Cámara trasera inteligente con Raspberry Pi. Parte 1


El término «Coche inteligente» puede tener miles de significados diferentes dependiendo a quién le preguntemos., así que empecemos con una definición   modesta  de algunos componentes que podemos añadir :

  • Información básica sobre el coche, como la marcha engranada, eficiencia de combustible, horas de conducción ,etc.
  • Ayudas a la conducción de tipo ADAS , siendo   los mas comunes la puesta en marcha del  coche delantero, acceso involuntario a línea de separación de carril o aviso de colisión por vehículo delantero que circula  muy próximo
  • Cámara trasera inteligente que avise si un objeto está demasiado cercano
  • etc

Del primer punto lo hemos comentado en diferentes post , explicando que para automóviles de unos 10 años, es decir que cuentan con interfaz ODB2,  es relativamente simple añadir un HUD con toda esta información  con  un HUD conectado por ODB2

VID 20181022 1908561
VID 20181022 1908561

Resumidamente los sistemas ADAS  de ayuda  a  la conducción  mas usuales son las siguientes:

  • FCWS   del ingles  Forward Colission Warning Sytem (advertencia de colisión delantera) ayuda al conductor a mantenerse a una distancia segura del vehículo delantero y alerta a los conductores de una colisión inminente con advertencias visuales y audibles.Este sistema permite al dispositivo detectar cuando no se mantiene una distancia segura entre su vehículo y el vehículo delante de usted. El dispositivo determinará la velocidad de su vehículo calculando una distancia estimada de siguiente segura basada en su velocidad.Normalmente para que esta  función pueda estar habilitada se  debe estar  viajando a más de 48KM/H ( a una velocidad de menos de 32 KM/H, se suele  desactivar la función). Precisamente por esta limitacion el FCWS no puede detectar los vehículos que están  alejados más de 40m  o más cerca de 5m.

fcw.png

  • LDWS  del inglés Lane Departure Warning  System  ( SISTEMA DE  ADVERTENCIA DE SALIDA DE CARRIL) monitorea las marcas del carril y avisa al conductor con advertencias visuales y audibles cuando ocurre una salida involuntaria del carril sin la notificación de la señal de giro.Es un mecanismo diseñado para advertir al conductor cuando el vehículo empieza a moverse fuera de su carril (salvo que una señal de la vuelta en esa dirección) en las autopistas y carreteras de la zona. Este sistema está diseñado para minimizar los accidentes por abordar las principales causas de colisiones: error del conductor , distracción y somnolencia.

ldw

  • HMW( VIGILANCIA Y ADVERTENCIA DEL AVANCE DE PISTA)- Mide la distancia al vehículo que está por delante (“headway”) en segundos. Ayuda al conductor a mantener una distancia segura de conducción. Alerta al conductor al entrar en una zona predefinida de “avance peligroso”

.hmw.png

  • FVSA (ALARMA DE INICIO DEL VEHÍCULO DELANTERO ) Notifica al conductor si el vehículo delantero comienza a avanzar en el estado parado completo y el coche del conductor no se mueve en 2 segundos.

fvsa

Casi todas estas ayudas ADAS  están implementadas  en  numerosas cámaras  disponibles en el mercado como vismo en este post destacando por voz propia  el modelo Dash de Garmin

Respecto al ultimo punto de cámaras traseras  , hay muchos kits para  añadir una cámara  trasera a  nuestro vehículos usando una conexión analógica de video compuesto , lo cual se traduce en  que la mayoría de ellas requieren hacer modificaciones al coche  ,por  ejemplo para ubicar la cámara en el porta-matriculas  , o fijar la pantalla especifica   de modo que no siempre en sencilla su instalación .Además las cámaras traseras comentadas requieren una  fuente de alimentación externa alimentándose con los  cables de las luces de atrás de su coche para que automáticamente se enciendan cuando el coche está en marcha lo cual tampoco le  gusta a muchas personas .

Dado que el mercado no ofrece por  el momento soluciones mas avanzadas una idea es usar la Raspberry Pi pues es la plataforma perfecta  porque básicamente es un mini ordenador con un montón de entradas y salidas.

Al conectar una cámara a la Pi, se puede utilizar prácticamente cualquier webcam USB genérica, o  por supuesto  mejor puede usar una  Cámara Pi conectada al conector DSI pues estas ofrecen una mayor calidad , versatilidad y  no  requiere una fuente de alimentación separada (pero asegúrese de tener un montón de cable para ir a la parte posterior del coche)

Solución con Raspberry Pi

Gracias a una Raspberry Pi  por medio del procesamiento de imágenes en efecto  podemos  hacer más inteligente nuestro vehículo y añadir  nuevas funcionalidades

Para esta idea  podemos  usar  los siguientes componentes:

 

Conexión del módulo de cámara

El modulo de cámara de Pi  tiene un mayor rendimiento que una cámara USB  por lo que lo ideal es usar una cámara del tipo compatibles con Raspberry Pi  (se puede comprar por unos 15€ en Amazon) 

No es  problema  la distancia pues con un cable plano  de 200 cm suele ser suficiente para llevar la cámara  hasta la  posición de conducción (puede comprarlo   aqui en Amazon por unos 7,29€ )

Se puede pues llevar el cable plano al l frente del coche y luego conectado a una pantalla de táctil de 7″ de modo que  la Pi y la pantalla táctil pueden ser alimentados por el adaptador USB en el coche.

Estos  son los pasos para instalar la cámara especifica para su uso , con la Raspberry Pi 

    • Localice el puerto de la cámara y conecte la cámara:Connect the camera
    • Poner en marcha la Raspberry Pi 
    • Abra la Herramienta de configuración de frambuesa Pi desde el menú principal:Raspberry Pi Configuration Tool
    • Asegúrese de que está activado el software de la cámara:Camera software enabled
    • Si no está activado, habilítelo y reinicie su Pi para comenzar. Asimismo si va utilizar una pantalla táctil también necesitara activar I2C  y SPI

Es decir resumidamente;  con la Raspberry Pi apagada, debe conectar el módulo de la cámara al puerto de la cámara de la Raspberry Pi,ahora encienda el Pi  y asegúrese de que se activa el software.

Conexión de un pantalla táctil(opcional)

Existen pantallas TFT para Raspberry Pi con  resolución de 320×240 (16-bits) que además son táctiles con una pantalla resistiva. Se entregan montadas y suelen ser  compatible con los modelos Raspberry Pi Model A+, B+ y Pi 2  disponiendo  además de de un conector de 40 pines para los GPIO.

La pantalla y el digitalizador   utilizan los pines I2C (SDA y SCL), SPI (SCK, MOSI, MISO, CE0) y los pines GPIO #24 y #25. Todos los demás pines GPIO no se utilizan así que podrá conectar más cosas como sensores, LEDs etc. Algunos modelos disponen deposiciones para pulsadores miniatura (no incluidos) por si quiere hacer algún otro tipo de interfaz de usuario.

Puede utilizarla utilizar la librería PyGame u otra librería SDL para dibujar directamente en el frame buffer y hacer interfaces propios.

Tenga en cuenta que para que funcione debe tener activado el I2C en tu Pi o se quedará en blanco. Si utiliza la imagen de Adafruit funcionará sin problema, sino puedes ver su tutorial para ver cómo hacerla funcionar.

La conexión de este tipo de pantallas suele ser por el  propio conector de 25 pines  y por hdmi con un adaptador

Respecto al sw, estos son los pasos  que puede  seguir;

!Ojo el conector plano de la pantalla pues es MUY frágil y debe manejarse con cuidado.!

Montaje final

Una vez montada  la pantalla y la cámara , encender el coche, la Pi y la pantalla . Para ver la camara   de la Pi, abra el terminal y ejecute simplemente  el  siguiente  script:

raspivid -t 0

o

raspivid -t 0 --mode 7

Después de entrar esto ,   la imagen captada por la cámara debería aparecer  en pantalla  completa , pero  !ojo !  no lo veremos  si estamos conectado via VNC!, es decir ,solo si estamos conectados a la propia  Raspberry Pi .

Lo bueno de a Raspberry Pi  es que se puede mejorar  esta forma básica , y tal vez incluso establecer un sistema de alerta si un objeto esta   demasiado cerca , así que, ! vamos a trabajar en ese lado!

 

DETECCIÓN DE OBJETOS

Cuando se trata de aplicaciones de  cámaras de seguridad comerciales, generalmente hay al menos dos versiones  .La primera utiliza una superposición de una imagen estática con gamas de color para que visualmente puede determinarse cuánto de  cerca está un objeto. El segundo método utilizara una cámara junto con sw  que puede detectar un objeto qué tan cerca esta al coche y luego avisa cuando algo está demasiado cerca
Veamos en este post en primer lugar le método de overlay, el cual por cierto es el mas usado en los implementaciones de cámaras traseras de coches actuales.

 

 

Reloj gigante casero


En efecto hemos visto soluciones muy ingeniosas usando  tal vez medios humildes como por ejemplo cartón y leds para construir un reloj digital «gigante», pero la idea de Leon van den Beukel ha sido  llegar aun mas lejos  pues   sustituye todos  los leds  convencionales  usados en proyectos convencionales por tiras de leds  RGB direccionables  del tipo  WS2812B .

Ademas por si fuese poso también  ha creado una  versión impresa en 3D para albergar  todo   usando como placa de control   una placa   Arduino  nano   al que se ha conectado un modulo bluetooth para sincronizarlo con un smartphone gracias a una aplicación personalizada que se conecta de forma inalámbrica al reloj a través de dicho  modulo  Bluetooth y de este modo puedo personalizar el reloj.

Para cortar algunas  piezas, el autor también   ha usado una máquina CNC casera.

Los componentes  usados en este diseño  son:

Esta es el esquema del reloj digital casero propuesto  donde ya se  aprecian la conexiones:

  • Del sensor de temperatura DHT11,  el cual se ha  conectado al pin D2  junto la típica resistencia de 10k entre la salida de datos  y  VCC
  • El modulo de bluetooh  conectado a los pines D5(tx) y D6(rx) sin omitir la alimentación  de vcc y gnd. El pin de RV también lleva una resistencia de 1k en serie  y otra de 2.2k entre este y masa para atenuar la  señal del modulo
  • La tira de leds conectado a D8 por medio de una resistencia en serie de 330 ohmios sin omitir la alimentación  de vcc y gnd
  • El modulo de tiempo real conectado a los pines analógicos A4 y A2 sin omitir la alimentación  de vcc y gnd
  • La  alimentación  de todo el conjunto de 5v DC

 

 

Schema.png

 

Por cierto si se esta preguntando por el orden de colocación de los leds , tenga en cuenta que ha usado 29 leds RGB  para los 4 dígitos y los dos puntos,  colocándoles de modo que compongan 4 cifras en código de 7 segmentos   conectando cada led  entre si  respetando la alimentación   y encadenando el pin de datos  pore medio de sus pines de entrada y salida

Esta es la configuración del orden de los  leds RGB empleada por el autor:

Respecto al  código fuente de Arduino nano  esta disponible  en https://github.com/leonvandenbeukel/3D-7-Segment-Digital-Clock/blob/master/3D-7-Segment-Digital-Clock.ino

Para el control del reloj  puede descargar la aplicación  Bluetooth Digital Clock App  para Android desde Play Story aquí: hhttps://play.google.com/store/apps/details?id=nl.leonvandenbeukel.BTDigitalClockApp

 

Por ultimo también en github   el autor ha dejado los ficheros stl para imprimir  el receptáculo  del reloj con una impresora 3d. La ruta de estos 11 piezas  para imprimir por separado  esta en https://github.com/leonvandenbeukel/3D-7-Segment-Digital-Clock/tree/master/STL

Para un mejor contraste, nos sugieren mejor imprimir las siguientes partes en negro:

  • BewteenSegments
  • DotRing
  • Dotbottom
  • Medio
  • OuterRingSegments

El resto de piezas se puede imprimir en blanco.

En el siguiente vídeo podemos ver este fantástico reloj en funcionamiento