Control de nivel de agua con NodeMCU y Cayenne

Veremos lo sencillo que es monitorizar el nivel de liquidos y actuar en consecuencia desde un dispositivo conectado a Internet por Wifi


En  este post  vamos   a ver nuevamente la gran versatilidad del sw de Cayenne , en este caso para controlar el nivel de un liquido   monitorando  este en tiempo real gracias al framework   de IoT gratuito  de Cayenne.

La finalidad de este proyecto es asegurar que un  depósito de agua siempre este lleno , porque podría suceder  que el suministro de agua sólo fluya a determinadas franjas horarias   por   lo que debemos permitir el flujo  solo cuando haya suministro  y el deposito no este lleno

Por tanto , el funcionamiento es relativamente simple  pues únicamente  la válvula se cerrará cuando el agua alcance el nivel superior del sensor.

La lista de materiales necesaria  para este proyecto es bastante reducida siendo el hardware necesario  el siguiente:

Picture of Bill of Materials

2. Sensor de nivel de líquido (calibrar primero para obtener el nivel de valor e inferior nivel superior)

Si usted necesita el sensor más profundo, puede cortar la tira superior del sensor y tome algún cable a dos lados del sensor

Picture of Bill of Materials

3. Módulo de relé de CH

Picture of Bill of Materials

4. Válvula solenoide 12V

5. 12V 2A fuente de alimentación

6. Cables de puente

 

En cuanto al Software necesario:

1. Arduino IDE

2. Cayenne para iOS/Android/Web Browser

Conectar NodeMCU Sensor líquido, módulo de relés y válvulas

ESP12E    esta basado en Arduino  pero cuenta   también conectividad wifi integrando la propia antena en la placa de circuito impreso en unas  dimensiones de  25.6mm x 34.2mm .  Además, por motivos de reducción de espacio esta placa no integra conexión usb  , para lo cual necesitaremos un USB FTDI   para programarlo o un  controlador Setup CH340g.

Esta placa cuenta con 11 pines digitales de entrada / salida, todos los pines tienen interruptor / pwm / I2C / 1-wire    siendo su chip principal el  ESP8266 CH340G

Una gran diferencia con una placa Arduino es que solo cuenta  con 1 entrada analógica (entrada máxima de 3,3 V)

 

Las conexiones son muy sencillas:

  • VIN (+5V): lo conectaremos a NodeMCU y al modulo Rele
  • 3.3V   : Alimentemos el sensor
  • GND : Sensor , Arduino y Rele
  • A0 de Arduino : a la salida del  sensor
  • D5 de Arduino : a la entra de control del Rele

 

Respecto al firmware necesitara  subir el código a NodeMCU, pera el cual debería   programar el NodeMCU con el IDE de Arduino.

Para  probar Cayenne  con el  ESP12E       necesitamos  programar su ESP-12E para conectarse a su punto de acceso wifi   .

Básicamente  el código a subir al    ESP12E     usa 3 librerías de Cayenne donde  tendremos que definir el SSID y la pwd de la red wifi así como las credenciales de Cayenne    ,

Es de destacar  la creación  de  dos puertos virtuales  para capturar  el  nivel de líquidos   en tiempo real  por el puerto A0  asi como accionar el rele por el puerto 14  , lo cual nos van a permitir comunicarnos con el API de Cayenne

Asimismo para efectos de pruebas se deja habilitado la salida por el pruerto serie de modo que podamos ver desde el IDE de Arduino  la evolucion del nivel del liquido y las actuaciones corresponientes

#include “CayenneDefines.h”
#include “CayenneWiFi.h”
#include “CayenneWiFiClient.h”
#define CAYENNE_PRINT Serial // Comment this out to disable prints and save space
#define RELAY_PIN 14 // RELAY PIN

const int sensorPin= A0; //sensor pin connected to analog pin A0
float liquid_level;
int liquid_percentage;
int top_level = 512;
int bottom_level = 3;

// Cayenne authentication token. This should be obtained from the Cayenne Dashboard.
char token[] = “”; // Insert your token here
char ssid[] = “”; // Insert your SSID here
char pwd[] = “”; // Insert your SSID password here

void setup() {
Serial.begin(115200);
Cayenne.begin(token, ssid, pwd);
pinMode(sensorPin, INPUT);
pinMode(RELAY_PIN, OUTPUT);
}

void loop() {
liquid_level = analogRead(sensorPin);
liquid_percentage = ((liquid_level-bottom_level)/top_level)*100;
Serial.println(liquid_level);
delay(100);
Cayenne.run();
}

CAYENNE_OUT(V10)
{
Cayenne.virtualWrite(V10, liquid_percentage);
}

CAYENNE_IN(V1)
{
// get value sent from dashboard
int currentValue = getValue.asInt(); // 0 to 1

// assuming you wire your relay as normally open
if (currentValue == 0) {
digitalWrite(RELAY_PIN, HIGH);
} else {
digitalWrite(RELAY_PIN, LOW);
}
}

Necesitara  subir  el programa anterior  WATER_CONTROL.ino, editar la contraseña del token, SSID de su red Wifi  , usaurio de Cayyene  así como editar valor nivel  inferior y superior

Entonce conecte su NodeMCU con el Cable USB al ordenador y cargue el código en NodeMCU mediante el IDE de Arduino.

Configuración Cayenne Dashboard

Hemos hablado en  muchas ocasiones de Cayenne  pues en realidad está concebido para  que su manejo sea realmente sencillo   de configurar

Nos iremos a  su   url :   https://cayenne.mydevices.com/  

Tras registrarnos nos iremos  al panel de control   ,clicamos en  Add new   y seleccionamos generic ESP8266

A continuación nos ofrece  la API key que deberemos añadir al sw del   ESP12E      y tras reiniciarlo  ya debería poderse  comunicar con el node de Cayenne

 

Si la placa  pues   está configurada con el MQTT  ( username /pwd)     asi como con conectividad  wifi ,  ya   debería  de  poder conectarse al framework de Cayenne   y podemos seguir hacia adelante añadiendo sensores que deberían estar de acuerdo con el sw instalado en el ESP12E

En este caso como hemos definido  dos puertos virtuales para nivel de liquiodso  y contol   necesitamos añadir dos widgets  asociados a esos dos canales:

  • Añadir widget de válvula interruptor del tablero de instrumentos del Cayenne y seleccione Virtual Pin 1.
  • Añadir Sensor analógico widget de Dashboard de cayena y el nombre de nivel de agua, seleccione Virtual Pin 10, unidad porcentaje

Picture of Setting Up Cayenne

Picture of Setting Up Cayenne

 

 

Configuración de  triggers

Los triggers  o disparadores en Cayenne son una forma de hacer que su placa  reaccione a un cambio  de un sensor conectado a él. Esto podría ser algo tan simple como un valor de temperatura superior a un cierto valor o incluso sólo si el ESP12E pierde la conexión, lo cual como se podría imaginar puede ser muy potente en la creación de dispositivos inteligentes que reaccionan a los alrededores ( como por ejemplo, si la habitación se pone demasiado fría, encienda un  calefactor, etc ).

El proceso de agregar un disparador es muy sencillo como vamos a ver a continuación:

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccionar un trigger desde el cuadro de abajo.
  3. Nombrar el trigger con un texto identificativo
  4. Ahora arrastrar y soltar su  ESP12E  desde la esquina izquierda en el caso de la caja.
  5. Por debajo de esto seleccionar el sensor 
  6. Ahora en el cuadro de selección a continuación, puede enviar  una notificación( bien a una dirección de correo electrónico o  a un  número de teléfono de un mensaje de texto pudiendo agregar ambos) o  una acción que en nuestro caso  sera activar desactiva  un relé. Asegúrese de marcar las casillas de verificación también.
  7. Ahora haga clic en “Save trigger”.

Haga  este  proceso para las  dos casuisticas:

  • Agregar desencadenadores y si el nivel del agua por encima de 100% entonces la válvula interruptor apague.
  • Agregar desencadenadores y si el nivel del agua por debajo de 100% entonces la válvula del interruptor se encienda
Picture of Setting Up CayennePicture of Setting Up Cayenne

 

Fuente   instructables.com

Watimetro con Arduino

Veremos como con un simple Arduino UNO podemos medir la potencia en kwh de una instalación fotovoltaica y presentarla en un display LCD de dos lineas


Realmente construir un watimetro no es demasiado  complejo cuando hablamos de corriente continua , por ejemplo pensando en una instalación fotovoltaica , pues basta  simplemente en recordar  la formula física de la  Potencia(P)   , la cual es el producto de la tensión instantánea(voltios) por la intensidad  (Amp ) , es decir  P = V x I ,  expresándose la unidad de potencia en  Watt o KW
Pero la potencia  en watios,  no expresa  ensimismo  potencia energética, por lo  que se recurre  al  producto de la potencia (vatios)  por el tiempo (en horas) , es  decir  E = P x t , expresándose  la unidad de energía que  todo conocemos como  vatios hora(Wh) o kilovatios hora (kWh).

Si unimos ambas formulas sustituyendo el valor de P obtenemos E =Px t= (V xI) x t , es decir  el producto de la tensión  e intensidad por el el tiempo

Precisamente pues de la ultima fórmula anterior queda claro que para medir la energía que necesitamos tres parámetros:

  1.  Tensión
  2.  Intensidad
  3.  Tiempo

Veamos pues como  obtener estas valores con un Arduino  para obtener en tiempo real en un display lcd  la potencia en kwh de un sistema en cc

En el siguiente  video podemos ver el proyecto funcionando, incluso enviando datos al IoT  con  Xively (esta opción ya no esta disponible para aficionados)

Medida de tensión

El voltaje se puede medir con la ayuda de un circuito divisor de tensión  formado  por dos resistencias iguales  . Como el  voltaje de entrada en cualquier pin analógico de ARDUINO esta limitado a 5V por se logica TTL , el  divisor de voltaje servirá para  que el voltaje de la salida de ella sea menor que 5V y no queme la electronica interior.

Por ejemplo para una batería  que se utilice para almacenar la energía de un  panel solar de  6v  y   5.5Ah  de capacidad , tendríamos que bajar la  tensión desde 6.5v a una tensión menor que 5V para no estropear el Arduino.

Si usamos R1 = 10k y R2 = 10K  nos da una corriente pequeña 6.5v/(10k+10K)=0,325mA .

Es cierto que se podrían  tomar valores de R1 y R2    inferiores, pero el problema es que cuando la resistencia es menor  mayor corriente  pasas  a través de ella generando como resultado gran cantidad de energía  disipada en forma de calor(recuerde  que P = I ^ 2R) . por tanto el valor de las resistencias  puede ser elegido diferente pero debe tenerse cuidado para reducir al mínimo la pérdida de energía a través de las resistencias.

El resultado de la tensión entre una de las resistencias y masa seria igual a R xI =10k  x 0.325mA=3.25v que es inferior a 5v y, tensión soportada sin problemas  para el pin analógico de  ARDUINO

Calibración de voltaje:

Cuando la batería está completamente cargada (6.5v) obtenemos una Vout = 3.25v y ese seria el valor  que iría al  convertidor analógico digital  de un puerto analógico  de  Arduino

Si tenemos que medir los 3.25v desde el divisor de tensión   obtendremos un valor aproximado de 696 en el monitor serial (  sample1 es el valor de ADC corresponde a 3.25v)  .

Precisamente con ese valor o tendremos que extrapolar  que 3.25v  es equivalente a 696,  1 es equivalente a 3.25/696=4.669mv    por lo que podemos usar  estas dos reglas:

Vout = (4.669 * sample1 ) / 1000 voltios
voltaje de la batería real = (2 * Vout) voltios

Con el siguiente código de Arduino  podemos obtener el valor de tensión:

/ / tomar 150 muestras de divisor de tensión con un intervalo de 2 segundos y medio samples data collected for(int i=0;i<150;i++)
{
sample1=sample1+analogRead(A2); //leer  el voltaje del circuito divisor
delay (2);
}
sample1=sample1/150;
voltage=4.669*2*sample1/1000;

Medición de intensidad

Para mediciones de intensidad  es típico usar una resistencia en serie  de poco  valor con la carga  y medir la diferencia de potencial entre los extremos   de esta  y luego calcular   la intensidad gracias a la la ley de ohm (I=V/R  ) donde como vemos   dividiríamos este valor por el valor en ohmios de la resistencia

El efecto Hall se basa en  la producción de una diferencia de potencial(el voltaje de Hall) a través de un conductor eléctrico, transversal a una corriente eléctrica en el conductor y un campo magnético perpendicular a la corriente.

Afortunadamente actualmente existen CI especializados  como   son  los   sensores de corriente basados en efecto Hall ACS 712

Existen comercialmente  sensores de la gama ACS712  para  diferentes  rangos de corrientes máximas , así que se debe escoger este  según su requisito,como por ejemplo para una corriente máxima de 20 A.

ACS712.png

En el  esquema vemos un LED como una carga ( aunque  la carga real sera diferente) .

Tambien vemos el  ACS 712 (soporta  20Amps DC)  ofreciendo una una salida analógica 100mV/A

Tambien es destacar la alimentación del Arduino  cuya salida alimenta a través de la placa de prototipos a la ACS712

La calibración  es muy sencilla :
La lectura analógica  produce un valor de 0-1023, equiparando a 0v a 5v analógico .Leer 1 = (5/1024) V = 4.89mv
Valor = (4,89 * valor analógico leído) / 1000 V,  pero según hojas de datos offset 2.5V (cero corriente obtendrá 2.5V del sensor de salida)
valor Actual = (valor 2.5) V
corriente en amp = valor real * 10

Código de ARDUINO:

/ / tomando 150 ejemplos de sensores con un intervalo de 2 segundos y luego media de los datos de las muestras recogidos
for (int i = 0; i < 150; i ++)
{
+= sample2 analogRead(A3);  //  leer la corriente de sensor
delay(2);
}
sample2 = sample2/150;
=(5.0*sample2)/1024.0; 
actualval = val-2.5;  //tensión de offset es 2.5v
amperios = actualval * 10;

 Medición del tiempo

Para la medida del tiempo no se necesita ningún hardware externo, pues ARDUINO en sí mismo tiene contador de tiempo incorporado.

La función millis() devuelve el número de milisegundos desde que la placa Arduino comenzó a ejecutar el programa actual.

Código de ARDUINO:

long milisec = millis();  // calcular el tiempo en milisegundos
long time=milisec/1000; // convertir de milisegundos a segundos

 Calculo de la potencia y energía

Estas son las formulas basicas empleadas por el fw  en Arduino:
  • totamps = totamps + amperios;  //calcular amperios total
  • avgamps = totamps/tiempo;  // promedio de amps
  • amphr =(avgamps*time)/3600;  // Ah
  • Watts = voltaje * amperios;  //Potencia = Voltaje * corriente
  • energía =(watt*time)/3600;  // Vatios-seg vuelve a convertir en Watt-hora dividiendo 1hr(3600sec)
  •  energy=(watt*time)/(1000*3600); //para la lectura en kWh

completo.jpg

Todos los resultados se pueden visualizar en el monitor serial o mediante una pantalla LCD   de 16 x 2 caracteres para mostrar todos los resultados obtenidos en los pasos anteriores.

El conexionado del LCD sigue la conexión estandar de 4 pines para la linea de  datos mas las señales de control RS,RW  y Enable

Asimismo también es necesario un trimer de 10k  para el contraste de la pantalla

Resumidamente estas son pues las conexiones para el lcd

LCD -> Arduino
1. VSS -> GND de Arduino
2. VDD -> Arduino + 5v
3. VO -> Arduino GND pin + resistencia o potenciómetro
4. RS -> Arduino pin 8
5. RW -> Arduino pin 7
6. E -> pin Arduino 6
7. D0 -> Arduino – no conectado
8. D1 -> Arduino – no conectado
9. D2 -> Arduino – no conectado
10. D3 -> Arduino – no conectado
11. D4 -> Arduino pin 5
12. D5 -> Arduino pin 4
13. D6 -> Arduino pin 3
14. D7 -> pin Arduino 2
15. A -> Pin 13 de Arduino + resistencia (potencia de luz de fondo)
16. K -> Arduino GND (tierra de luz de fondo)

A continuación este es el  código de ejemplo para sacar por el monitor serie  los valores calculados

Serial.Print (“tensión:”);
Serial.print(voltage);
Serial.println(“Volt”);
Serial.print (“actual:”);
Serial.print(amps);
Serial.println(“Amps”);
Serial.print (“potencia:”);
Serial.print(watt);
Serial.println(“Watt”);
Serial.print (“energía consumida:”);
Serial.print(energy);
Serial.println(“Watt-Hour”);
Serial.println(“”);  //imprimir los siguiente conjuntos de parámetro después de una línea e
delay(2000);
Para manejar el  LCD tiene que primero importar la biblioteca de “LiquidCrystal” en el código.
A continuación este es el  código de ejemplo para sacar por el display  lcd  los valores calculados:
#include
lcd (8, 7, 6, 5, 4, 3, 2);
luz int = 9;
void setup()
{
pinMode (luz de fondo, salida); //set pin 9 como salida
analogWrite (contraluz, 150); //controls la intensidad de luz 0-254
lcd.begin(16,2); / / columnas, filas. tamaño de pantalla
LCD.Clear(); claro la pantalla
}
void loop()
{
lcd.setCursor(16,1); / / establecer el cursor fuera de la cuenta de pantalla
lcd.print(“”); imprimir carácter vacío
delay(600);
impresión de potencia y energía que un LCD / / /
lcd.setCursor(1,0); coloca el cursor en la columna 1 y fila 1

LCD.Print(Watt);
lcd.print (“W”);
lcd.print(voltage);
lcd.print(“V”);
lcd.setCursor(1,1); coloca el cursor en la fila 1 columna y 2 º
lcd.print(energy);
lcd.print (“WH”);
lcd.print(amps);
lcd.print(“A”);
}

 

Componentes

A continuación por ultimo algunos de los componentes necesarios para llevar a cabo este circuito:

 

1. ARDUINO UNO  (unos 9€ en Amazon)


3. Display LCD de 16 x 2 caracteres LCD (en Amazon con I2C  menos de 5€ )

4. ACS 712 SENSOR de corriente .Rango de corriente: 30A; Tamano: 31 x 13mm / 1.2 “x 0.5” (L * W) ( en Amazon unos 2€ )


Varios : resistencias de 10k v2,resistencia de 330ohm, POTENCIÓMETRO de 10K ,cables puente , placa de prototipos,etc

 

Monitorize su Raspberry Pi y Orange Pi

RPi-Monitor es una herramienta de monitorización remota basada en Web para las  placas  de desarrollo ARM, como Raspberry Pi y Orange Pi


Puede ser muy útil monitorizar la carga de la CPU, la memoria y el uso de almacenamiento, y el tráfico de red de sus placas  a un estilo similar a  como lo hacen las  herramientas gráficas como System Monitor en Ubuntu que proporciona la mayor parte de la información, y monit que se puede usar en  servidores .

Recientemente se ha presentado  la utilidad RPi-Monitor para las placas Raspberry Pi ,Orange Pi  (versión parcheada) e incluso  para  la Banana Pi , y  como vamos a ver, es  muy fácil de instalar, proporcionando un panel gráfico limpio de muchas variables diferentes de lo que ocurren en nuestra placa.

En el caso de que tenga una placa Orange Pi ( en el ejemplo es la placa Orange Pi PC)  , lo recomendable es usar Armbian (versión servidor) , por lo que esta  sería  la plataforma ideal  para ejecutar RPi-Monitor (OPi-Monitor), pero el uso debe ser exactamente el mismo en Raspberry Pi aunque los pasos de instalación son algo diferentes .

Para instalar RPi-Monitor en Orange Pi PC ,One,etc   abra un terminal ssh  o acceda a la consola serie y puede instalar e iniciar el servicio con una sola línea de comandos:

 sudo armbianmonitor -r

Tras lanzar el comando , debería sacar por pantalla una salida similar a la siguiente:

/ _ \ _ __ __ _ _ __ __ _ ___ | _ \(_) | _ \ / ___|
| | | | ‘__/ _` | ‘_ \ / _` |/ _ \ | |_) | | | |_) | |
| |_| | | | (_| | | | | (_| | __/ | __/| | | __/| |___
\___/|_| \__,_|_| |_|\__, |\___| |_| |_| |_| \____|
|___/
Welcome to ARMBIAN 5.30 stable Ubuntu 16.04.2 LTS 3.4.113-sun8i
System load: 0.31 0.51 0.23 Up time: 3 min
Memory usage: 4 % of 1000MB IP: 192.168.1.48
CPU temp: 33°C
Usage of /: 8% of 15G
[ 0 security updates available, 73 updates total: apt upgrade ]
Last check: 2017-08-09 16:23
[ General system configuration: armbian-config ]
Last login: Wed Aug 9 16:24:46 2017
[email protected]:~# sudo armbianmonitor -r
Extracting templates from packages: 100% to 5 minutes. Be patient please
Selecting previously unselected package libxau6:armhf.
(Reading database … 43590 files and directories currently installed.)
Preparing to unpack …/libxau6_1%3a1.0.8-1_armhf.deb …
Unpacking libxau6:armhf (1:1.0.8-1) …
Selecting previously unselected package libxdmcp6:armhf.
Preparing to unpack …/libxdmcp6_1%3a1.1.2-1.1_armhf.deb …
Unpacking libxdmcp6:armhf (1:1.1.2-1.1) …
Selecting previously unselected package libxcb1:armhf.
Preparing to unpack …/libxcb1_1.11.1-1ubuntu1_armhf.deb …
Unpacking libxcb1:armhf (1.11.1-1ubuntu1) …
Selecting previously unselected package libx11-data.
Preparing to unpack …/libx11-data_2%3a1.6.3-1ubuntu2_all.deb …
Unpacking libx11-data (2:1.6.3-1ubuntu2) …
Selecting previously unselected package libx11-6:armhf.
Preparing to unpack …/libx11-6_2%3a1.6.3-1ubuntu2_armhf.deb …
Unpacking libx11-6:armhf (2:1.6.3-1ubuntu2) …
Selecting previously unselected package libxext6:armhf.
Preparing to unpack …/libxext6_2%3a1.3.3-1_armhf.deb …
Unpacking libxext6:armhf (2:1.3.3-1) …
Selecting previously unselected package fonts-dejavu-core.
Preparing to unpack …/fonts-dejavu-core_2.35-1_all.deb …
Unpacking fonts-dejavu-core (2.35-1) …
Selecting previously unselected package fontconfig-config.
Preparing to unpack …/fontconfig-config_2.11.94-0ubuntu1.1_all.deb …
Unpacking fontconfig-config (2.11.94-0ubuntu1.1) …
Selecting previously unselected package libfreetype6:armhf.
Preparing to unpack …/libfreetype6_2.6.1-0.1ubuntu2.3_armhf.deb …
Unpacking libfreetype6:armhf (2.6.1-0.1ubuntu2.3) …
Selecting previously unselected package libfontconfig1:armhf.
Preparing to unpack …/libfontconfig1_2.11.94-0ubuntu1.1_armhf.deb …
Unpacking libfontconfig1:armhf (2.11.94-0ubuntu1.1) …
Selecting previously unselected package fontconfig.
Preparing to unpack …/fontconfig_2.11.94-0ubuntu1.1_armhf.deb …
Unpacking fontconfig (2.11.94-0ubuntu1.1) …
Selecting previously unselected package libpixman-1-0:armhf.
Preparing to unpack …/libpixman-1-0_0.33.6-1_armhf.deb …
Unpacking libpixman-1-0:armhf (0.33.6-1) …
Selecting previously unselected package libxcb-render0:armhf.
Preparing to unpack …/libxcb-render0_1.11.1-1ubuntu1_armhf.deb …
Unpacking libxcb-render0:armhf (1.11.1-1ubuntu1) …
Selecting previously unselected package libxcb-shm0:armhf.
Preparing to unpack …/libxcb-shm0_1.11.1-1ubuntu1_armhf.deb …
Unpacking libxcb-shm0:armhf (1.11.1-1ubuntu1) …
Selecting previously unselected package libxrender1:armhf.
Preparing to unpack …/libxrender1_1%3a0.9.9-0ubuntu1_armhf.deb …
Unpacking libxrender1:armhf (1:0.9.9-0ubuntu1) …
Selecting previously unselected package libcairo2:armhf.
Preparing to unpack …/libcairo2_1.14.6-1_armhf.deb …
Unpacking libcairo2:armhf (1.14.6-1) …
Selecting previously unselected package libdatrie1:armhf.
Preparing to unpack …/libdatrie1_0.2.10-2_armhf.deb …
Unpacking libdatrie1:armhf (0.2.10-2) …
Selecting previously unselected package libdbi1:armhf.
Preparing to unpack …/libdbi1_0.9.0-4_armhf.deb …
Unpacking libdbi1:armhf (0.9.0-4) …
Selecting previously unselected package libencode-locale-perl.
Preparing to unpack …/libencode-locale-perl_1.05-1_all.deb …
Unpacking libencode-locale-perl (1.05-1) …
Selecting previously unselected package libfile-which-perl.
Preparing to unpack …/libfile-which-perl_1.19-1_all.deb …
Unpacking libfile-which-perl (1.19-1) …
Selecting previously unselected package libgraphite2-3:armhf.
Preparing to unpack …/libgraphite2-3_1.3.6-1ubuntu1_armhf.deb …
Unpacking libgraphite2-3:armhf (1.3.6-1ubuntu1) …
Selecting previously unselected package libharfbuzz0b:armhf.
Preparing to unpack …/libharfbuzz0b_1.0.1-1ubuntu0.1_armhf.deb …
Unpacking libharfbuzz0b:armhf (1.0.1-1ubuntu0.1) …
Selecting previously unselected package libtimedate-perl.
Preparing to unpack …/libtimedate-perl_2.3000-2_all.deb …
Unpacking libtimedate-perl (2.3000-2) …
Selecting previously unselected package libhttp-date-perl.
Preparing to unpack …/libhttp-date-perl_6.02-1_all.deb …
Unpacking libhttp-date-perl (6.02-1) …
Selecting previously unselected package libio-html-perl.
Preparing to unpack …/libio-html-perl_1.001-1_all.deb …
Unpacking libio-html-perl (1.001-1) …
Selecting previously unselected package liblwp-mediatypes-perl.
Preparing to unpack …/liblwp-mediatypes-perl_6.02-1_all.deb …
Unpacking liblwp-mediatypes-perl (6.02-1) …
Selecting previously unselected package liburi-perl.
Preparing to unpack …/liburi-perl_1.71-1_all.deb …
Unpacking liburi-perl (1.71-1) …
Selecting previously unselected package libhttp-message-perl.
Preparing to unpack …/libhttp-message-perl_6.11-1_all.deb …
Unpacking libhttp-message-perl (6.11-1) …
Selecting previously unselected package libhttp-daemon-perl.
Preparing to unpack …/libhttp-daemon-perl_6.01-1_all.deb …
Unpacking libhttp-daemon-perl (6.01-1) …
Selecting previously unselected package libipc-sharelite-perl.
Preparing to unpack …/libipc-sharelite-perl_0.17-3build3_armhf.deb …
Unpacking libipc-sharelite-perl (0.17-3build3) …
Selecting previously unselected package libjson-perl.
Preparing to unpack …/libjson-perl_2.90-1_all.deb …
Unpacking libjson-perl (2.90-1) …
Selecting previously unselected package libthai-data.
Preparing to unpack …/libthai-data_0.1.24-2_all.deb …
Unpacking libthai-data (0.1.24-2) …
Selecting previously unselected package libthai0:armhf.
Preparing to unpack …/libthai0_0.1.24-2_armhf.deb …
Unpacking libthai0:armhf (0.1.24-2) …
Selecting previously unselected package libpango-1.0-0:armhf.
Preparing to unpack …/libpango-1.0-0_1.38.1-1_armhf.deb …
Unpacking libpango-1.0-0:armhf (1.38.1-1) …
Selecting previously unselected package libpangoft2-1.0-0:armhf.
Preparing to unpack …/libpangoft2-1.0-0_1.38.1-1_armhf.deb …
Unpacking libpangoft2-1.0-0:armhf (1.38.1-1) …
Selecting previously unselected package libpangocairo-1.0-0:armhf.
Preparing to unpack …/libpangocairo-1.0-0_1.38.1-1_armhf.deb …
Unpacking libpangocairo-1.0-0:armhf (1.38.1-1) …
Selecting previously unselected package librrd4:armhf.
Preparing to unpack …/librrd4_1.5.5-4_armhf.deb …
Unpacking librrd4:armhf (1.5.5-4) …
Selecting previously unselected package librrds-perl:armhf.
Preparing to unpack …/librrds-perl_1.5.5-4_armhf.deb …
Unpacking librrds-perl:armhf (1.5.5-4) …
Selecting previously unselected package rpimonitor.
Preparing to unpack …/rpimonitor_2.10-1_all.deb …
Unpacking rpimonitor (2.10-1) …
Processing triggers for libc-bin (2.23-0ubuntu7) …
Processing triggers for man-db (2.7.5-1) …
Processing triggers for systemd (229-4ubuntu17) …
Processing triggers for ureadahead (0.100.0-19) …
Setting up libxau6:armhf (1:1.0.8-1) …
Setting up libxdmcp6:armhf (1:1.1.2-1.1) …
Setting up libxcb1:armhf (1.11.1-1ubuntu1) …
Setting up libx11-data (2:1.6.3-1ubuntu2) …
Setting up libx11-6:armhf (2:1.6.3-1ubuntu2) …
Setting up libxext6:armhf (2:1.3.3-1) …
Setting up fonts-dejavu-core (2.35-1) …
Setting up fontconfig-config (2.11.94-0ubuntu1.1) …
Setting up libfreetype6:armhf (2.6.1-0.1ubuntu2.3) …
Setting up libfontconfig1:armhf (2.11.94-0ubuntu1.1) …
Setting up fontconfig (2.11.94-0ubuntu1.1) …
Regenerating fonts cache… done.
Setting up libpixman-1-0:armhf (0.33.6-1) …
Setting up libxcb-render0:armhf (1.11.1-1ubuntu1) …
Setting up libxcb-shm0:armhf (1.11.1-1ubuntu1) …
Setting up libxrender1:armhf (1:0.9.9-0ubuntu1) …
Setting up libcairo2:armhf (1.14.6-1) …
Setting up libdatrie1:armhf (0.2.10-2) …
Setting up libdbi1:armhf (0.9.0-4) …
Setting up libencode-locale-perl (1.05-1) …
Setting up libfile-which-perl (1.19-1) …
Setting up libgraphite2-3:armhf (1.3.6-1ubuntu1) …
Setting up libharfbuzz0b:armhf (1.0.1-1ubuntu0.1) …
Setting up libtimedate-perl (2.3000-2) …
Setting up libhttp-date-perl (6.02-1) …
Setting up libio-html-perl (1.001-1) …
Setting up liblwp-mediatypes-perl (6.02-1) …
Setting up liburi-perl (1.71-1) …
Setting up libhttp-message-perl (6.11-1) …
Setting up libhttp-daemon-perl (6.01-1) …
Setting up libipc-sharelite-perl (0.17-3build3) …
Setting up libjson-perl (2.90-1) …
Setting up libthai-data (0.1.24-2) …
Setting up libthai0:armhf (0.1.24-2) …
Setting up libpango-1.0-0:armhf (1.38.1-1) …
Setting up libpangoft2-1.0-0:armhf (1.38.1-1) …
Setting up libpangocairo-1.0-0:armhf (1.38.1-1) …
Setting up librrd4:armhf (1.5.5-4) …
Setting up librrds-perl:armhf (1.5.5-4) …
Setting up rpimonitor (2.10-1) …
[ ok ] Starting rpimonitor (via systemctl): rpimonitor.service.
Processing triggers for libc-bin (2.23-0ubuntu7) …
Now patching RPi-Monitor to deal correctly with H3
Now you’re able to enjoy RPi-Monitor at http://192.168.1.48:8888
[email protected]:~#

 

Realmente en la instalación anterior en una Orange pi PC con ArmBian ,el comando tomó alrededor de mucho menos  de 8 minutos de los anunciados (unos 3 minutos)   y descargó e instaló los paquetes requeridos.

Si  la salida del log de ejecución  es mas corta que la anterior, o en la finalizacion  nos ofrece la url por defecto (http://192.168.0.112:8888)   ,es decir con una url diferente  a la que tengamos para conectarnos, probablemente  no  se habrá instalado correctamente por algún tipo de incompatibilidad de algún paquete que se tenga ya instalado ( por ejemplo el sw de cayenne que no funciona aún en una Orange pi Pc).

En cualquier caso, la solución es bastante simple: o desistalamos el paquete que sospechemos o lo mas rápido: volvemos a instalar ArmBian en la microSD (aqui puede ver los pasos)

 

Una vez completada la instalación correctamente, redirijase  a una ventana del navegador de su computadora a la URL que se proporciona al final del script para acceder a la interfaz web (en el  ejemplo http://192.168.1.48:8888)

 

Ahora haga clic en el botón verde de Inicio para que el sistema recopile datos automáticamente y terminará en la página de estado con información sobre la versión, el tiempo de actividad, el uso de la CPU, la temperatura, el uso de la memoria, el uso de tarjetas SD y el tráfico de red.

 

Eso es interesante , pero la parte favorita es la pestaña de Estadísticas pues muestra cuadros realmente limpios y útiles

 

Pueden ser confusas al principio ya que se utilizan dos escalas para elementos múltiples, con por ejemplo el izquierdo (0 a 100) que muestra el uso de la CPU en porcentaje y temperatura SoC, con la escala izquierda (0 a 5) usada para las otras métricas tales como frecuencia de CPU en GHz, CPUs Activas, etc … ,pero  cada elemento puede ser fácilmente desactivado y habilitado.

Existen 7 tipos de gráficos: Uptime, velocidades de carga / reloj / temperatura, detalles CPU Stats, memoria. Disks – boot, Disks – root y Network, y 6 opciones de actualización con la más rápida actualización cada 10 segundos para una ventana de 24 horas, y la más lenta cada 60 minutos para una vista de un año de la placa.

La pestaña Opciones sólo se utiliza para seleccionar el tiempo de actualización predeterminado y también puede acceder a los gráficos en el navegador de su teléfono inteligente explorando el núcleo QR en la sección Acerca de.

 

Por cierto, RPi-monitor es open source  ,lo que significa que puede estudiar el código,mejorarlo  y  reportar  bugs en  github. También puede obtener mas información y actualizaciones en el  blog del desarrollador.

A %d blogueros les gusta esto: