Porque no debemos imprimir en 3d mascarillas de proteccion

¡No imprima su mascarilla en 3d !En este post hay un resumen de la gran cantidad de problemas que impiden que estas máscarillas funcionen e incluso las hacen peligrosas. Es nuestro deber comprender el motivo para desarmar a cualquiera que sugiera que use o fabrique estas máscaras


Muchas cosas pueden y deben imprimirse en 3D como respuesta a la crisis global  como por ejemplo las viseras  compuestas por acetatos  y soportes impresos en 3d, salva-orejas   o por ejemplo piezas  para respiradores ,  pero las máscarillas no deberíamos de hacerlas … Y antes de decir: “es mejor que nada”, vemos algunos  motivos pues aparte de la falsa seguridad que puede conllevar su  uso , incluso puede ser peor para usted (y para los que lo rodean) que no usar ninguna máscara.  Ademas como soluciones alternativas  estará mucho mejor protegido con el mínimo de una bufanda, pañuelo o cualquier resto de tela vagamente densa envuelta alrededor de su cara.

 

En realidad se ha hecho realmente popular la   construcción casera  de mascarillas durante la pandemia porque las mascarillas quirúrgicas escasean de sobremanera tanto  que en muchos partes del planeta no están disponibles   o  han subido tanto su coste que este  no es asumible por gran parte de la población.

La tecnología de impresión 3D FFF simplemente no es capaz de producir una máscara de respirador segura y efectiva pues está más allá de los límites de FFF y ningún cambio de diseño simple o variación en las piezas utilizadas puede superar eso. Lo peor es que algunos de estos diseños incluso afirman ser tan efectivos como un FFP2 o N95 si se usa el material de filtro adecuado.

Es un desperdicio de plástico, que por cierto, ya está escaseando en este momento  en algunas  zonas del planeta , así como también puede ser un desperdicio desmontar  mascarillas comerciales  FFP2  o  N95, ya que algunas personas incluso sugieren cortarlas para usar como material de filtro para estos respiradores impresos.

La buena noticia es que  aunque  las  mascarillas fabricadas en 3d no son aconsejables por las razones  que vamos a exponer , las  fabricadas con textil o con  otros materiales como el papel de filtro  ya harían  una buena función .

La física de aerosoles

En  efecto  si nos atenemos a la física de aerosoles, o lo que es lo mismo la física del contagio  existen diferentes distancias   a la que es posible  trasmitir partículas ( como el covid-19) ,  incluso  a una distancia mayor de 6 metros.

Para verlo mas claro en la siguiente imagen, que se considera a una persona contagiada que no sabe que lo está y no se pone ninguna mascarilla para evitar contagiar a terceros , esto es lo que lo que sucede:

De la  imagen podemos ver  tres situaciones claramente diferentes

      • Estornudo,es el que  llega más lejos con gotas submilimétricas, cuanto más grande la gota, más carga vírica (más virus caben en ella) pudiendo superar 6 metros de distancia  . Precisamente de ahi la conveniencia  de usar pantallas protectoras  o la obligatoriedad e de ponerse el codo  cuando se estrornuda
      • Tos , llega menos lejos, pero aun así bastante lejos, puede superar los 2 metros.
      • Rrespirado normal, es el que llega menos lejos, pero aun así también se exhalan gotas cargadas de virus, no suele superar los 2 metros de distancia.

En los tres casos se producen aerosoles, gotas micrométricas en suspensión, que no caerán al suelo,  que por su tamaño no suelen proyectarse y se localizan alrededor del contagiado. En la calle esto no es un problema porque el aire se mueve, y estas gotas micrométricas se van con el aire que las mueve pero esto empieza a ser un problema en entornos cerrados como los ascensores y desde luego es un problema a considerar en entorno de alta infección como la sala de UCI de un hospital. Este aerosol es la razón por la que tenemos que guardar una distancia de seguridad en el supermercado y la razón por la que debemos dejar las mascarillas FFP3 para sanitarios en riesgo alto de infección, como los que trabajan en una UCI.

Los tapabocas son útiles para prevenir el contagio aunque no son tan buenos como las mascarillas antipartículas porque dejan pasar un 33% o 25% de partículas en el caso de un textil o una mascarilla quirúrgica, respectivamente . Sobre todo, previenen el contagio por gotas proyectadas de un estornudo o tos de alguien sin mascarilla.

Pero más importante es prevenir contagiar a terceros. Como este virus se contagia mientras seguimos sintiendo que estamos sanos, por precaución deberíamos actuar como si estuviésemos contagiados. Cualquier mascarilla quirúrgica o textil parará tus gotas proyectadas en un estornudo o tos, los principales vectores de transmisión.

 

Las mascarillas impresas en 3D

No podemos estar más de acuerdo en tanto a que una mascarilla impresa que no es estanca contra la cara (es decir que tapando el agujero del filtro y al inspirar haga “chupón”) y sin un filtro  homologado (P1, P2, N95, P3, HEPA compatibles para respirar a través de ellos), no son más que unos tapabocas muy modernos, una barrera física, que  cumple su función social pero que por desgracia adolece de bastantes inconvenientes tal y como nos explican  numerosas  entidades sanitarias al rededor  de todo el mundo como por ejemplo la AFES Chile :

POROSIDAD

La  FFF (fabricación de filamentos fundidos) se basa  en  extruir plástico derretido a través de una boquilla en líneas que se fusionan a medida que el plástico se enfría, creando cada parte línea por línea y luego capa por capa ( de hecho la inspiración de su creador, que luego fundaría Stratasys, es automatizar cómo una pistola de pegamento caliente derrite barras de pegamento y las arroja a chorros).

El primer problema con la fabricación de piezas FFF médicamente seguras ya debería ser evidente: las piezas terminadas son porosas de modo que los gérmenes, las bacterias y la suciedad se acumularán dentro de los vacíos entre cada línea y capa de filamento, mucho más profundo de lo que puede penetrar cualquier proceso de desinfección / esterilización.

Tenga en cuenta que un viroide SARS-CoV-2 (COVID-19) tiene entre 0,125 y 0,08 micras de ancho. Si una célula sanguínea fuera del tamaño de una gominola, una partícula de coronavirus sería del tamaño de un grano de arena lo cual  significa que cualquier  barrera  que queramos poner para que sea efectiva  y no penetre el virus deberían ser lo suficiente pequeño ( es decir menos de 0.08micras  )  para no dejar pasar dichas particular

 

Desgraciadamente  respecto a los micro-poros que existen en las piezas impresas en 3d, como el virus tiene 60-140 nm de diámetro,en un estudio hecho sobre PLA, impreso en 3D, por el profesor Fernando Alba de la Universidad de la Rioja , se caracterizan estos microporos, que tienen un tamaño de unas pocas micras:

 

Es de esperar, que con varias capas de material (imaginemos una capa de plástico con poros en sitios aleatorios y ponemos otra detrás y otra detrás, con los poros en distintos sitios cada vez) esta microporosidad no resulte en canales abiertos de extremo a extremo, por lo que  en ambientes de grado bajo de riesgo,  esto es un problema que todo apunta a que pudiera ser despreciable pero distinto sería si la mascarilla fuese hecha con un solo perímetro, pues entonces seria claramente un colador para los virus en aerosol, aunque seguiría funcionando como tapabocas.
 
Sin embargo en entorno de alta densidad de virus en suspensión, por ejemplo en una UCI, este riesgo no se puede asumir. El profesor Fernando Alba nos indica que en el mismo estudio se comprueba como una capa superficial de polímero (él usa PEG) tapa estos microporos:
 

 

 

¿Y  SU CUBRIMOS LAS PIEZAS ?

De acuerdo, las partes son porosas, pero ¿qué pasa si las cubrimos con pintura o resina para evitar que algo entre? Claro, esa es una opción, pero :

      • ¿qué sucede si no tiene un recubrimiento 100% sólido en toda la parte (pista: esto es difícil de hacer para geometría compleja como una máscara de respirador)?
      •  ¿qué sucede si esa capa protectora se rompe o se desgasta durante el uso normal? Las bacterias y virus  se introducirian debajo de esa capa y su problema seria aun peor porque la capa “protectora” hace que sea aún más difícil que cualquier tipo de desinfectante ingrese y desinfecte (y por supuesto  no puede ver nada de lo que esta sucediendo)

En principio,  una capa de vaselina o crema de base oleosa aplicada por el exterior debería resolver estos problemas pero no se puede garantizar. Por supuesto también seria desaconsejable  barnices, pues ademas  podrian  ser tóxicos, (aunque haya algunas propuestas interesantes involucran barnices de uso alimentario) .

Por otro lado, el profesor Jordi Torrent, de la Universidad de Girona, publicó un artículo en el cuál caracteriza el sellado de los poros de una pieza impresa en ABS con acetona   no obstante, este método requiere cierta pericia al parecer al tener que hacer un baño de vapor de acetona controlado, con recirculación del vapor con un ventilador.

Asimismo , nos llegan experiencias de que este proceso ejecutado en ámbito casero a veces resulta en una debilitación paulatina de la pieza, pero en un ambiente controlado en un fablab podría ser una solución a tener en cuenta:


Imágenes SEM antes y después del tratamiento con acetona. La línea roja indica la fusión de las capas exteriores, tapando microporos.

La conclusión es  pues que las máscarillas  impresas  en3d no son seguras ni efectivas, y la información al respecto simplemente no se está difundiendo lo suficientemente bien.

HIGIENIZACION DE  MASCARILLAS

En efecto  un  segundo  problema grave con las mascarillsa impresas ne 3d es la higienizacó de estas  pues no podemos  llevarlas a un autoclave pues se derretirían (para más detalles sobre esto, busque en google “¿es segura la impresión 3D de alimentos?”)

Pero ¿qué significa esto?Significa que su máscara impresa se contaminará, incluso después de un solo uso  pues  no podemos limpiarla  de modo que si alguien le tose, lo que sea que haya en esa tos , es más que probable que quede  fijada  en su máscara permanentemente ( ademas de todos modos, cualquier cosa que esté en su respiración mientras exhala también se incrustará en la máscara).

También , debido a que la parte es plástica, la humedad en su aliento puede condensarse en el interior de la máscara, gotear por la máscara y luego las gotas de agua que contienen virus pueden ser aerosolizadas en el aire que exhala, haciendo que el ambiente sea aún más peligroso para los demás.

¿Se puede aislar su máscara después de usarla hasta que muera algún virus? Si, pero sin embargo, COVID-19 puede seguir siendo viable en una superficie de plástico de 3 a 7 días, por lo que, a menos que tenga un suministro de máscaras impresas para una semana, no tendrá una máscara limpia todos los días con el consiguiente peligro grave de ser contagiado por la propia mascarilla.

 

HERMETICIDAD Y ERGONOMIA

Las máscaras impresas en 3d   supuestamente  tipo FFP2 deberían crear un sello hermético en la cara del usuario,función que no siempre cumplen.

Si pensamos en las  mascarillas comerciales FFP2  se deben flexionar para ajustarse alrededor de su cara cuando las bandas elásticas lo empujan. Incluso en el puente de la nariz donde la máscara no puede flexionarse por sí sola, hay una tira de metal que el usuario se dobla para formar Un sello hermético.

Sin embargo las mascarillas impresas en 3D  no hacen nada de eso pues para obtener un sello similar, se debe hacer una de dos cosas:

      • El plástico se calienta con una pistola de aire caliente y la parte tibia 
      • Flexible, se forma en  la cara del usuario específico, o una tira de sellado de espuma / goma se une alrededor de los bordes de la máscara.

No parece  que ninguna de esas técnicas haya sido clínicamente probada como tan efectiva como una mascarilla comercial FFP2 o  N95 para sellar la cara del usuario , por lo que  la parte impresa simplemente no se sellará a su cara de manera tan efectiva (o remotamente cómoda) como una comecial  N95, lo cual  elimina completamente cualquier afirmación de que las máscaras impresas pueden reemplazar a una FFP2 o  N95 pues esa certificación requiere un sello hermético.

Con su máscara impresa, el aire fluirá libremente alrededor de los bordes de la máscara, eliminando cualquier mecanismo de filtrado que incorpore.Sin embargo, ese mal sellado es algo bueno pues el aire que fluye alrededor de los bordes de la máscara, aunque posiblemente esté lleno de viroides, podría ser lo único que le impide desmayarse o morir.

Si alguna vez ha corrido o hecho trabajo de intensidad media mientras usabas una mascarilla FFP2 o usó una para un turno completo de ocho horas, entonces sabe lo difícil que es poder respirar con unas mascarillas y lo incómodo que puede ser una mala calidad durante períodos prolongados.

Con una máscara FFP2 o  N95 típica, hay una buena cantidad de resistencia al aire, por  que toda la máscara está hecha de material de filtro, lo cual se hacer  para maximizar el área de superficie por la que puede pasar el aire, permitiendo el mayor flujo de aire posible.

Es evidente que intentar respirar a través de un pequeño disco de material de filtro como con la mayoría de los diseños de máscaras impresas será como intentar respirar a través de una pajita,a menos que, por supuesto, su material de filtro no sea tan denso (léase: efectivo) como lo es en una FFp2 o  N95 .

El resultado de esta respiración forzada y la falta de flujo de aire es la acumulación de CO2, que si la máscara impresa tuviera un sello hermético en la cara, lo mataría.( desgraciadamente ni siquiera sabríamos que está sucediendo;pues  nos quedaríamos dormidos y nunca nos  despertaríamos).

 

RESUMEN 

Correcto, así que ignorando todos estos escollos, echemos un vistazo a los requisitos para hacer una máscara de respirador impresa en 3D “aceptable”:

      • El filamento de plástico,
      • Un poco de pintura o resina segura para alimentos para cubrir las piezas (y por lo tanto, un espacio de trabajo bien ventilado),
      • Bandas elásticas,
      • Algún tipo de material de sellado (muchos diseños están utilizando densa espuma de celdas cerradas / goma resistente a la intemperie),
      • Hermético resistente al agua (condensación !) adhesivo para unir el material de sellado, oh, y
      • Algún tipo de material de filtro (que probablemente no podrá reutilizar con el resto de la máscara).

Como podemos deducir todo esto  es mucho tiempo desde la impresión de la pieza hasta el procesamiento posterior y el ensamblaje.Ademas  algunos de esos elementos de la lista de materiales pueden ser difíciles de obtener si planea hacer un montón de estos , pero   a pesar  de todo , como hemos visto no son recomendables  por las  razones expuestas  de la alta porosidad, falta de higienización , falta de hermeticidad , ninguna ergonomía, etc.

 

 

MASCARILLAS CASERAS

Simplemente lleva más tiempo y esfuerzo hacer una máscara impresa en 3d, “correctamente”, que coser una quirúrgica o  simplemente fabricar una con papel de filtro de café.

Con la escasez de mascarillas que hay en este momento y el hecho de que la mayoría de mascarillas hechas en casa, sólo ayudan a que los que están contagiados no contagien a más gente, podemos  probar hacer este  tipos de mascarilla en casa  pues como vamos a ver tampoco necesitan un proceso muy complejo

Realizar   mascarillas desechables con papel de filtro  de Cafe no  cuesta más que 2 minutos  .En este  video podemos ver que el proceso es realmente sencillo

https://www.youtube.com/watch?v=UCPxx9iDuNU

Importante :  Cuide de hacer la mascarilla  con precaución si la va a donar, asumiendo que podría estar contagiado para tomar todas las precauciones necesarias para que otros más vulnerables no se contagien por usted.

Asimismo existen diseños textiles fáciles de implementar   como las mascara Olson , pico de patato o incluso diseños simples de tela plisada

 

MASCARILLAS TEXTILES 

A diferencia de las máscaras impresas, con las máscaras cosidas puede esterilizarlas completamente simplemente lavando o incluso pasandolas   por el autoclave

Sobre el tipo de tejidoa  que debemos usar  para fabricar mascarillas caseras   , según la reciente investigación, publicada en ACS NANO, la revista de la Sociedad Americana de Química, habría que tener en cuenta las propiedades de filtración mecánica y electrostática para poder contestar a esta duda   las telas “híbridas” o mezclas de telas (algodón-seda, algodón-gasa, algodón-franela) tienen potencial para filtrar más del 80% de las partículas de menos de 300 nanometros, y puyedenn filtrar más del 90% de partículas de 300 nanómetros( las mascarillas sanitarias con filtros FFP2 filtran como mínimo un 92% de las partículas, y las FFP3 deben filtrar hasta un 98% o más de dichas partículas).

Los investigadores sugieren que este gran rendimiento en las mascarillas de tela se debería precisamente a la combinación de varios tejidos, y al efecto combinado de una filtración mecánica y electrostática:

    •  La filtración mecánica implica que la tela atrapa físicamente las partículas. Telas como el algodón tienen una gran filtración mecánica por poseer muchos hilos en su interior; cuanto más pequeños son los agujeros entre el tejido, menos partículas pueden escapar.
    •  La filtración electrostática es algo relacionado con las carga electrica dado que materiales como el poliéster son muy estáticos, y lo que hacen es mantener los aerosoles dentro del entorno estático, basado en las cargas de las partículas y no en su tamaño como tal.Las mascarillas comerciales FFP2 s tienen un componente de carga estática que ayuda a atraer y adherir partículas al filtro, y esto se logra a través de complejos procesos de fabricación, lo cial es pocoo probable que no lo consiga en discos cortados de algodón o filtros HVAC 

Mascarilla Olson.

Esta mascarilla puede ser usada por profesionales de salud – en USA ya las están usando – y personas en riesgo o que tienen la salud débil en estos momentos y desean protegerse lo más que puedan. También puede ser usada por el resto 

Los  materiales y herramientas excepto el filtro son realmente sencillos de  obtener:

        • Tela de algodón (~ 0.45 m es suficiente para 2-3 mascarillas) •
        • Hilo y aguja o máquina de coser si tienen pero no es necesario (si cosen a mano, pasen doble cada puntada) •
        • 2 ligas de pelo o 2 elásticos y una cinta
        •  Tijeras 
        • Cinta adhesiva para piel doble o Gorilla tape doble
        •  Filtro HEPA para partículas de 0.3 micras (0.3 microns) 0 filtro parecido ( Hay personas qeu usan compresas ). La forma de cómo cortarlo dependerá del tipo de filtro que consigan pero tiene que ir alrededor de la boca y nariz  asi como también á de la persona que lo use
        •  Papel A4 para imprimir los patrones en tamaño real o imprimir en A3 pero asegurarse que no se seleccione el “Autofit’ al imprimir

 Instrucciones en inglés y español incluídos patrones y moldes: https://drive.google.com/open?id=1y0u…

En este vídeo podemos ver  como hacer una mascarilla protectora Olson con filtro para protegerse del Coronavirus

Por mencionar otros diseños , también existen mascarilla pico de pato  o incluso diseños simples de tela plisada : solo es cuestión en decidirse por un diseño y echarse manos a la obra

Importante :  Cuide de hacer la mascarilla  con precaución si la va a donar, asumiendo que podría estar contagiado para tomar todas las precauciones necesarias para que otros más vulnerables no se contagien por usted.

 

Finalmente, los investigadores también hacen hincapié en la necesidad de usar correctamente las mascarillas: un ajuste inadecuado puede reducir hasta un 60% la eficacia de la filtración inicial de una buena mascarilla de tela, según los investigadores

 

 

Mas información en: 

Máscara de emergencia para su uso en Hospitales

Las máscaras que usamos para bucear y los snorkel de la playa conocen un nuevo uso a la espera de saber si podremos usarlos en vacaciones: el de ayudar a los sanitarios que trabajan en los hospitales con pacientes de coronavirus.


Dada la grave crisis que está sufriendo  en Italia  y por desgracia ya en el resto de Europa   y el  planeta en general , un grupo de investigadores italianos fue contactados por un directivo del Hospital de Gardone Valtrompia, el doctor Renato Favero, quien conoció del grupo  Isinnova por medio de un doctor del Hospital de Chiari, en donde Isinnova ya había fabricado válvulas de emergencia para respiradores por impresión 3D.El Doctor Favero  compartió la idea para afrontar la eventual escasez de máscaras hospitalarias C-PAP para terapia sub-intensiva, derivada de la pandemia de Covid-19 tratandoaw  de la fabricación de una máscara respiratoria de emergencia, adaptando una mascada de esnórquel  comercial  comercializada por Decatlon.

Analizada la propuesta en conjunto con el inventor (doctor Favero), se contacto al poco tiempo a Decathlon Italia , que es el  productor de la máscara Easybreath para esnórquel. La empresa se puso inmediatamente a disposición para colaborar, entregando el diseño CAD de la máscara que se había identificado. El producto fue desmontado, estudiado  por ingeniería  inversa evaluandose  las modificaciones que debían hacerse diseñandose  un componente, que llaman válvula Charlotte y que en Italia han fabricado en poco tiempo gracias a la  impresión  3d.

Este  es el boceto de la idea original:

 

 

El prototipo, que podemos ver  en la imagen anterior , todo como un conjunto, fue probado  directamente en el  Hospital de Chiari contactándolo al cuerpo del respirador ,demostrándose que funcionaba correctamente así que  el hospital estaba entusiasmada  en la idea,  realizando pruebas del dispositivo en un paciente que lo necesitaba conduciendo  la evaluación  a buen término.

 

 

En concreto, en algún centro hospitalario de Madrid (España )  ya se están usando máscaras subacuáticas de Decathlon como alternativa a los respiradores usándose en caso leves, para gente que no necesita intubación.

 

Los creadores de esta válvula reiteran que la idea se dirige a instalaciones sanitarias intentando  ayudar a realizar una máscara de emergencia en caso de situaciones difíciles de emergencia sanitaria  y ante la escasez de productos sanitarios homologados  y por tanto  en las que no sea posible encontrar los suministros médicos oficiales que son normalmente utilizados   pues  NI LA MASCARA NI LA CONEXIÓN DE LA VÁLVULA ESTÁN CERTIFICADAS   estando  su uso  sujeto a situaciones de urgente necesidad (de hecho el uso por parte del paciente esta subordinado a que éste acepta el uso de un dispositivo biomédico no certificado y debe realizarse por medio de una declaración firmada).

Dados los beneficios del proyecto, el equipo  que tuvo la idea decidieron patentar urgentemente la válvula de conexión (Válvula Charlotte) para prevenir la especulación de precios de este preciad componente    dejando  muy  claro que la patente es de libre uso porque su intención es que todos los  enfermos que la necesiten  la puedan aprovechar .

En esta línea pues decidieron compartir libremente los archivos para la fabricación de la válvula en impresoras 3d, pues  a diferencia de las válvulas respiratorias, se trata de una válvula de unión de fácil construcción y  por tanto, es posible que todos los makers prueben su impresión. Gracias precisamente a esta iniciativa  los sitios sanitarios que se encuentren en esta dificultad, podrán adquirir la máscara en Decathlon  ( o contactar con usuarios que la  tengan y quieran donarlas  )  y contactar con personas que tengan impresora  3d que podrán hacer las piezas y suministrarlas.

Dejan claro  que esta  iniciativa es totalmente libre de animo de lucro  y no recibiran derechos sobre la idea de la válvula de conexión ni sobre la venta de las máscaras de Decathlon  y  pueden  dar más información de soporte o más detalles, en caso de necesidad a las estructuras sanitarias, a los fabricantes que quieran realizar la válvula de conexión.

 

Para poder imprimir el adaptador , antes debemos saber  que tipo de máscara  es con la que se cuenta

Por el momento  solo estadisponible  el adaptador  para el modelo1 , de hecho en el siguiente enlace podemos descargar el  fichero   Valve

 1 file(s)  2 MBDONWLOAD HERE

El archivo de la versión 2, será publicado en breve.

Y por cierto ,en España dada la escasez de las máscaras de Snorkel de Decahtlon, se está haciendo adaptadores similares para las máscaras de Snorkel de Gressy   que ya ha donado 1000 unidades  .

Debido a algunas dudas, indican los ajustes de impresión aconsejados, pero no obligatorios para la producción de los componentes 3d de la válvula Charlotte y Dave para la máscara de respiración asistida. Para la producción de estas partes, debido a que no es necesaria precisión elevada, es más eficiente una impresora FDM y un filamento con ajustes “base”.

    • Filamento: PLA 1,75 [mm]
    • Nozzle temperature: 205 – 210 [°C]
    • Temperatura del plano: 35 – 50 [°C]
    • Espesor del layer: 0,2 [mm]
    • Soporte: únicamente del plano de impresión.
    • Orientación: Válvula Charlotte apoyada sobre el plano final , Dave apoyada sobre el diámetro mayor en vertical.

En lo referente al material de impresión, aconsejan el filamento más común en el comercio, el PLA (polylactic) por las siguientes razones:

1. Inoloro. Recordamos que los pacientes deben respirar aire que pasa a través de este componente.
2. Es el menos peligroso posible. El PLA es poco peligroso y biocompostable.
3. Es relativamente flexible (debe poderse deformar elásticamente para poder acoplarles con los otros componentes.

 

Nos  recuerdan que el consentimiento de los pacientes  pues se requiere la autorización de uso de dispositivos médicos sin marcación CE para atención humanitaria. En casos de necesidad excepcional y de urgencia, bajo el interés de la protección de la salud de un paciente y en ausencia de alternativas terapéuticas válidas, se puede utilizar un dispositivo medico sin sello CE para la atención humanitaria.

 

Para  todo  aquella persona que quiera estar informado sobre estos temas de interés sanitarios , quiera colaborar, necesite ayuda  sobre  como imprimir estos adaptadores ,  o necesite material  tenemos  un magnífico foro de makers  a nivel hispano que lo esta coordinando toda la info y ayuda https://foro.coronavirusmakers.org/

 

Fuente    http://www.salute.gov.it/portale/ministro/p4_8_0.jsp?lingua=italiano&label=servizionline&idMat=DM&idAmb=UC&idSrv=A1&flag=P

 

 

 

 

Solidaridad tecnológica frente al coronavirus

Ante la grave pandemia que nos azota , surgen soluciones tecnológicas que buscan mitigar la falta de material sanitario mediante tecnologia 3d, corte láser , cnc, etc


Ante las crisis  graves  que han ocurrido a lo largo de la historia    se han  ido  repitiendo  una y otra vez que se  consigue aflorar   lo mejor ( y también  lo peor ) del ser humano ,   y desgraciadamente ahora  estamos ante una nueva  desastrosa situación del coronavirus  como pandemia global,  que ha conseguido que profesionales, makers, aficionados   , personas de diferentes ámbitos  ,  así como   empresas,organizaciones, etc   estén trabajando  la mayoría de forma altruista  en mitigar  los efectos de la carencia de material sanitario   mediante  técnicas  modernas como la impresión 3d, corte cnc , electronica embebida ,etc 

En esta linea , que  se ha hecho eco toda la prensa, la mayoria de los s esfuerzos se centran  es   lograr un respirador artificial barato open source   que sea  utilizable  durante   esta grave situación pues este dispositivo se ha convertido en una pieza clave en las UCI básicamente porque se prevee que no va  a haber suficientes suponiéndo  un enorme  reto para los médicos de todo  donde desgraciadamente ante la ausencia de estos en algunos países se ven en los dilemas morales de decidir a quien colocárselo.

Estos respiradores caseros  son muy importantes  en esta pandemia,  pero   hay muchos mas frentes abiertos   en esta comunidad  de solidaridad  tecnológica pues    hay otros grupos  para construir gafas de protección , mascarillas , pinzas desechables , piezas de repuesto para material sanitario, maquinas dispensadores de gel , etc , todos ellos   dispositivos   o herramientas  que podemos  fabricar gracias a la impresión 3D o técnicas modernas como el CNC

Este es el foro que pretende  centralizar toda la ayuda   https://foro.coronavirusmakers.org/     , el hashtag de Twitter #CheapVentilators para conocer los equipos de otros países y a la cuenta @AIRE_Covid19 donde publicarán toda la información del proyecto español.

También  hay un sitio web: https://coronavirusmakers.org/index.php/es/  con  información general filtrada

Asimismo es posible contactar via Telegram  en las diferentes grupos de trabajo que se han asignado , siendo el grupo principal de Telegram https://t.me/coronavirus_makers

Respiradores  artificiales

El funcionamiento de los respiradores artificiales modernos está condicionado por una sensorización muy   compleja  que permite ajustar la mezcla aire-oxígeno, generar alarmas , etc.   función que obviamente no se va a poder solucionar  con una solución “sencilla” que sea open  source pues se busca  dispositivos que puedan fabricarse rápido y de forma distribuida usando,  impresión 3D , corte CNC , etc   y electronica convencional  para construir algo  que   pueda  ayudar la falta de respiradores comerciales

Actualmente en el foro  respecto a los respiradores  hay  tres líneas de trabajo:

    • Estudiar la línea de suministro de las máquinas de respiración, comprobando si de verdad hay una rotura de stock y eliminar los cuellos de botella que pudieran aparecer . 
    • Adaptación de máquinas actuales para ser utilizadas como respiradores; por ejemplo, las máquina CPAP o BIPAP , usadas contra la apnea del sueño que utilizan miles de personas todas las noches .
    •  Crear máquinas de respiración artificial basándose en   maquinas mas “simples” ,por ejemplo el balón de tipo Jackson Rees   dotándoles  de una “inteligencia” que les permita funcionar de forma autónoma. En ese sentido  se estaba trabajando sobre dos  modelos , uno  iniciado por el Mit   en el 2010 y  otro por la Universidad Rice en Houston. Muy resumidamente se basan subyacentemente en usar diseños clásicos probados   eliminando la necesidad de  tener a un sanitario dedicado exclusivamente a esa tarea pues es un desperdicio de recursos si podemos tener una máquina capaz de hacer ese trabajo sin cansarse y de una forma eficiente  y autónoma.

Obviamente por su bajo precio  y alto potencia  se están  abordando  diseños que utilizan material médico desechable y ampliamente disponibles para liberar manos de médicos y/o enfermeros en situación de emergencia.

En este caso, en lugar de asistir el facultativo con un  sistema respiratorio manual tipo de bolsa, se busca generar un sistema mecánico que le permita liberarlo de esta tarea para atender a otros enfermos en la misma sala. Estos modelos no disponen por el momento de los parámetros avanzados de los respiradores modernos. Se está explorando esta posibilidad, pero requerirá mucho más tiempo.

En todo  caso queda clara la dificultad de tratar unos pulmones con Covid-19, que requieren de una gran complejidad pero gracias a las aportaciones de personal sanitario  explican que ante problemas de  respiradores avanzando los respiradores pueden ser sencillos los primeros días pues estos pacientes son muy fáciles de ventilar en general.

Por tantos estos diseños que están surgiendo,  pueden ser muy buenos para los primeros días aunque no tengan  sofisticación y permitan respiraciones espontáneas:es decir ventilación controlada por presión, a una frecuencia respiratoria entre 12-30 y con posibilidad de PEEP hasta 20 con monitorización del volumen corriente y volumen minuto. Eso ayudaría en las primeros días  (que son los peores )  con la esperanzar de que mas adelante  se buscaría alternativa con respiradores actuales sofisticados , ya que  llegado el momento no habrá para todos en las fases iniciales y algo  tan relativamente sencillo como los antiguos ventiladores con estas  nueva mejora  podría salvar vidas

Mascarillas caseras

Dados los problemas para conseguir mascarillas hay muchas opciones para fabricarlas nosotros mismos   siendo la mas famosa la  Mascarilla DIY con Goma EVA como filtro

En un grupo de Facebook un chico de Eslovenia se creó un diseño de una mascarilla para usar como filtro un filtro HEPA ( por ejemplo los usados en aspiradoras convencionales )  y de hecho este diseño ,dada la situación, como son dificiles de conseguir, desde Taipei dijeron que han usado goma EVA como filtro, asi que se he rediseñado y los he subido a Thingverse.

La goma EVA hay que cortarla en cuadrados de 77 x 77 mm para la de hombre y de 68 x 68 para mujer. Recomiendan que para que ajuste mejor a la cara, que se caliente un poco  el plástico en el microondas para amoldarla.

Ademas antes de usarla se debería limpiar todos sus componentes con alcohol isopropilico.

Hay dos tamaños para mujer y para hombre y los  ficheros estan disponibles en  https://www.thingiverse.com/thing:4223817

 

Ese diseño no es único , pues  en thinginverse  podemos encontrar muchos  mas , pero en este lo llamativo de este ultimo ,  es lo sencillo del filtro

 

 

Gafas de Protección

Se busca  intentar suplir una posible  carencia de gafas de protección para uso hospitalario  

Hay muchos disponibles  y otros nuevos que están apareciendo  usando materiales sencillos como pantallas ( por ejemplo  con encuadernadores de papelería)

Válvulas

Unos makers italianos han impreso en 3D una válvula que se les había averiado en un hospital de Milán (hemos pedido a uno de los Fablabs de Milan, para saber si tienen el STL): https://www.3dprintingmedia.network/covid-19-3d-printed-valve-for-reanimation-device/

 

 

Mas ideas

Hay muchísimos mas ejemplos de dispositivos   y diseños que nos pueden ayudar en el día a día   a sobrellevar esta grave pandemia , desde soportes para pomos de puertas, abridores de puerta con el  pie,  dispensadores automáticos de productos de desinfección   y un largo etcétera

Para inspirarnos basta buscar “coronavirus” en el repositorio thingiverse.com

 

Amigo lector , si tiene  alguna idea o sugerencia siéntase  libre de compartirla con esta comunidad  y por supuesto si tiene ganas de colaborar participe   en el foro en español del coronavirus  !MUCHO ANIMO QUE JUNTOS LO VAMOS A SUPERAR!