Herramientas para ayudarnos con la impresión en 3D


Si ha comprado una impresora 3D (  o la piensa comprar en un futuro muy cercano) ,y quiere empezar a imprimir  el mundo gracias a sus habilidades de impresión ,antes de hacerlo , en este pequeño  post veremos  una lista de herramientas que nos pueden hacer nuestra vida cotidiana con una impresora 3D mucho más fácil …

 Cinta adhesiva

Cinta adhesiva

De lejos la cosa más importante a comprar para su impresora 3D ; es cinta adhesiva de papel ( llamada también cinta de carrocero).

Nos sera útil poniendo cuidadosamente tiras de cinta adhesiva sobre la cama de su impresora: no sólo ayudará a que el objeto impreso se adhiera a la cama mucho mejor, también hará  que la eliminación del objeto completado de la cama sea mucho más fácil, y protegerá a ademas  a esta de daños posteriores.

Para hacer la vida más fácil y tener menos solapamientos de cinta (donde potencialmente la altura de impresión será diferente) utilice una cinta lo más ancha posible ( recomiendan de  50mm que es  la más ampliamente disponible).

La cinta adhesiva es importante, así que no compre las cosas baratas. La marca  tesa básicamente es la que tiene el adhesivo más fuerte y la mas usada en este campo. Incluso hay  gente vendiendo cinta adhesiva azul, que es resistente a los rayos UV pero no es necesariamente la mejor opción.

Stick de pegamento

Palo de pegamento

¿Alguna vez ha visto  una impresión 3D ir horriblemente mal debido a deformación? Pues si es asi , muchos aficionaos  han encontrado  que el uso de una barra de pegamento para agregar una capa de pegamento en la parte superior de la cinta de papel adhesiba justo antes de la impresión hace que la impresión se adhiera mucho mejor a la cama. Una vez más, tenga cuidado de no comprar  pegamento barato, aunque generalmente son bastante baratos en general. !Sólo asegúrense de que se adhiere al plástico!

En lugar de una barra de pegamento, hay personas que optan por   Aqua spray  ( Apenas dé a la superficie de la estructura un aerosol ligero y su objeto se pegara).

Pinzas y alicates

Pinzas y Alicates

Si ha seguido los dos últimos pasos, podrías haber experimentado cómo funcionan los adhesivos para hacer que su objeto se adhiera a la cama de la impresora,pero desafortunadamente esto también podría significar tener problemas para obtener su objeto impreso fuera de la plataforma.

Es interesante disponer pues de contar con  pinzas y alicates algunos para diferentes tamaños de objetos. Es cierto que las mas usadas son  todo las pinzas pequeñas y los alicates grandes . Como una ventaja adicional de las pinzas pequeñas son también grandes para la eliminación de cualquier filamento que podría exudarse fuera de la pre-impresión extrusora.

Calibre

Este modelo cuenta con pantalla de LCD retroiluminada puede mostrar la lectura claramente al medir el diámetro interior, el diámetro exterior, la profundidad y la longitud

Al entrar en el mundo de la impresión 3D, quiera o no, también está entrando en el mundo de la ingeniería  asi qeu  obtener un calibre e sbuena idea  para asegurarse de que sus impresiones tienen el tamaño correcto

Si está diseñando sus propios objetos también, utilícelo como una gran forma de dimensionar partes de su objeto.

Los mas interesantes son los  digitales, pues  dan dos decimales de precisión que es muy agradable cuando se quiere medir el diámetro verdadero de su filamento o lo mucho que su PLA se encoge durante la impresión.

En Amazon afortunadamente existen modelos por unos 12€.   

  • Pantalla de LCD retroiluminada puede mostrar la lectura claramente al medir el diámetro interior, el diámetro exterior, la profundidad y la longitud.
  • Ventajas: Muestra automáticamente la lectura, el compartimento de la batería de la base es coveniente para descargar y cambiar.
  • Rango de medición: 0 – 150 mm/0 – 6 pulgadas precisión: + 0,02 mm (0-150 mm). Temperatura de trabajo(0 – 40), Tiempo de apagado automático: 5 min. Ahorro de batería
  • Diseño: Diseñado especialmente para el uso profesional

 

 

 Limpiador casero de extremo caliente

Limpiador de extremo caliente DIY

Hay gente  que tiene problemas antes de ajustar el filamento  debido a obstrucciones con el extremo caliente  Para remediar el problema es bueno usar una aguja fina .Se pueden  usar de agujas de acupuntura pues  pueden comprar en diversos tamaños para caber su boquilla) .

La aguja la cortamos con un Dremel hasta que tenga un diámetro menor que el agujero del extremo caliente  (¡ahi le sera de utilidad el calibre).Para una mayor usabilidad agreguar  algunos plásticos moldeados a mano (Polycaprolactone alias Polimorfo) para un mango.

Conduzca su aguja archivada cuidadosamente a través de su extremo caliente caliente para desatascarlo. La rugosidad de la limadura hace que el plástico se adhiera a la aguja mejor. ADVERTENCIA: Tenga cuidado al conducir algo a través de su extremo caliente. Usted puede dañar el extremo caliente que realmente estropeará su impresión.

Gel de sílice (para usuarios de PLA)

Silica Gel (para usuarios de PLA)

Si está imprimiendo con plástico PLA, compre un gel de sílice, o mejor aún, no tire los paquetes que probablemente fueron incluidos cuando compró su impresora o filamento. PLA absorbe el agua con el tiempo, lo que puede resultar en la impresión burbujeante, así que hágase un favor y guarde su filamento en una bolsa de plástico cerrada con algunos paquetes de gel de sílice. Usted puede comprar 100 paquetes en eBay por alrededor de $ 1-2 incluyendo la entrega, por lo que no hay excusa para no hacerlo!

autor
 ¿Se le ocurre alguna otra herramienta que no hayamos incluido aquí?

 

Anuncios

Como construir una maquina CNC a partir de piezas recicladas


A veces las partes viejas de ordenadores pueden ser muy útiles para muchas cosas pero sobre todo es muy destacable    las fuentes de alimentación (tanto de portátiles como  de ordenadores fijos )  de las que tantas veces hemos hablado en este blog , no solo para  usar la salidas de 12 y 5V , sino incluso para hacer asociaciones de  varias fuentes  para generar fuentes con tensiones o intensidades mayores .
El reciclaje de las piezas de un ordenador  no queda en la fuente,  pues hay un sinfín de  otras piezas  útiles  que podemos  reciclar en un viejo ordenador, como por ejemplo:
  •  Las pantallas de los portátiles  que  pueden usarse  con una controladora barata como un  monitor.
  • Las memorias  que pueden utilizarse para otros aparatos electrónicos.
  • Los ventiladores  y radidadores  usados para refrigerar las CPU  nos pueden servir para refrigerar nuestros circuitos o  incluso para otras aplicaciones con celulas de Peltier
  •  Las cajas ATX  tienen un sinfín de aplicaciones
  • De los lectores de CD / DVD podemos usar los motores,la mecánica  y el láser
  • De las viejas disqueteras   podemos usar los motores,la mecánica
  • Tornillos , herrajes ,etc

En el post de hoy a vamos a  ver como es posible construir una maquina  CNC o una impresora 3D     con la mecánica  de dos  o tres lectores dvd ( o incluso incluyendo una disquetera) invirtiendo muy poco dinero, pues tan solo necesitaríamos una mínima  electronica de control aparte.

Las partes hardware que necesitamos son:
  •  3 lectores de CD o DVD que no usemos
  • 1 Arduino (Uno en nuestro caso)
  • 3 controladras de motor paso  a paso
  • Fuente de alimentación  de 5v DC ( nos vale una vieja fuente de PC)
El sofware necesario seria el siguiente:

Ensamblaje

Para empezar  con este proyecto  lo primero  es desmontar  los  lectores de CD o DVD
disco1
Como vemos  ,en su interior vamos a ver encontrar una placa  metálica con un motor paso paso (compuesto por  dos bobinados independientes ) y cuyo eje es un tornillo sin  fin , lo cual es la pieza clave  para   reciclar . Asimismo necesitaremos las carcasas de dos de ellas  y los componentes necesarios para fijarlos al chasis (  el laser  y los otros motores no son necesarias).
Cada motor va a simular cada uno de los ejes de la maquina (X,Y,Z)  por los que en los contactos de cada motor  soldaremos un cablecillo  a cada contacto para hacer las 4  conexiones  con las controladoras ( podemos eliminar el cable de cinta flexible que suelen llevar pues es muy difícil que den la medida).
En este punto es interesante identificar mediante una sencilla de prueba de continuidad con un polímetro   usándolo en modo  resistencia  para  saber cuales son los dos bobinados  ( entre si   no deben tener continuidad )
 cables.JPG
Una vez tengamos el cableado hecho de los motores nos tocaría la parte mecánica la cual quizás sea la parte mas engorrosa  y difícil de llevar a cabo   pues realmente no existe una única solución  a este problema   a la hora de afrontar el ensamblaje  que básicamente  consiste en  fijar los carros con  los motores paso a paso en los tres ejes x, y , z  para formar un único conjunto.
En primer  lugar  , nos centraremos en lo que será el eje Y  . Usando  una carcasa colocaremos uno de los  carros junto con el motor  por medio de  soportes tratando de alinearlo lo mas cercano a uno de los bordes  y centrándolo sobre este.
Los soportes pueden ser metálicos roscados ( se pueden comprar en ferreterias)  o separadores de plástico de los usadas para las placas madre.
ejey
De un modo similar  también fijaremos otro carro con su motor a otras de las carcasas de manera que crearemos para el eje X (obviamente la idea  es montarlo perpendicularmente al montaje del eje y). Asimismo también debemos fijarlos  a una de los bordes en la parte superior y centrados sobre este cuerpo.
Los soportes usados también  pueden ser metálicos roscados ( se pueden comprar en ferreterias)  o separadores de plástico de los usadas para las placas madre.
ejex.png
Ahora nos toca el eje z  que se diferencia   de los dos anteriores  que debe ir colocado sobre  uno de los ejes: más  concretamente el eje x.
El eje Z a diferencia de los otros dos lo instalaremos en una placa  liviana ( por ejemplo de vaquelita ,plástico, metílica,etc  ) para luego  montarla en los soportes del eje X
ejez.png
Una vez que tenemos los tres ejes es hora de  unir  ambas carcasa  por  las  base del eje Y y X  formando un angulo recto.
Normalmente muchos aficionados usan escuadras metálicas   e incluso pequeños perfiles metálicos entre ambas carcasas  : todo depende de lo solido que haya quedado la unión así que  quizás  no sea tan necesario en función de como queden fijadas ambas partes
escuadras1.png
Una vez que hayamos ensamblados  lso tres ejes , nuestro proyecto ha tomando toda su  forma, por  lo que solo nos queda conectar  los motores paso a paso a  los controladores   y estos a la placa Arduino Uno.
Las conexiones de cada motor irán a cada driver  de motor  paso  a paso y las entradas  de estos  a la placa Arduino Uno según las siguientes  conexiones digitales:
  • Eje x: puertos 3 y 6, GND
  • Eje Y : puertos 4 y 7,GND
  • Eje Z: puertos 5 y  8;GND

Asimismo no debemos olvidar las conexiones de alimentacion de la placas de los drivers (+5V) que se recomienda no se obtengan de Arduino  sino directamente desde  la fuente auxiliar

El esquema electrico final seria el  siguiente:
Diagramas
Cuando hayamos  conectado e instalado, lo que quedaría seria ir configurando el software necesario para hacerla funcionar.
En youtube podemos encontrar  miles de videotutoriales  que explican con detalles estos pasos por lo que no lo vamos a repetir aquí
Como pinceladas  dejamos dos vídeos muy claros al respecto para que sirvan  como guía:
Con eso concluimos  de este proyecto, lo cual es la base para diferentes usos como puede ser un plotter , una fresadora o incluso colocando un extrusor una impresora 3D,una grabadora láser , etc
final.png

Mejorar la calidad de objetos impresos en 3d


La calidad de las impresoras 3D ha aumentado considerablemente en los últimos tiempos pero debido a su propio funcionamiento FDM (modelado por deposición fundida), se siguen apreciando las marcas de cada capa en las piezas ( incluso usando   un cabezal muy fino)

Una de las soluciones a eso son los baños con vapor de acetona.

En este vídeo podemos ver cómo tratar las piezas impresas en 3D con un baño de vapor de acetona para hacer impresiones impresionantes con calidad de molde de inyección. ¡y el resultado es fantástico!

 

Las impresiones en 3D se hicieron con la famosa impresora 3D de bajo  costo Desktop 3D impresora Reprap Prusa i3 Kit  (unos 300€ en Amazon)

La impresora del escritorio 3D   que viene en kit   incluye la cama caliente, soporte  del carrete, instrucciones detalladas, ayuda de cliente y garantía libre del reemplazo de 3 meses.Apoya la impresión multicolor  pues el filamento -3D se puede cambiar durante la impresión para imprimir el objeto en diversos colores.

Esta impresora como se puede ver en el video incluye  una pantalla LCD con una perilla para controlar la impresora 3D con una función especial para pausar fácilmente la impresión y controlar la velocidad de impresión.

La boquilla de la impresora 3D es de 0,3 mm, lo que hace que la impresión sea más elaborada . Molde las piezas para el eje Z y tres bloques de la diapositiva para la extrusora para hacer la impresora más estable. También se incluye 1 rollo de cinta de Kapton para proteger la cama caliente y para que sea más fácil de quitar la impresión de la cama caliente.

La fuente de alimentación de la impresora Alunar 3D es de 110 V-220 e  incluye  un interruptor de seguridad para encender y apagar fácilmente la impresora 3D.

Y aquí algunos links  donde obtener algunos Acetona: http://amzn.to/2i9RA86 p o  el  filamento del ABS de la buena calidad: http://e3d-online.com

Se puede descargar ademas el modelos que aparecen en el video del  búho  impreso en  http://www.thingiverse.com/thing:18218

 

 

Con éste sistema, se consigue suavizar bastante las capas y dejando un resultado muy próximo a los sistemas de inyección de plástico sin perder demasiados detalles.

Impresoras 3d economicas


Hasta que grandes fabricantes decidan apoyar la impresión 3d ,lo cierto que hoy por hoy , incluso en forma de kit , las impresoras  3d   son máquinas aun muy caras y por tanto poco accesibles a los aficionados en general

No obstante , como en todo en la vida , existe  una  excepción como son  aquellas basadas en la tecnología SLA  donde no se  utilizan en sí mismo piezas impresas en 3D, lo cual es la tónica  habitual empleada en  la mayoría de kits  de impresoras que están construidas con elementos impresos en 3D.

La tecnología SLA, conocida como Estereolitografía, es una de las dos tecnologías usadas en la impresión 3D, un tipo a base de resina para la impresión en 3D, y es generalmente diseñado para imprimir de abajo hacia arriba. De esta manera  necesita mas resina, así que sube el gasto del consumible , aunque en general  el diseño de este al no necesitar tantos  engranajes y motores simplifica mucho el dispositivo  y con ello el precio

En este interesante proyecto su creador ha hecho uso del software de Arduino para hacerlo funcionar creando una impresora que imprime de las dos maneras posibles de abajo hacia arriba o viceversa y que usa en parte algunos materiales reciclados.

La lista de elementos usados es la siguiente:

  1. Motor paso a paso (versión de 4 pines, extraída de la unidad de DVDrom) ejemplo aquí o bien  un motor de pasos NEMA $15
  2. Arduino Uno.
  3. Controlador paso a paso. Ejemplo aquí .a DRV8825 tiene un paso de 1/32 aunque yo también utilizan la original 1/16 paso A4988.
  4. Condensador de 100uF.
  5. Placa de circuito – para su construcción la placa
  6. Fuente de alimentación de 12V a 2A
  7. Florero de cristal
  8. Proyector DLP

 Impulsión del eje Z

Se pueden usar  las viejas unidades de CD-ROM  recicladas  pero algunas  unidades pueden tener motores que sólo tienen cableado positivo y negativo  pero eso no va a funcionar para nosotros. En cambio si serviran la mayoria de las  grabadoras de CD / DVD ,por ejemplo un DVDrom externo modelo  dvd740 de HP.

El trineo que tiene  un motor paso a paso de 4 pin con   impulsión del tornillo en este proyecto   también es útil  a falta de las especificaciones para el motor ( se puede utilizar un multímetro para probar la continuidad y ver qué cables son”pares”.)

Stepper Driver

El utilizado es  el  popular A4988 Stepper Driver. Es una gran opción, pero también buscando  más flexibilidad  y ya que los precios caen continuamente sirve un  par de drivers DRV8825 StepStick  en su lugar. Ambos tienen configuraciones muy similares y cabrán en al regulador de RAMPS . La principal diferencia es que el A4988 baja a un paso de 1/16 mientras que el DRV8825 puede hacer un paso de 1/32.(el paso más lento podría aumentar la resolución  )

3d

Steppers: Determinación de patillas

Digamos que tiene un motor paso a paso, pero no tienen idea de que cables son que, o qué gancho donde. ¿Qué hacer?

Motores Parker todos tienen dos fases, que alternadamente son energizadas por la unidad, haciendo que el motor gire. Un motor 4-pasos o 6 tendrá una bobina por fase; 8-lleva los motores tienen dos. Llamamos arbitrariamente una de estas fases “A + / A-” y el otro “B + / B-“.

Cada alambre en un motor paso a paso de 4 o 8 plomo está asociada a un extremo de una bobina. Lo primero es saber que los cables en la bobina del mismo. Hay una forma sencilla de hacerlo: escoge dos cables al azar, y mida la resistencia entre ellos. Si obtiene un valor finito (del orden de unos pocos ohmios), estos cables son en la misma bobina. Continuar hasta tener los cables emparejados para arriba.

Con un motor de 6 pasos  además de las cuatro puntas al final de las fases, existen dos centro—un cable que brota desde el centro de cada fase. Esto facilita determinar que dos conductores son la centrales: la resistencia de cualquiera de los extremos de la fase al  centro  debe ser la mitad la resistencia, medida a través de la fase entera.

Un motor de ocho pasos tiene dos bobinas de cada fase; estas bobinas pueden conectarse en serie o en paralelo. Por ahora, sólo encontrar que cables son  (usted debe terminar con 4 pares). Luego, averiguar qué pares están en la misma fase . Para ello, necesita el disco de paso a paso. Configurar el disco para ejecutar al 50% actual (si es aplicable, también establecer inductancia 50%). Conecta un par de cables a la A + / A – terminales y otro par al azar que B + / B-. Si el motor gira, han escogido una bobina de cada fase. Buena. De lo contrario, las bobinas están en la misma fase. De esta manera, podrá determinar que las bobinas están en cada fase.
Ahora tiene cada cable con su “compañero de bobina” y cada bobina con su “compañero de fase”). Llame a un par de bobinas “fase A” y la otra una “fase B”. Entonces, llame a una bobina en cada fase de “la bobina 1” y la otra bobina “2.” Ahora tiene 4 bobinas: A1, A2, B1 y B2.

Ahora debemos determinar la polaridad de cada bobina en cada fase. Conecte uno A coil y una bobina B la unidad y el movimiento hacia la derecha del comando. Si gira hacia la izquierda, cambiar el cable en B + con el que está en B-. Ahora, usted sabe el lado positivo de cada uno de estos dos bobinas. Estos alambres A1 +, A1, B1 + y B1 – de la etiqueta. Ahora, quitar bobina B1 e introducir la bobina B2. Otra vez, comando de movimiento hacia la derecha. Si el motor gira hacia la izquierda, cambiar el cable en B + con el que está en B-. Una vez que gira hacia la derecha, identifique el cable en el B + terminal “B2 +” y el cable en la terminal B “B2-“. Por último, retire la bobina A1 e Inserte la bobina A2. Movimiento hacia la derecha del comando; Si el motor gira hacia la izquierda, cambiar el cable de A + con el de A-. Etiqueta en el A + terminal “A2 +” y el otro un “A2-“.
Ahora tienes todos los cables con la etiqueta: A1 +, A1, A2 +, A2, B1 +, B1-, B2 + y B2-. Aquí es el momento de decidir si se va a enlazar en configuración serie o en paralelo. Cableado paralelo ofrece un mayor par motor a altas velocidades, pero límites de generación, ciclo de deber del motor al 50% del calor. Configuración de serie permite que el motor a funcionar constantemente. La serie se utiliza más comúnmente.

Conector de la unidad Cables del motor (paralelo) Cables del motor (serie)
A-centertap x A1-, A2 +
A + A1 +, A2 + A1 +
A- A1-, A2- A2-
B + B1 +, B2 + B1 +
B- -B1, B2- B2-
B-centertap x -B1, B2 +


 

.

y por cierto, aquí está el código de color más común para los cables:

A1 + rojo
A1 – amarillo
A2 + azul
A2 – Negro
B1 + blanco
B1 – naranja
B2 + marrón
B2 – verde

Conexiones 

Comenzando en el Pin superior derecho, tenemos  el lado + de una línea de 12V y un condensador de 100uF conectado. El otro extremo del condensador  de desacoplamiento de 100uF y los lados de la línea de 12V están conectados al pasador por debajo.

 Pins 3,4,5,6 (su paso)

Por debajo de ese pin   negativo va sus conexiones de motor paso a paso. Las conexiones B van primero y luego las conexiones A. E ltexto  anterior le dice cómo decir A1 de A2, e.

El pin FAULT es el siguiente en la lista y es el único pin que no he conectado a nada.
El pin botom en la fila es su tierra y puede conectarlo a la tierra en el tablero de Arduino (o bien lo hará).

Es hora de conectar el otro lado del tablero de controladores (de arriba abajo de nuevo)
El pin  superior está rotulado Habilitar basado en el código de Arduino que se  esta  usando y  esta conectado al pin 7 en el tablero de Arduino Uno.

M0, M1 y M2 están todos conectados a la línea Arduinos 5V (que en mi configuración está realizando la selección de paso 1/32). Puede utilizar la hoja de especificaciones anterior si desea una resolución de paso diferente.

Los siguientes dos clavijas son RESET y SLEEP y he superado los de la línea 5V también.

El segundo al último pin es STEP y lo tengo conectado al pin 6 del Arduino Uno
Y el último pasador es DIR que va al pin 5.

Hay una segundo masa en Arduino y el puente que con la línea negativa del suministro de 12V.

.

SAMPLE CODE

int x;
void setup() {
pinMode(7,OUTPUT); // Enable
pinMode(6,OUTPUT); // Step
pinMode(5,OUTPUT); // Dir
digitalWrite(7,LOW); // Set Enable low
}
void loop() {
digitalWrite(5,HIGH); // Set Dir high

for(x = 0; x < 200; x++) // Loop 200 times
{
digitalWrite(6,HIGH); // Output high
delayMicroseconds(500); // Wait 1/2 a ms
digitalWrite(6,LOW); // Output low
delayMicroseconds(500); // Wait 1/2 a ms
}

delay(1000); // pause one second
digitalWrite(5,LOW); // Set Dir low
for(x = 0; x < 200; x++) // Loop 200 times
{
digitalWrite(6,HIGH); // Output high
delayMicroseconds(500); // Wait 1/2 a ms
digitalWrite(6,LOW); // Output low
delayMicroseconds(500); // Wait 1/2 a ms
}

delay(1000); // pause one second
}

Cuidadosamente tratar de obtener su paso a algún lugar en el centro antes de comenzar con el código. Lo que hará es girar ligeramente el motor en una dirección y luego volver a donde se viene. Es una prueba bastante segura de que no se caerá en los extremos.

For (x = 0; x <200;

200 es un número bastante bajo y puede ser incluso menor que una rotación completa. He ido con seguridad a 3000 o así (que va un poco más de ½ camino y volver creo).

Esto concluye la prueba exitosa de su combinación de CDROM Stepper y Arduino Uno / Driver !!

 

RV8825 TRIMPOT

El pequeño círculo  DRV8825 es un potenciómetro que le permite afinar y ajustar el mA que fluye al motor paso a paso usando un pequeño destornillador de joyas. Si envía mucha energía al stepper puede  quemarlo de modo que lo idea es ajustar e voltaje más bajo que se pueda(  alrededor de 181mA más o menos) y luego conectar  el motor,cargar el código de prueba Arduino y el motor debería funcionar maravillosamente sin calefacción ni zumbido.

 

Al final y gracias a Ebay se puede construirse una impresora que como hemos dicho es barata  pero muy mal  docuemtadas

Aqui dejamos el enlacea a dicho proyecto por si os animáis a montaros una, y ya nos contareis www.buildyourownsla.com/forum/viewtopic.php?f=8&t=2768

Protesis low cost


Gino Tubaro nació en 1995 en Buenos Aires.Estudió electrónica en la Escuela Técnica ORT (las Escuelas Técnicas ORT) y  está estudiando ingeniería electrónica. Como joven inventor, ha recibido muchos premios : por la Organización Mundial de la Propiedad Intelectual (OMPI / WIPO) adoptado por la ONU, Juegos Olímpicos “inventiva”, JCI TOYP. “Alumno del mes” en todo el mundo por el Departamento de Estado de los Estados Unidos y la Embajada de los Estados Unidos en “reconocimiento a su liderazgo en la creación de soluciones innovadoras para ayudar a las personas con discapacidad viven sin límites,etc.

En 2012 él era un orador en TEDxRiodelaPlata donde presentó el “ladrón de Energía” y “Sound Cube”. TED es una organización sin ánimo de lucro de prestigio dedicada a las “ideas vale la pena difundir”. Del mismo modo TEDx ofrece la posibilidad de organizar un evento separado como en cualquier parte del mundo. También en 2014 dio su segunda charla en TEDxUTN, esta vez, hablando de su idea de “Super-hombre Darwin ‘, fue acerca de cómo podríamos tener súper habilidades de súper discapacidades físicas.

Fruto de su deseo por mejroar el mundo , Gino co-fundó una compañía / fundación llamada Darwin Investigación, con el fin de experimentar las nuevas tecnologías disruptivas que hoy en día todavía no son públicos, son la impresión en 3D, realidad virtual, criptocoins (bitcoin / litecoin), educación 2.0, entre otros tecnologías.

Gino es líder en la producción de 3D impreso dispositivos protésicos en Argentina. creando  o prótesis de mano que son completamente funcionales.

Actualmente, sigue diseñando nuevas prótesis utilizando un sistema diseñado por Gino llamada mechanomyogram, que puede “escuchar” el movimiento de los músculos, donde los sensores  no tocan la piel directamente, por lo que este nos permite estimular un músculo antagonista (opuesto a la se esta utilizando para conducir la prótesis) y darle al usuario la sensación de sostener un objeto.

Una  gran ventaja en comparación con los modelos anteriores, es que todos estos prototipos   no necesitan cirugía para colocar los electrodos.

 

Manoironman-crop.png

Como ejemplo Felipe Miranda tiene 11 años y nació sin dedos en su mano izquierda. La  prótesis que necesitaba costaba 40 mil dólares y había que importarla. Su madre Ivanna se comunicó con Gino Tubaro y Rodrigo Pérez Weiss para pedirles ayuda. Diseñaron juntos un implante para Felipe que solamente costó $2.000 pesos.

Para aquellas personas  que aun no puedan costearse  una prótesis   Gino ha creado un evento  llamado ‪#‎MANOTON‬, que hace posible construir las protesis gracias a la ayuda de voluntarios y a parners como Microsoft Argentina, Sodimac y United  a fabricar entre todos las  prótesis a personasque lo hayan solicitado .Este año  una niña  llamada  Isamara fue una de  sus primera beneficiadas del programa pues Gino junto a un grupo de voluntarios la ayudaron a montar su mano impresa en 3D por Atomic Lab en el primer MANOTON ( puede apoyar esta iniciativa  yendo a www.aka.ms/manoton )

Gino trabajó casi un año que lleva el programa nacional “Argentina en 3D”, de la “Jefatura de Gabinetes de Ministros”, bajo el control presidencial. Él dejó la comodidad de trabajar por el Estado para su aventura personal por Atomic Lab . Allí, él se dedica a inventar soluciones para las personas que más lo necesitan y muchas otras invenciones.

Hoy en día se enfrenta el desarrollo de varios inventos, desde el 3D más avanzada impresa prótesis de mano y el brazo, un “braille dinámico” que permite leer libros sin la digitalización de las impresoras 3D a base de pantallas de teléfonos móviles para reciclar thetecnoscrap del mundo, entre otras cosas..

 

 

Mas información   aqui

Imprima su propio telescopio open hardware y Arduino


Para el proyecto Ultrascope sus creadores se preguntaban si era posible desarrollar un telescopio kit-set que reduciría  el costo de la astronomía de nivel profesional en un orden de magnitud
En otras palabras, un telescopio robot – o ARO – Automated Robotic Observatorio, que permitiría a los astrónomos aficionados  contribuir a proyectos de ciencia ciudadana por un costo reducido radicalmente.

Es cierto que todavía estan refinando el rendimiento del  primer ULTRASCOPE SERIE EXPLORER usando un espejo ARO 3,5 pulgadas que es capaz de realizar fotografía celeste y fotometría por lo que actualmente sus creadores están buscando voluntarios    Beta Testers en todo el mundo para probar el diseño alcance actual y sugerir mejoras.

En el siguiente vídeo podemos  ver el fantástico aspecto que presenta una vez  terminado

 

Este sueño habría sido casi imposible hace tan sólo 24 meses. Los niveles de precisión requeridos para un ámbito de calidad científica fabricante de hecho habrían dado lugar a errores de composición que conspiran para hacer observaciones fustrante para los aspirantes a ciudadanos científicos. Sin embargo, la aparición de las impresoras 3D de bajo costo y de corte por láser, así como las plataformas de microcontroladores como Arduino ,asi como smartphones como el  Lumia 1020- con su CCD de 41 megapíxeles – significa que un proyecto como este ahora es eminentemente posible.

La Open Space Agency (OSA) dice que el grupo quería demostrar que era posible crear un diseño de código abierto barato de producir y que la gente pudiera construir para hacer observaciones científicamente valiosas. El smartphone   adherido al Ultrascope sube automáticamente las imágenes a la nube para construir una biblioteca de imágenes compartidas en línea y así poder crear un mapa colaborativo del firmamento.

Por cierto  ,los archivos 3D ,y el software para Ultrascope estarán muy pronto disponibles bajo una licencia abierta.

Si quiere mas información no dude en consultar su site   aqui

Cómo fabricarse una maquina de grabado laser con piezas recicladas


Una máquina de grabado láser es una herramienta que utiliza el láser para hacer  grabados sobre  un objeto blando como puede ser madera,cuero , plasticos ,etc.
Antes de   explicar como  Davide Gironi  ha montado una pequeña grabadora láser casera reciclando un viejo escáner  y una impresora matrozial  ,  debe saber  que  los diodos láser Clase IIIb   que se emplean en este proyecto, emiten radiación láser visible e invisible y son extremadamente peligrosos. Su luz de hecho puede causar daños permanentes en los ojos, asi que nunca  debe mirar al diodo trabajando( incluso sin la lente)  y por supuesto tampoco apuntar a una superficie reflectante, pues el haz de láser puede causar quemaduras o incendios. 

El autor tenia un viejo escáner roto y una vieja impresora por ahí. Inspirado por este proyectoinstructables  decidió construir una versión más grande de mi pequeña CD-ROM grabador láser basado,usted puede encontrar aquí.De esta manera, el área de grabado podia llegar acasi 212mm x 274mm.

El eje Y es construir mediante el ensamblaje de un viejo  escáner  y  el eje X utilizando una vieja impresora .

La base de esta máquina es el propio escáner   y el escáner  de este fue completamente eliminado , todos excepto el motor y  el mecanismo de movimiento. Lo mismo se aplica para la impresora.
Montaje del hardware, prestar atención a construirlo hacer X normal al eje Y. Los dos dirección tienen que ser perpendiculares, o su grabado tendrá distorsiones.
El mecanismo de la impresora que está conectada a el ensamblaje del escáner del eje Y, de esa manera, el láser deja atrás la pieza en el momento del grabado.

Grabador resultante  es alimentado por una fuente de alimentación de 12V 2A, aunque la corriente total absorbida es 700mA.

El cerebro de este proyecto es un ATmega328P corriendo a 16Mhz. cargado con firmware grbl http://github.com/grbl/grbl, que es un potente aún opensource g-código analizador.
Se ha utilizado una placa Arduino Mini, incluso si el software no utiliza el marco de Arduino.
Un regulador de tensión 7805 se utiliza como fuente de alimentación para el ATmega.
El firmware  Grbl 0.9 sirve para construir   enrutador 3 ejes, pero funciona en  sistemas de 2 ejes de este tipo, con un límite duro y homing habilitado por medo de una versión personalizada del firmware  que consiste en  cambiar a versión 0,9 g en son archivados config.h. las siguintes líneas:
HOMING_CYCLE_0 #define (1 << Z_AXIS)
HOMING_CYCLE_1 #define ((1 << X_AXIS) | (1 << Y_AXIS))
fue comentado y ha cambiado a:
HOMING_CYCLE_0 #define ((1 << X_AXIS) | (1 << Y_AXIS))
// # define HOMING_CYCLE_0 (1 << Z_AXIS)
// # define HOMING_CYCLE_1 ((1 ​​<< X_AXIS) | (1 << Y_AXIS))
A continuación, el nuevo firmware grbl puede ser compilado y utilizado, evitando grbl problema 0.9 homing en 2 máquinas de eje.

La versión personalizada de compilador v0.9g grbl para ATmega328P @ 16Mhz, con una velocidad de transmisión de 115 200, se puede descargar a continuación  aqui.
CP2102 se utiliza como USB a la placa de UART y  sólo tiene que cargar el firmware usando su cargador favorito, la página wiki unidad grbl usted sobre la forma de hacer este paso.
En la wiki grbl también se puede encontrar cualquier otra información sobre comandos y configuración del software.

El controlador del motor ara mover el X e Y motor paso a paso son Carrier Conductor Polulu A4988 del motor de pasos, basado en Allegro A4988.
Como los escáner tpueden tener un motor paso a paso de 5 hilos unipolar. Ese conductor Allegro sólo funciona con motor paso a paso bipolar 4 hilos  el autor  transformóa el motor unipolar a un motor paso a paso bipolar.
Para realizado esta modificación, se corta el hilo común entre los dos devanados principales y luego se compruebaque las bobinas no tienen ninguna conexión con un multímetro. De esa forma se tienen dos bobinas, al igual que un motor bipolar:

Las impresoras por el contrario suelen  tener motores paso a paso de  hilos bipolares. Para controlarlo  se usara una placa  A4988 Allegro que envíara al motor la señales necesarias para energizar este. Incrementar los pasos hace que el motor sea más preciso, pero también  reduce el par del motor ( de hecho se puden hacer algunas pruebas para determinar la configuración de su mejor potencia del motor).
Para los motores usados para permitir un movimiento del motor suave y fino, y un buen par usando  un par de placas a A4988 Allegro , se  configura para 8 micropasos para el motor-Y, y 16-microstep para el motor-X.
Abajo puede encontrar el cableado básico de conexión de placas Polulu.

Para hacer el tablero Polulu funcionar a 8 micropasos M1 y M2 tiene que estar conectado a la alimentación lógica de alimentación VDD, si quiere ejecutarlo en 16 micropasos, conecte también M3 a VDD.  El suministro Motors VMOD está conectado directamente a 12v.

En cada eje un límite y un microinterruptor  de toe de fin de carrera se ​​coloca para evitar el eje avanace al final y  finalmente  dañe el controlador de motor.
Debido a que el final de carrera son bastantes sensibles al ruido,se  he añadido un condensador de 100nF de paso alto y una resistencia adicional 10k pull-up. Asimismo, el límite y el cable de casa son independiente y distante de la correa de cable del motor y el láser.

El láser utilizado es un diodo láser rojo, reciclado  de la óptica grabadora de un DVD-ROM. En el CD-ROM y DVD-ROM también se puede encontrar controlador de infrarrojos, láser de la grabadora de DVD diodo será un poco más potente que el  de un CD . Un diodo láser por lo general tiene tres contactos , uno o el cátodo del fotodiodo (-), otro el ánodo del diodo láser (+), el otro es el ánodo monitor de fotodiodo (+). Si el diodo que está utilizando no tiene ninguna marca, y no sabe el pinout del  diodo, usted tiene que encontrar el cátodo y el ánodo del  láser. Un método simple  para encender el diodo con un 1,8 a la corriente 2.2V, sólo por una pequeña cantidad de tiempo, digamos 1s, si absorbe actual, el cableado es el pinout diodo láser.

Por otro lado un diodo láser tiene que controlado  con un controlador adecuado, usando controlador de láser basado LM317.Este controlador láser puede conducir diodo de 12 mW a 700mW. Un regulador de voltaje de 9V a prevenir sobretensión en el diodo láser. También un NPN se coloca para permitir la entrada de TTL que viene desde el microcontrolador para activar o desactivar el láser. Estamos utilizando LM317 IC como un regulador de corriente. El voltaje de entrada se interponga en el pin Vin del LM317, desde la salida Vout al pin ADJ hay una resistencia R conectada. La corriente de salida Iout está dada por la fórmula Iout = Vref / R. Allá resistencia no siempre tensión Vref. Cuando disminución actual, la tensión de más de R debe ser menor, pero de esa manera el regulador aumentar su voltaje de salida para ajustar su tensión Vref.
Vref es 1,25 para el LM317. R se realiza mediante un resistor fijo R1 y un condensador de ajuste R2. Esa resistencia y el condensador de ajuste establece la corriente de que el uso del láser.
Así actual controlador de láser está dada por la fórmula: I = 1,25 / (R1 + R3).
La potencia nominal de las resistencias R1 y R2 se calcula mediante la forumla P = 1,25 * I.
Antes de conectar el láser y probar el controlador, compruebe que la resistencia es el valor más alto posible, a continuación, conecte el láser y medir la corriente absorbida mediante un amperímetro. Tenga en cuenta que si establece demasiada corriente al láser, que harán volar.
A continuación el circuito de excitación láser.

Un estándar de 60mm x 60mm ventilador sin escobillas PC está instalado para despejar el humo, esto evita que la lente óptica de láser que se nubló.

Los comandos para la máquina de grabado se envían a través de UART a 115.200 baudios.

Una vez  que ha construido la máquina, toca comprobar y conectar todo, cargando el firmware grbl en el  microcontrolador (puede utilizar el software de terminal, o un controlador grbl para configurar su placa de control).

Se puede suar  G-Código Universal de remitente para configurar y enviar comandos para grbl, pero también se puede utilizar un terminal simple.

Lo primero que debe hacer es probar el movimiento del motor:  Para probarlo, basta con enviar el   X10 Y10  comando, o utilizar el botón de movimiento del remitente G-Code Universal.
Usted debe ver un movimiento del motor en cada eje.   También puedes ver el láser se enciende y se apaga mediante  M3  y M5 mando.

Ahora para configurar la distancia correcta del motor para funcionar, tiene que configurar cada motor paso a paso / mm.
El método de calibración paso / mm Motor eje es bastante simple.
Vamos a tratar de la calibración del eje X como ejemplo. Sabemos cuántos paso / mm o grbl steps_per_revolution es en realidad la instalación, grbl $100 = 250.000 (x, paso / mm) parámetro.
Ahora, cambiamos su motor para algunas medidas, digamos 100 micropasos, el eje debe tener movimiento 100mm. Ahora medimos la distancia real de que el motor se ha movido, vamos a suponer que es 181mm. El nuevo valor del paso / mm para este eje del motor debe ser  steps_per_mm = (steps_per_revolution * micropasos) / mm_per_rev ,asi que b 138.121 = (250 * 100) / 181
$ 100 = 138.121

Ahora, si mueve el motor de 100 mm, se debe mover 100 mm.

Porque se  he instalado el límite y el interruptor de casa,  los límites duros  $ 21 = 1
Se fija el homing pull-off a 5 mm, porque el microswotch puede  tiner una larga palanca, y se  quiera que el motor se mueva la distancia después del ciclo de casa. $ 27 = 5.000
También el ciclo homing se habilitó: $ 22 = 1
Y la dirección homing de máscara  se cambia también. Uno puede incluso necesitar invertir eje de dirección, “puerto dir máscara invertido” es el parámetro  que tiene que tocar.

Esas son la configuración grbl más común, para la lista completa, mire la página wiki grbl.

A continuación puede encontrar los parámetros de configuración grbl qeu el autor cambió:
$ 21 = 1 (límites duros, bool)
$ 22 = 1 (ciclo de homing, bool)
$ 27 = 5.000 (homing pull-off, mm)
$ 23 = 3 (homing máscara invertido dir: 00000011)
$ 100 = 37.879 (x, paso / mm)
$ 101 = 94.246 (y, paso / mm)
$ 110 = 100.000 (tasa máx x, mm / min)
$ 111 = 100.000 (tasa max y, mm / min)
$ 130 = 212.500 (x max viajes, mm)
$ 131 = 274.400 (viaje max y, mm)

Ahora usted podría ser capaz de enviar el dibujo g-código a su grabador.

Hay una gran cantidad de software que puede utilizar para construir g-código empate, el que yo uso la InkScape. El trabajo es para este plotter es 212mm x 274mm, para configurar el área del proyecto de esta dimensión. Una vez que usted tiene camino, entonces usted puede seleccionar la ruta que desea grabar, y transformarla mediante el InkScape extensión grabador láser.
Sólo tiene que copiar la extensión en su carpeta inkscape extensión, reiniciar inkscape, y usarlo para construir su archivo de g-código.
Una vez que tenga el archivo de código G, puede enviarlo a grbl utilizando Universal-G-Code-Sender, u otro software grbl como Controlador Grbl.

En este video podemos ver todo el conjunto en acción:

 

 

 

Fuente  aqui