Problemas al reconocer el puerto con el ESP8266



Node MCU
 es una plataforma para el desarrollo de proyectos IoT que integra el famoso chip ESP8266, el cual se ha extendido enormemente debido a su facilidad para desarrollar proyectos open source  que pueden ademas  pueden   involucrar el IoT  .

Esta placa  destaca  porque integra capacidades de comunicación via WiFi , conteniendo en su interior  un microprocesador que puede ser programado fácilmente usando el  conocido lenguaje de programación Lua o bien vía Arduino IDE.

Obviamente ante todo no podemos perder de vista su bajisimo precio ( menos de 7.5€  ) comparados con otras opciones , pues no debemos olvidar  que incluye  el modulo wifi integrado  y un bus GPIO para conectar dispositivos de E/S.
Node MCU es una plataforma de desarrollo permite un prototipado rápido, para una vez satisfechos con el resultado, portar el desarrollo a un sistema final con un chip ESP8266 como pieza central.

A la hora de programar nuevas funciones, si optamos por utilizar Lua, dispondremos de un sistema simple con buena comunidad de usuarios. En cambio programar con el sistema Arduino nos aporta un fantástico IDE y un sinfin de manuales y ejemplos de desarrollo.

Este modulo es Ideal como una solución independiente en lugar de Arduino además de Wi-Fi  integrado siendo fácil de programar a través del IDE de Arduino (como vamos a ver ) , al igual que un Arduino.
Todos los periféricos con bus I2C puede unirse,por ejemplo Pantallas OLED, pantallas LCD, temperatura, presión, sensores de humedad pueden ser conectados en paralelo. También se puede conectar múltiples DS18B20

Sin embargo, sólo hay una entrada analógica y salida y las pantallas táctiles no se pueden conectar con ella.

Los pasos  a seguir   para conectar un ESP8266     son los siguientes:

  •  Instalación del IDE de Arduino .Si aun no lo tiene instalado ,se puede hacer  desde aqui
  • Instalación  del paquete de la placa ESP8266 en Arduino IDE  siguiendo las instrucciones del sitio : https://github.com/esp8266/Arduino
esp
  • Instalación de los controladores USB

Es necesario instalar el controlador USB requerido en su ordenador  para que pueda programar el ESP8266.  Independientemente de la opción de firmware que elijamos, primero necesitamos comunicarnos con la placa de desarrollo ESP-12E utilizando la interfaz USB de la computadora.

El módulo USB a Serial UART incluido en la placa es Silicon Labs ‘CP2012, para lo cual generalmente necesitamos instalar los controladores de puerto COM virtual (VCP) fácilmente disponibles para su sistema operativo específico.Una vez instalado, debemos verificar que el CP2102 sea reconocido por su ordenador.

Una vez que el controlador está instalado, podemos conectar el cable USB al puerto USB de la computadora y la placa. Después de hacerlo, deberíamos ver el mensaje: software del controlador del dispositivo instalado correctamente.

Además, podemos verificar manualmente que todo funcione correctamente siguiendo estos pasos:

Abra el Administrador de dispositivos (disponible a través del Panel de control → Sistema y seguridad → Administrador de dispositivos en la sección Sistema)
Debajo de la entrada Puertos (COM & LPT), debe haber un puerto abierto llamado USB-SERIAL CP2102 (COM) donde hay un número típicamente mayor o igual a 3.

Ahora que estamos listos para comunicarnos con nuestro ESP8266 a través del CP2102, podemos explorar algunas de las diferentes opciones de firmware disponibles.

  • Conecte  un cable usb  de datos al ESP8266
  • Seleccione   Herramientas –>ESP8266   y ahi la placa que haya comprado. En caso de  haberla comprado en Amazon aqui seleccione  NodeMCU 1.0 (ESP-12EModule).

node.png
  • En el IDE de Arduino, vaya al menú de herramientas, seleccionada su placa y elija el  puerto al que está conectado su ESP8266.En el ejemplo  es el COM11
puerto.png

Problemas al reconocer el puerto

En varios casos, la placa no se detecta debido a que faltan los controladores. Sin embargo, también puede ser por el puerto USB o el cable.

Si después de instalar los controladores sigue sin funcionar, por favor:

  • Verifique conectando la placa en otro puerto
  • Intente cambiar el cable USB de conexión por otro porque a veces aunque haya alimentación pueden fallar ( no olvidar que en un cable USB standard deberia haber 4 hilos)
  • Pruebae en otro ordenador distinta

Una vez dicho eso, veamos los controladores de NodeMCU 8266 en Windows.

Controladores para esp8266 en Windows

Hay que ir al siguiente enlace:

https://github.com/nodemcu/nodemcu-devkit/tree/master/Drivers

Y descargar el archivo que se llama CH341SER_WINDOWS.zip. Si quieres un enlace directo lo dejo aquí:

https://github.com/nodemcu/nodemcu-devkit/raw/master/Drivers/CH341SER_WINDOWS.zip

Una vez que lo descargues, extraer el fichero comprimido con extension .zip. Tendrá un programa llamado CH341SER.EXE, ejecútelo y dale permisos de administrador.

En la siguiente ventana haz click en Install:

Instalar drivers de NodeMCU 8266 en Windows

Espere a recibir la notificación de que se ha instalado y eso es todo. Debe detectar el dispositivo en un puerto COM; yo lo tenía en el COM4.

Conclusión

Es necesario mencionar que esto lo probé en Windows 10 de 64 bits usando PlatformIO dentro de Visual Studio Code, pero supongo que debe funcionar de igual modo en otras plataformas.

Lo explicado aquí está en un issue de GitHub.

Como crear un USB de arranque desde linux


A veces nuestro equipo Windows o Linux puede tener ciertos problemas en funcionalidades que no sabemos achacar si es al propio sistema operativo, a alguna aplicacion que hayamos instalado qeu entre en conflicto con otra o quizas algun componente hardware. Pensando en estos casos una solucion muy interesante es arrancar con una unidad USB que contenga la maxima cantidad de drivers y sw basico para probar si es achacable al propio sistema operativo o algun aspecto del hardware que nos este fallando

En este post , pues vamos a ver como generar una unidad USB con la que salir de dudas y que seguro mas una vez nos podra sacar de algun apuro ¿le interesa el tema pues no nos demoremos mas y veamos los pasos a seguir?

1. Información general

Con una memoria USB de arranque de Ubuntu, puede:

  • Instalar o actualizar Ubuntu
  • Pruebe la experiencia de escritorio de Ubuntu sin tocar la configuración de su PC
  • Inicie Ubuntu en una máquina prestada o desde un cibercafé
  • Utilice las herramientas instaladas de forma predeterminada en la memoria USB para reparar o arreglar una configuración rota

Crear una memoria USB de arranque de Ubuntu es muy simple, especialmente desde Ubuntu mismo, y cubriremos el proceso en los siguientes pasos.

Alternativamente, también tenemos tutoriales para ayudarlo a crear una memoria USB de arranque desde Microsoft Windows y Apple macOS .

 

2. Requisitos

Necesitará:

  • Una memoria USB / unidad flash de 4 GB o más
  • Ubuntu Desktop 14.04 o posterior instalado
  • Un archivo ISO de Ubuntu. Consulte Obtener Ubuntu para obtener enlaces de descarga.
  • Xubuntu es un sistema operativo Linux elegante y fácil de usar basado en Ubuntu y desarrollado por la comunidad.. Xubuntu incluye Xfce, que es un entorno de escritorio estable, ligero y configurable.Es ideal para quien quiera lo mejor de sus PCs, portátiles y netbooks dándoles un aspecto moderno y obteniendo funcionalidades suficientes y eficientes para el día a día. Además, funciona bien en máquinas antiguas.Para más información, visite el sitio web de Xubuntu. Puede probar tambien la version Xubuntu 20.01 desde here.
Descarga una ISO de Ubuntu

Por cierto ,la «X» en Xubuntu proviene de Xfce, el ambiente de escritorio de Xubuntu. Así también la palabra «ubuntu» muestra la dependencia y el uso del núcleo de Ubuntu, que a su vez representa el núcleo filosófico del sistema operativo. Un significado aproximado de la palabra ubuntu es «humanidad hacia los demás». Para conocer más sobre la filosofía e ideales detrás de Ubuntu y Xubuntu puede ir a la página Filosofía de Ubuntu [En inglés].

Además de utilizar el núcleo de Ubuntu, Xubuntu también utiliza la infraestructura proporcionada y patrocinada por Canonical Ltd., una compañía fundada por Mark Shuttleworth.

3. Inicie Startup Disk Creator

Vamos a utilizar una aplicación llamada ‘Startup Disk Creator’ para escribir la imagen ISO en su memoria USB. Esto se instala de forma predeterminada en Ubuntu y se puede iniciar de la siguiente manera:

  1. Inserte su memoria USB (seleccione ‘No hacer nada’ si se lo solicita Ubuntu)
  2. En Ubuntu 18.04 y versiones posteriores, use el icono de la parte inferior izquierda para abrir ‘Mostrar aplicaciones’
  3. En versiones anteriores de Ubuntu, use el ícono superior izquierdo para abrir el tablero
  4. Utilice el campo de búsqueda para buscar Startup Disk Creator
  5. Seleccione Startup Disk Creator de los resultados para iniciar la aplicación
Buscar Startup Disk Creator

 

Si no lo tiene instalado ,para instalar la aplicación desde consola , ejecute los siguientes comandos:

sudo apt update
sudo apt install usb-creator-gtk

Además, si está ejecutando KDE o Kubuntu en lugar de Ubuntu o Ubuntu Gnome, probablemente debería usar en usb-creator-kdelugar de usb-creator-gtk:

sudo apt update
sudo apt install usb-creator-kde

Además, si está utilizando LXQT en Lubuntu, probablemente desee utilizar usb-creator-kde.

4. Selección de ISO y USB

Cuando se inicie, Startup Disk Creator buscará los archivos ISO en su carpeta de Descargas , así como cualquier almacenamiento USB adjunto en el que pueda escribir.

Es probable que tanto su ISO de Ubuntu como el dispositivo USB correcto se hayan detectado y configurado como ‘Imagen de disco de origen’ y ‘Disco para usar’ en la ventana de la aplicación. De lo contrario, use el botón ‘Otro’ para ubicar su archivo ISO y seleccione el dispositivo USB exacto que desea usar de la lista de dispositivos.

Haga clic en Crear disco de inicio para iniciar el proceso.

Hacer dispositivo USB

5. Confirme el dispositivo USB

Antes de realizar cambios permanentes, se le pedirá que confirme que el dispositivo USB que ha elegido es correcto. Esto es importante porque todos los datos almacenados actualmente en este dispositivo se destruirán.

Después de confirmar, se iniciará el proceso de escritura y aparecerá una barra de progreso.

Progreso de escritura USB

6. Instalación completa

¡Eso es todo! Ahora tiene Ubuntu en una memoria USB, de arranque y listo para funcionar.

Si desea instalar Ubuntu, eche un vistazo a nuestro tutorial de instalación de escritorio de Ubuntu .

Escritura USB completa

Buscando mas  ayuda

Si se queda atascado, la ayuda siempre está a mano. He  aquí algunas referencias que nos pueden ayudar:

 

exit status 1 using typedef-name ‘fpos_t’ after ‘struct’


Si está viendo  este página probablemente se deba que esta intentando actualizar el firmware Marlin  de su impresora 3d  desde el IDE de Arduino  y no lo logra.

Marlin es un firmware de código abierto para la familia RepRap de replicar prototipos rápidos, popularmente conocidos como «impresoras 3D». Se deriva de Sprinter y grbl,y se convirtió en un proyecto de código abierto independiente el 12 de agosto de 2011 con su lanzamiento de Github. Marlin tiene licencia bajo la GPLv3 y es gratis para todas las aplicaciones.

Desde el principio Marlin fue construido por y para los entusiastas de RepRap para ser un controlador de impresora sencillo, confiable y adaptable que «simplemente funciona». Como testimonio de su calidad, Marlin es utilizado por varias impresoras 3D comerciales respetadas. Ultimaker, Printrbot, AlephObjects (Lulzbot) y Prusa Research son solo algunos de los vendedores que envían una variante de Marlin. Marlin también es capaz de conducir CNC y grabadores láser.

Una clave de la popularidad de Marlin es que se ejecuta en microcontroladores Atmel AVR de 8 bits de bajo costo – Marlin 2.x ha añadido soporte para placas de 32 bits. Estos chips están en el centro de la popular plataforma de código abierto Arduino/Genuino. Las plataformas de referencia para Marlin es un Arduino Mega2560 con RAMPS 1.4 y Re-Arm con rampas 1.4.

Como producto comunitario, Marlin tiene como objetivo ser adaptable a tantas placas y configuraciones como sea posible  intentando ser configurable, personalizable, extensible y económico tanto para aficionados como para proveedores. Una construcción Marlin puede ser muy pequeña, para su uso en una impresora sin cabeza con solo hardware modesto. Las características se habilitan según sea necesario para adaptar Marlin a los componentes añadidos.

 

Marlin Firmware se ejecuta en la placa principal de la impresora 3D, gestionando todas las actividades en tiempo real de la máquina. Coordina los calentadores, pasos, sensores, luces, pantalla LCD, botones y todo lo demás involucrado en el proceso de impresión 3D.

Marlin implementa un proceso de fabricación aditiva llamado Fused Deposition Modeling (FDM), también conocido como Fused Filament Fabrication (FFF). En este proceso, un motor empuja el filamento de plástico a través de una boquilla caliente que funde y extruye el material mientras la boquilla se mueve bajo control informático. Después de varios minutos (o muchas horas) de colocar finas capas de plástico, el resultado es un objeto físico.

El lenguaje de control para Marlin es un derivado del código G. Los comandos de código G le dicen a una máquina que haga cosas simples como «establecer el calentador de 1 a 180o» o «mover a XY a la velocidad F.» Para imprimir un modelo con Marlin, debe convertirse en código G utilizando un programa llamado «slicer». Dado que cada impresora es diferente, no encontrará archivos de código G para descargar; tendrás que cortarlos tú mismo.

A medida que Marlin recibe comandos de movimiento, los agrega a una cola de movimiento para ser ejecutados en la orden recibida. La «interrupción paso a paso» procesa la cola, convirtiendo los movimientos lineales en pulsos electrónicos con precisión en los motores paso a paso. Incluso a velocidades modestas Marlin necesita generar miles de pulsos paso a paso cada segundo. (p. ej., 80 pasos por mm * 50 mm/s a 4000 pasos por segundo!) Dado que la velocidad de la CPU limita la velocidad con la que la máquina puede moverse, ¡siempre estamos buscando nuevas formas de optimizar la interrupción paso a paso!

Los calentadores y sensores se gestionan en una segunda interrupción que se ejecuta a una velocidad mucho más lenta, mientras que el bucle principal controla el procesamiento de comandos, la actualización de la pantalla y los eventos del controlador. Por razones de seguridad, Marlin realmente se reiniciará si la CPU se sobrecarga demasiado para leer los sensores.

What is Marlin?

 

Instalación de Marlin en su impresora

Normalmente todas las impresoras 3d ya llevan el firmware instalado ( incluso las que vienen en kit )   pero   conviene estar al tanto de las actualizaciones   de  este   ( en cuyo caso habar  que seguir el procedimiento siguiente)  o puede que sea  necesario cambiarlo para añadir alguna funcionalidad extra como por ejemplo la autonivelación o el cambio de idioma

En todos estos casos normalmente estos son los pasos que se siguen:  

1. Instale Arduino en su PC.
Si su impresora es A10/A10M/A20/A20M, utilice Arduino 1.8.5 para finalizar la  carga; Si es Prusa I3 Pro B/W/X/C, por favor vaya por Arduino 1.0.1!! De lo contrario, es posible que reciba algunos errores durante la verificación.

Descargue Arduino 1.0.1 o Arduino 1.8.5  aquí: https://www.arduino.cc/en/Main/OldSoftw … s-anterior

Arduino 1.0.1.jpg
Arduino 1.8.5.jpg
Arduino 1.8.5.jpg (27.86 KiB) Visto 60177 veces


2. Conecte la impresora al PC con el cable USB.
3. Descomprima el  firmware.  Aquí  tomaremos el firmware para el extrusor dual I3 pro C, por  ejemplo el proceso para la serie A10/A20 es bastante similar, excepto el Arduino en una versión diferente.   Puede descargar el de su impresora aquí:
http://www.geeetech.com/forum/viewtopic … 10&t-17046

02.jpg


4. Haga doble clic en el Marlin.ino, luego abrirá todo el firmware en el arduino.

03.jpg
04.jpg

5. Seleccione el puerto Com adecuado.

06.jpg
06.jpg (205.84 KiB) Viewed 189584 times


6. En Herramientas, en Board, seleccione Mega 2560 .

05.jpg


7. Finalmente haga clic en la flecha para compilar y cargar el firmware en su impresora.

07.jpg

 

Bien   es cierto que debería de compilar el sw  y nuestra impresora ya si estaría actualizada, pero lamentablemente  no siempre es así,  y desgraciadamente puede que  nos lance un error de que no se puede compilar  .

 

 

Por ejemplo en el caso de una Geetech Prusa i 3 W este es el mensaje que lanza el IDE de Arduino al intentar verificar el firmware: 

 

Arduino:1.8.10 (Windows 10), Tarjeta:»Arduino/Genuino Mega or Mega 2560, ATmega2560 (Mega 2560)»

In file included from sketch\Marlin.h:23:0, from sketch\ConfigurationStore.cpp:1:

sketch\pins.h:2956:0: warning: «X_MAX_PIN» redefined

#define X_MAX_PIN -1   sketch\pins.h:1363:0: note: this is the location of the previous definition

#define X_MAX_PIN 24 sketch\pins.h:2957:0: warning: «Y_MAX_PIN» redefined

#define Y_MAX_PIN 28  In file included from sketch\Marlin.h:23:0,  from sketch\BlinkM.cpp:5:

sketch\pins.h:2956:0: warning: «X_MAX_PIN» redefined

#define X_MAX_PIN -1 sketch\pins.h:1363:0: note: this is the location of the previous definition

#define X_MAX_PIN 24 sketch\pins.h:2957:0: warning: «Y_MAX_PIN» redefined

#define Y_MAX_PIN -1 sketch\pins.h:1369:0: note: this is the location of the previous definition

#define Y_MAX_PIN 28 In file included from sketch\Marlin.h:23:0, from sketch\thermistortables.h:4, from sketch\Configuration.h:792, from f:\Users\Carlos\Documents\Arduino\I3 ProW GT2560A+ with 3dtouch (1)\Marlin\Marlin.ino:33:sketch\pins.h:2956:0: warning: «X_MAX_PIN» redefined #define X_MAX_PIN -1 sketch\pins.h:1363:0: note: this is the location of the previous definition

#define X_MAX_PIN 24 sketch\pins.h:2957:0: warning: «Y_MAX_PIN» redefined

#define Y_MAX_PIN -1 sketch\pins.h:1369:0: note: this is the location of the previous definition

#define Y_MAX_PIN 28 In file included from sketch\Marlin.h:23:0,  from sketch\Marlin_main.cpp:30: sketch\pins.h:2956:0: warning: «X_MAX_PIN» redefined

#define X_MAX_PIN -1 sketch\pins.h:1363:0: note: this is the location of the previous definition

#define X_MAX_PIN 24 sketch\pins.h:2957:0: warning: «Y_MAX_PIN» redefined

#define Y_MAX_PIN -1 sketch\pins.h:1369:0: note: this is the location of the previous definition

#define Y_MAX_PIN 28 In file included from sketch\Marlin.h:23:0, from sketch\MarlinSerial.cpp:23:sketch\pins.h:2956:0: warning: «X_MAX_PIN» redefined

#define X_MAX_PIN -1 sketch\pins.h:1363:0: note: this is the location of the previous definition

#define X_MAX_PIN 24 sketch\pins.h:2957:0: warning: «Y_MAX_PIN» redefined

#define Y_MAX_PIN -1 sketch\pins.h:1369:0: note: this is the location of the previous definition

#define Y_MAX_PIN 28 In file included from sketch\Marlin.h:23:0, from sketch\Sd2Card.cpp:20:

sketch\pins.h:2956:0: warning: «X_MAX_PIN» redefined

#define X_MAX_PIN -1 sketch\pins.h:1363:0: note: this is the location of the previous definition

#define X_MAX_PIN 24 sketch\pins.h:2957:0: warning: «Y_MAX_PIN» redefined

#define Y_MAX_PIN -1 sketch\pins.h:1369:0: note: this is the location of the previous definition

#define Y_MAX_PIN 28 sketch\Marlin_main.cpp:2667:36: warning: invalid suffix on literal; C++11 requires a space between literal and string macro [-Wliteral-suffix] LCD_MESSAGEPGM(MACHINE_NAME» «MSG_OFF».»); ^In file included from sketch\Marlin.h:23:0,  from sketch\SdBaseFile.cpp:21:sketch\pins.h:2956:0: warning: «X_MAX_PIN» redefined

#define X_MAX_PIN -1 sketch\pins.h:1363:0: note: this is the location of the previous definition

#define X_MAX_PIN 24 sketch\pins.h:2957:0: warning: «Y_MAX_PIN» redefined

#define Y_MAX_PIN -1 sketch\pins.h:1369:0: note: this is the location of the previous definition

#define Y_MAX_PIN 28 In file included from sketch\SdFile.h:27:0, from sketch\cardreader.h:8, from sketch\Marlin_main.cpp:44:SdBaseFile.h:38:8: error: using typedef-name ‘fpos_t’ after ‘struct’ struct fpos_t { ^~~~~~  In file included from sketch\Marlin.h:10:0,  from sketch\Marlin_main.cpp:30:c:\program files (x86)\arduino\hardware\tools\avr\avr\include\stdio.h:950:33: note: ‘fpos_t’ has a previous declaration here extension typedef long long fpos_t; ^~~~~~ sketch\Marlin_main.cpp: In function ‘void set_bed_level_equation_lsq(double*)’:

sketch\Marlin_main.cpp:998:36: warning: ISO C++ forbids converting a string constant to ‘char*’ [-Wwrite-strings]  planeNormal.debug(«planeNormal»); ^

In file included from sketch\SdBaseFile.cpp:24:0:SdBaseFile.h:38:8: error: using typedef-name ‘fpos_t’ after ‘struct’ struct fpos_t {  ^~~~~~

In file included from sketch\Marlin.h:10:0,  from sketch\SdBaseFile.cpp:21:c:\program files (x86)\arduino\hardware\tools\avr\avr\include\stdio.h:950:33: note: ‘fpos_t’ has a previous declaration here extension typedef long long fpos_t; ^~~~~~

sketch\SdBaseFile.cpp: In member function ‘void SdBaseFile::getpos(fpos_t*)’:SdBaseFile.cpp:298:8: error: request for member ‘position’ in ‘* pos’, which is of non-class type ‘fpos_t {aka long long int}’ pos->position = curPosition_; ^~~~~~~~

SdBaseFile.cpp:299:8: error: request for member ‘cluster’ in ‘* pos’, which is of non-class type ‘fpos_t {aka long long int}’ pos->cluster = curCluster_; ^~~~~~~

sketch\SdBaseFile.cpp: In member function ‘void SdBaseFile::setpos(fpos_t*)‘:

SdBaseFile.cpp:1496:23: error: request for member ‘position’ in ‘* pos’, which is of non-class type ‘fpos_t {aka long long int}’  curPosition_ = pos->position; ^~~~~~~~

SdBaseFile.cpp:1497:22: error: request for member ‘cluster’ in ‘* pos’, which is of non-class type ‘fpos_t {aka long long int}’ curCluster_ = pos->cluster; ^~~~~~~

In file included from sketch\Marlin.h:23:0, from sketch\SdFatUtil.cpp:20:

sketch\pins.h:2956:0: warning: «X_MAX_PIN» redefined

#define X_MAX_PIN -1 sketch\pins.h:1363:0: note: this is the location of the previous definition

#define X_MAX_PIN 24 sketch\pins.h:2957:0: warning: «Y_MAX_PIN» redefined

#define Y_MAX_PIN -1 sketch\pins.h:1369:0: note: this is the location of the previous definition

#define Y_MAX_PIN 28 Se encontraron varias bibliotecas para «LiquidCrystal.h»


Usado: C:\Program
exit status 1
using typedef-name ‘fpos_t’ after ‘struct’

Este informe podría contener más información con «Mostrar salida detallada durante la compilación» opción habilitada en Archivo -> Preferencias.

Bueno   , este error nos impide  actualizar el firmarware Marlin de nuestra impresora, pero  en las siguientes líneas veremos que lograr que compile el sw Marlin para nuestra impresora en particular puede ser un juego de niños

 

 

Tip1 : todo lo que necesita hacer es cambiar   todas las ocurrencias fpos_t a filepos_t

 

Para solucionar el problema  de  compilación, anterior sólo tiene que abrir ide Arduino con el firmware y hacer una búsqueda global y reemplazar.

Esto se hace haciendo Ctrl-F y selecciona la casilla de búsqueda de todas las pestañas. A continuación, buscar y reemplazar  fpos_t  por  filepos_t. Volver a compilar y estará todo listo. 

Se trata de un cambio en las nuevas versiones del software de Arduino IDE que está haciendo esto. Las versiones más recientes del firmware del Marlin tienen que la estructura  filepos_t   se llama así ,lo  que  no tendrá ningún efecto negativo en el firmware

sí que la raíz del problema con las nuevas versiones de Arduino es que ya definen un objeto denominado fpos_t en uno de los archivos globales instaladas con Arduino llamado stdio.h. Destacar en el el fichero stdio.h  ha sido un problema con muchos usuarios en línea de cambiar al nuevo Arduino y la compilación de los firmwares más antiguas basadas Marlin. Es por ello que las nuevas versiones de Marlin han pasado a utilizar filepos_t para el nombre de estructura en su lugar. Si se realiza  ese cambio a sus versiones de firmware publicadas, a continuación nadie más tendría los problemas que tenía con cargar el firmware original pero bueno sabiéndolo podemos poner el remedio.  

 

 

 

Tip 2

Si la solución  anterior  no le fue suficiente   alguien informó recientemente el mismo problema con Marlin y así  ha  solucionado el  problema

  • Herramientas > Tablero > Administrador de placas… > Arduino AVR Boards(haga clic en él) > seleccione 1.6.11 en el menú «Seleccionar versión» > Instalar
  • Una vez completada la instalación, haga clic en el botón «Cerrar»



El problema es causado por la nueva versión del compilador incluida con Arduino AVR Boards 1.6.12 y más tarde, es más exigente con el código malo que alguien escribió. Tendrá sin necesidad de actualizar a cualquier versión de Arduino AVR Boards por encima de 1.6.11 hasta que alguien solucione el problema en el código Marlin.
¿Está utilizando la última versión del firmware real de Marlin o es alguna versión anterior o una versión modificada no  estándar?

A %d blogueros les gusta esto: