPIO alto y bajo desde el tablero de mandos y también utilizarlo en un disparador.
  7. Ahora estamos listos para crear nuestro primer gatillo.

Ahora debería tener dos dispositivos en el tablero de mandos que deberían verse así.
Dispositivos añadidos

Configuración de su primer  trigger

Los disparadores en Cayenne son una forma de hacer que tu pi reaccione a un cambio en el Pi mismo oa través de un sensor conectado a él. Esto podría ser algo tan simple como una temperatura superior a un cierto valor o incluso sólo su Pi va fuera de línea. Como se podría imaginar esto puede ser muy poderoso en la creación de dispositivos inteligentes que reaccionan a los alrededores. Por ejemplo, si la habitación se pone demasiado fría, encienda el calentador.

El proceso de agregar un disparador es súper simple como vamos a ver aontunuacion:

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccionar un trigger desde el cuadro de abajo.
  3. El nombre de su gatillo, voy a llamar a la mía “demasiado caliente”.
  4. Ahora arrastrar y soltar su Frambuesa Pi desde la esquina izquierda en el caso de la caja.
  5. Por debajo de esto seleccionar el sensor de temperatura y tienen casilla junto a “por encima de la temperatura” seleccionado. (Si las opciones del dispositivo no se muestran simplemente actualizar la página)
  6. Ahora en el cuadro de selección a continuación, notificación y agregar una dirección de correo electrónico o número de teléfono de un mensaje de texto (puede agregar ambos).Asegúrese de marcar las casillas de verificación también.

Dispara demasiado caliente

  1. Ahora haga clic en “Save trigger”.
  2. Ahora se debe guardar y le enviará una alerta cada vez que el sensor de temperatura es más de 40 grados Celsius.
  3. También puede arrastrar el Raspberry Pi en el cuadro a continuación, y tienen que hacer muchas cosas, incluyendo el control de los dispositivos de salida. Por ejemplo, en mi circuito tengo un LED que se activará cuando la temperatura supere los 40 grados Celsius.
  4. Para hacer clic en el gatillo de disparo LED de nueva situada en la parte superior de la página. Nombre esta activar el gatillo LED.
  5. Ahora arrastrar el Pi en el caso de la caja y luego seleccione el sensor de temperatura de nuevo con 40 grados centígrados por encima.
  6. Ahora arrastrar el Raspberry Pi en cuadro a continuación. Seleccione nuestra salida digital y marque la casilla de verificación activada.
  7. Ahora haga clic en Save trigger.
  8. Ahora, cada vez que nuestro sensor de temperatura conectado al Pi informe una temperatura superior a 40 grados Celsius, enviará un correo electrónico y encenderá el LED.También necesitarás agregar otro disparador para apagar el LED cuando caiga por debajo de los 40 pero lo dejaré por ahora y pasaré a eventos.

Mydevices cayennem Disparadores

Eventos

Los eventos en Raspberry Pi Cayenne son algo similar a los desencadenantes, pero son dependientes del tiempo en lugar de confiar en un cambio en un sensor o el propio dispositivo. La configuración de un evento es bastante fácil,asi que por ejemplo vamos a ver cómo configurar su Pi para reiniciarla una vez al mes.

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccionar evento en el cuadro de abajo.
  3. Ahora debería ver una pantalla con un calendario y un popup llamado nuevo evento.
  4. Ingrese los detalles de su evento. Por ejemplo, la mina se llama reinicio mensual y sucederá el primero de cada mes a las 2am. A continuación se muestra un ejemplo de la pantalla.

Cayenne eventos con detalles

  1. Una vez hecho esto, haga clic en Guardar.
  2. Ahora debería poder ver su evento en el calendario. Simplemente haga clic en él si desea editarlo.

Como usted podría imaginar los acontecimientos pueden ser bastante poderosos así que valdría la pena de mirar en éstos más. Un buen ejemplo de uso de eventos sería si necesita algo para ejecutar o encender. Otro ejemplo es algo como luces que necesitan ser encendidas en un momento específico.

Panel GPIO

El panel GPIO en Cayenne  le permite controlar y alterar los pines en el Pi.Por ejemplo, puede convertir un pin de ser una entrada a una salida y viceversa. También puede activar los pines de salida bajos y altos.
Panel Cayenne GPIO
Como se puede ver también hace que una gran hoja de referencia si necesita volver a ver y ver qué pins son los que necesita. También puede ver los dispositivos que están actualmente asignados a pines específicos. También puede ver el estado actual de un pin. (Por ejemplo, entrada o salida y baja o alta)

Escritorio remoto

Se puede conectar a la  Pi a través de Secure Shell o tambien   con VNC. Si ha  instalado cayenne también puede escritorio remoto a su Raspberry Pi a través del navegador web o a través de la aplicación móvil. Puede hacerlo simplemente haciendo lo siguiente.

  1. En el tablero de mandos encontrar el widget que dice “comandos”.
  2. Dentro de este widget haga clic en acceso remoto.
  3. Ahora se conectará al Pi y abrirá una nueva ventana. Si una nueva ventana no abre su navegador probablemente lo bloqueó. Simplemente permita que cayenne.mydevices abra nuevas pestañas.
  4. Una vez hecho usted puede controlar su Pi como si estuviera allí con él.
  5. Uno de los profesionales con el uso de Cayenne para escritorio remoto es que se puede acceder a ella en cualquier parte del mundo con bastante facilidad en lugar de la necesidad de configurar una VPN o abrir los puertos de su red.

Sin duda es un ejemplo muy sencillo pero que demuestra la gran potencia del agente de Cayenne para aplicaciones de IoT con su Raspberry Pi

 

Fuente   aqui

Placa de Alarma para Raspberry Pi


Gracias   a  Indiegogo  unos jóvenes, creadores de la empresa, MakeTronix,  quieren  ser capaces de llevar  las alarmas y otros productos de MakeTronix   a escuelas y niños de todo el mundo.  por  lo que al comprar una Alarma MakeTronix en esta campaña, no sólo se está recibiendo una pequeña placa de circuito ideal para aprender programación, sino que está ayudando a crear un sitio web, planes de lecciones, recursos y una plataforma para que las escuelas comiencen a enseñar programación ( o al menos eso dicen sus creadores).

 

La historia de MakeTronix Alarm

Sus creadores se  acercaron a un niño de 10 años que trataba de aprender la programación con una Raspberry  Pi  que  preguntaba cómo podía construir una alarma con la Raspberry Pi. Ellos se pusieron  a ayudarle enseñando la programación necesaria asi como facilitando los componentes necesarios, descubriendo  que aprendió  programación y ademas cosiguio fabricarse  una alarma con  funcionamiento completo (y ahora está trabajando duro, integrando cámaras de detección de movimiento e integración de medios sociales y quiere construir un sitio privado para la seguridad de su hogar).

Evolucioandno esto placa ,pensaron que podria ser  una herramienta educativa fantástica , constuyendo lo que es  la alarma  MakeTronix. Se trata de una placa de circuito totalmente montada con un sensor de movimiento (PIR ), un teclado matricial  de 4×4 , un LED y un pequeño zuabador , todo ello (excepto el PIR    en forma deescudo en la parte superior de la Raspberry Pi,  permitiendo a cualquier persona construir su propia alarma en cuestión de minutos.

Viene con una biblioteca de software que facilita conectarse  con la placa de circuito desde Python, y con muchos ejemplos, tutoriales y planes de lecciones para empezar con la programación de Python y crear su propia alarma, lo cual  lo hace perfecto para las personas que quieren aprender cómo funciona la tecnología, cómo programar y cómo construir una alarma personalizable con conexión a Internet con una Raspberry  Pi, así como tambien una herramienta para los profesores para enseñar la programación en un ambiente  interactivo y mas práctico.

 

alarama

MakeTronix Alarma es pues una placa de circuito completamente montada que se sujeta  en la parte superior de su Pi con un teclado, luz, sonda y sensor de movimiento, lo  cual  facilita la creación de una alarma gracias a  tutoriales, recursos educativos y planes de lecciones que sus diseñadores han creado.

También es ideal para la integración con otros proyectos que requieren la introducción de un código numérico, la detección de movimiento, el flash de un LED o hacer algun  ruido gracias al zuambador que incorpora

Aunque  vemos su potencial  para la eguridad domestica ,no obstante sus creadores advierten  que es un producto educativo  debiendo utilizar  alarmas comerciales  para garantizar la seguridad de las propiedades  no pudiendo asumir ninguna responsabilidad por la seguridad de las  propiedades.

Estos  jovenes emprendedores  aseguran que han  pasado por múltiples prototipos y ahora estan contentos con el diseño y la funcionalidad de la  placa alarma MakeTronix Alarma que será fabricado y montado en China  pudiendo ofrecer totalmente  montado,y  seguro, las placas de circuito, listo para escuelas y hogares, al mejor precio.Ademas cuentan con un socio de negocios experimentado, Ryanteck, que  ha hecho múltiples escudos para Raspberry Pi y productos electrónicos educativos que han ayudado en la creación de prototipos y proporcionará el cumplimiento de las placas (franqueo y embalaje).

Por proponer una mejora creo que podrian haber puesto un teclado de membrana ,que es mucho mas estetico que uno tradicional basado en pulsadores NA

Por cierto han dehado en  el  repositorio  de github  todos los  ejemplos, estando disponible  aqui: https://github.com/MakeTronix/Examples  .Alli  puede encontrar un conjunto de ejemplos y una biblioteca de Python que facilita el inicio y el control de su alarma MakeTronix (estos ejemplos se convertirán en tutoriales y planes de lecciones en su sitio web aun no disponible).

La placa  costaría £11   más los gastos de envio  y  por el momento tienen  recaudado el 40% de  los   £1,200 que se han impuesto como meta fija para lanzar  el proyecto.

!esperemos que consigan el 100% de la finaciación y consigan producir la placa!

 

Mas informacion   aqui