Ejecute cualquier app Android en su PC


Aunque cada día los terminales móviles  y tabletas   tanto como Android como Ios  roban el protagonismo al clásico ordenador personal , no faltan las voces alertando de  que es mucho mejor disfrutar de una aplicación desde el propio ordenador  a hacerlo en un dispositivo móvil . 

Desgraciadamente aunque fuese deseable , no siempre  están disponibles las mismas aplicaciones tanto para móvil como para ordenador , así que vamos a  ver  una solución  muy sencilla : usar  un emulador Android para poder usar la aplicación desde el ordenador.

BlueStacks es una compañía de tecnología americana autora que produce BlueStacks App Player , aplicación  diseñada para permitir que aplicaciones de Android puedan ejecutarse en ordenadores  con  Windows y Macintosh , asi como  otros productos multi-plataforma basado en la nube.

El App Player (reproductor de aplicaciones) ,  según sus autores , puede ejecutar más del 96% de los 1.4 millones de aplicaciones que esten disponibles en Google Play ​ y es una pieza descargable de aplicación para Windows y Macintosh que virtualiza la completa experiencia del entorno de Android.

La aplicación es de libre descarga y uso, aunque hace unos años presentó a los usuarios la opción de paso a modo freemium, para instalar aplicaciones patrocinadas o comprar una suscripción mensual por $2 ​( lamentablemente  esto no se menciona antes de la descarga o durante la instalación).  

Para los amigos de  mundo Apple en  2012, la compañía lanzó una versión alfa- y  después beta  de la aplicación para Mac OS pero no duró mucho la versión para Mac OS del reproductor ,pues dejó de estar disponible para descargar en 2014. Afortunadamente por fin en  2015, BlueStacks, Inc. anunció  una versión nueva del reproductor para Mac OS

 

El modo más fácil y seguro de descargar BlueStacks es desde su página web oficial.

Como vemos  en la imagen anterior, se muestran allí de forma prominente mas de un botón verde de Descarga BlueStacks, que al pulsar  procederá a  descargar e instalar  la  citada aplicación  en función del sistema operativo   que disponga( Windows o Mac )  sin  mas pasos intermedios .

Los requisitos mínimos de BlueStacks no son elevados aunque se recomienda  uan buena dosis de memoria  RAM

Los requisitos recomendados por sus creadores son los siguientes :

      • CPU Con Soporte De Virtualizacion Por Hardware
      • Windows 7 O Superior
      • CPU Intel o amd
      • RAM 4GB
      • GPU Nvidia Geforce, AMD RADEON HD O Intel HD Graphics

Desde  su página web oficial obtendremos automáticamente  el instalador para el so desde el que se pide  , en este caso si es un ordenador con windows para windows , y que podemos lanzar con un  simple doble clic de iniciar   simplemente  pulsando “Instalar ahora” y comenzará primero la descarga, de aproximadamente 500   MB, para continuar con la instalación.

Una ayuda innegable de este emulador es que viene integrado con Google Play , de modo que  si nos validamos contra  nuestra cuenta de Google , se  pueden descargar juegos y  todo tipo de aplicaciones directamente desde la  propia tienda de Google ( y  por supuesto comprar las que no sean gratuitas). 

Originalmente  una vez instalado la aplicación no veremos casi nada  a excepción del navegador ,el gestor de medios ,el  acceso a la parte de Configuración , el acceso de la cámara (del pc)  y poco más.

Asimismo BlueStacks incluye además su propio Centro de aplicaciones desde la pestaña  superior  junto a Biblioteca “Game Center “, que es algo así como un directorio, listado y top-ten de las aplicaciones y juegos en BlueStacks.  En algunos casos la descarga nos  llevará a Google Play por lo que lógicamente necesitará también iniciar sesión con una cuenta de Google.

 

 

Algo de agradecer es que también podemos  instalar aplicaciones desde los propios archivos  de instalación (apk)  sin tener que relajar en la propia aplicación admitiendo fuentes desconocidas . De hecho,iniciar la instalación es tan fácil como hacer doble clic desde el explorador de  nuestro ordenador  sobre uno de estos archivos. Esto es así porque después de instalar BlueStacks en el PC, los archivos APK se asociarán automáticamente con BlueStacks

 

A pesar de los juegos  y la posibilidad  de instalar las apk directamente ,con toda  probabilidad  al poco de instalar  esta aplicación querremos instalar muchas mas aplicaciones  de forma similar a como lo hacemos  en un móvil Android: desde Google Play, para lo cual  necesitamos  haber iniciado sesión con nuestra  cuenta de Google,  buscar una aplicación que nos interese y  instalarla (recuerde  que más del 96% de los 1.4 millones de aplicaciones que estén disponibles en Google Play podrá instalarlas de este modo ​).

Dada la forma de trabajar  de este emulador, no solo las aplicaciones que instalemos aparecerán en la ventana principal ,  como vemos en la imagen de mas abajo, pues también aparecerán los acceso directos en nuestro escritorio Windows para lanzar precisamente esas mismas aplicaciones  pero desde el propio s.o.

 

Por ejemplo,  para acceder  directamente  a la aplicación TikTok  desde el escritorio Windows el acceso  sera algo similar  a ejecutar    lo siguiente “C:\Program Files\BlueStacks\HD-RunApp.exe” -json “{\”app_icon_url\”:\”\”,\”app_name\”:\”TikTok\”,\”app_url\”:\”\”,\”app_pkg\”:\”com.zhiliaoapp.musically\”}”

Afortunadamente este acceso directo  lo hará la propia aplicación BlueStacks  para cada app que instalemos  ,tanto desde Google Play, como desde el propio apk . En este punto destacar que si la app la instalamos desde Google Play solo  se mostrarán aplicaciones compatibles y que, por tanto , deberían funcionar bien en el emulador.

 

Ejemplo instalación de  TikTok

 
En el entorno de BletStacks podemos usar cualquier aplicación  Android como por ejemplo Tik Tok ,una aplicación que actualmente se ha puesto a la par con otras redes sociales como Instagram, pues su gran popularidad en los últimos años la ha llevado a convertirse incluso en la aplicación más descargada en 2019, superando nada más y nada menos que a WhatsApp.

Se trata de una red social asiática donde se pueden compartir vídeos cortos con música de fondo. En sus inició comenzó como una app de música (musically)  pero con el paso del tiempo se fue transformando a lo que hoy se conoce como Tik Tok.

Si bien esta aplicación va dirigida a dispositivos móviles, existe una forma bastante sencilla de instalarla a la PC con sistema operativo Windows. Lo que se debe hacer , como  amigo lector ya habrá intuido  es descargar el emulador Android BueStacks ( actualmente ya sabe  que el mejor emulador Android para pc )  desde  su página web oficial pues   como se mencionó, Tik Tok solo está disponible para teléfonos, por lo que es necesario descargar BlueStacks como paso previo.

Una vez instalado el emulador  ,tal y como hemos comentado, lo siguiente es introducir nuestras credenciales de  la cuenta Gmail para poder acceder a la tienda de aplicaciones  de Google Play . Una vez iniciada sesión en la cuenta se podrá buscar esta app en  la tienda Google Play Store   y seguir los pasos . 

Por supuesto al tener este emulador de Android BlueStacks , no solo se podrá descargar TikTok, sino también otras aplicaciones y juegos de Android con la consiguiente ventaja de no ocupar la preciada memoria de su terminal móvil.

La aplicación dispone de stickers para las stories donde muchas personas piensan que sus preguntas son realmente  anónimas

El usuario puede ingresar a la famosa aplicación desde el sitio oficial de Tik Tok, sin embargo, esta versión tiene muchas limitaciones que le impedirían al usuario disfrutarlo de un modo tan sencillo debido sobre todo  a la ausencia de interfaz táctil que debe simularse con  el ratón

Porque no debemos imprimir en 3d mascarillas de proteccion


Muchas cosas pueden y deben imprimirse en 3D como respuesta a la crisis global  como por ejemplo las viseras  compuestas por acetatos  y soportes impresos en 3d, salva-orejas   o por ejemplo piezas  para respiradores ,  pero las máscarillas no deberíamos de hacerlas … Y antes de decir: “es mejor que nada”, vemos algunos  motivos pues aparte de la falsa seguridad que puede conllevar su  uso , incluso puede ser peor para usted (y para los que lo rodean) que no usar ninguna máscara.  Ademas como soluciones alternativas  estará mucho mejor protegido con el mínimo de una bufanda, pañuelo o cualquier resto de tela vagamente densa envuelta alrededor de su cara.

 

En realidad se ha hecho realmente popular la   construcción casera  de mascarillas durante la pandemia porque las mascarillas quirúrgicas escasean de sobremanera tanto  que en muchos partes del planeta no están disponibles   o  han subido tanto su coste que este  no es asumible por gran parte de la población.

La tecnología de impresión 3D FFF simplemente no es capaz de producir una máscara de respirador segura y efectiva pues está más allá de los límites de FFF y ningún cambio de diseño simple o variación en las piezas utilizadas puede superar eso. Lo peor es que algunos de estos diseños incluso afirman ser tan efectivos como un FFP2 o N95 si se usa el material de filtro adecuado.

Es un desperdicio de plástico, que por cierto, ya está escaseando en este momento  en algunas  zonas del planeta , así como también puede ser un desperdicio desmontar  mascarillas comerciales  FFP2  o  N95, ya que algunas personas incluso sugieren cortarlas para usar como material de filtro para estos respiradores impresos.

La buena noticia es que  aunque  las  mascarillas fabricadas en 3d no son aconsejables por las razones  que vamos a exponer , las  fabricadas con textil o con  otros materiales como el papel de filtro  ya harían  una buena función .

La física de aerosoles

En  efecto  si nos atenemos a la física de aerosoles, o lo que es lo mismo la física del contagio  existen diferentes distancias   a la que es posible  trasmitir partículas ( como el covid-19) ,  incluso  a una distancia mayor de 6 metros.

Para verlo mas claro en la siguiente imagen, que se considera a una persona contagiada que no sabe que lo está y no se pone ninguna mascarilla para evitar contagiar a terceros , esto es lo que lo que sucede:

De la  imagen podemos ver  tres situaciones claramente diferentes

      • Estornudo,es el que  llega más lejos con gotas submilimétricas, cuanto más grande la gota, más carga vírica (más virus caben en ella) pudiendo superar 6 metros de distancia  . Precisamente de ahi la conveniencia  de usar pantallas protectoras  o la obligatoriedad e de ponerse el codo  cuando se estrornuda
      • Tos , llega menos lejos, pero aun así bastante lejos, puede superar los 2 metros.
      • Rrespirado normal, es el que llega menos lejos, pero aun así también se exhalan gotas cargadas de virus, no suele superar los 2 metros de distancia.

En los tres casos se producen aerosoles, gotas micrométricas en suspensión, que no caerán al suelo,  que por su tamaño no suelen proyectarse y se localizan alrededor del contagiado. En la calle esto no es un problema porque el aire se mueve, y estas gotas micrométricas se van con el aire que las mueve pero esto empieza a ser un problema en entornos cerrados como los ascensores y desde luego es un problema a considerar en entorno de alta infección como la sala de UCI de un hospital. Este aerosol es la razón por la que tenemos que guardar una distancia de seguridad en el supermercado y la razón por la que debemos dejar las mascarillas FFP3 para sanitarios en riesgo alto de infección, como los que trabajan en una UCI.

Los tapabocas son útiles para prevenir el contagio aunque no son tan buenos como las mascarillas antipartículas porque dejan pasar un 33% o 25% de partículas en el caso de un textil o una mascarilla quirúrgica, respectivamente . Sobre todo, previenen el contagio por gotas proyectadas de un estornudo o tos de alguien sin mascarilla.

Pero más importante es prevenir contagiar a terceros. Como este virus se contagia mientras seguimos sintiendo que estamos sanos, por precaución deberíamos actuar como si estuviésemos contagiados. Cualquier mascarilla quirúrgica o textil parará tus gotas proyectadas en un estornudo o tos, los principales vectores de transmisión.

 

Las mascarillas impresas en 3D

No podemos estar más de acuerdo en tanto a que una mascarilla impresa que no es estanca contra la cara (es decir que tapando el agujero del filtro y al inspirar haga “chupón”) y sin un filtro  homologado (P1, P2, N95, P3, HEPA compatibles para respirar a través de ellos), no son más que unos tapabocas muy modernos, una barrera física, que  cumple su función social pero que por desgracia adolece de bastantes inconvenientes tal y como nos explican  numerosas  entidades sanitarias al rededor  de todo el mundo como por ejemplo la AFES Chile :

POROSIDAD

La  FFF (fabricación de filamentos fundidos) se basa  en  extruir plástico derretido a través de una boquilla en líneas que se fusionan a medida que el plástico se enfría, creando cada parte línea por línea y luego capa por capa ( de hecho la inspiración de su creador, que luego fundaría Stratasys, es automatizar cómo una pistola de pegamento caliente derrite barras de pegamento y las arroja a chorros).

El primer problema con la fabricación de piezas FFF médicamente seguras ya debería ser evidente: las piezas terminadas son porosas de modo que los gérmenes, las bacterias y la suciedad se acumularán dentro de los vacíos entre cada línea y capa de filamento, mucho más profundo de lo que puede penetrar cualquier proceso de desinfección / esterilización.

Tenga en cuenta que un viroide SARS-CoV-2 (COVID-19) tiene entre 0,125 y 0,08 micras de ancho. Si una célula sanguínea fuera del tamaño de una gominola, una partícula de coronavirus sería del tamaño de un grano de arena lo cual  significa que cualquier  barrera  que queramos poner para que sea efectiva  y no penetre el virus deberían ser lo suficiente pequeño ( es decir menos de 0.08micras  )  para no dejar pasar dichas particular

 

Desgraciadamente  respecto a los micro-poros que existen en las piezas impresas en 3d, como el virus tiene 60-140 nm de diámetro,en un estudio hecho sobre PLA, impreso en 3D, por el profesor Fernando Alba de la Universidad de la Rioja , se caracterizan estos microporos, que tienen un tamaño de unas pocas micras:

 

Es de esperar, que con varias capas de material (imaginemos una capa de plástico con poros en sitios aleatorios y ponemos otra detrás y otra detrás, con los poros en distintos sitios cada vez) esta microporosidad no resulte en canales abiertos de extremo a extremo, por lo que  en ambientes de grado bajo de riesgo,  esto es un problema que todo apunta a que pudiera ser despreciable pero distinto sería si la mascarilla fuese hecha con un solo perímetro, pues entonces seria claramente un colador para los virus en aerosol, aunque seguiría funcionando como tapabocas.
 
Sin embargo en entorno de alta densidad de virus en suspensión, por ejemplo en una UCI, este riesgo no se puede asumir. El profesor Fernando Alba nos indica que en el mismo estudio se comprueba como una capa superficial de polímero (él usa PEG) tapa estos microporos:
 

 

 

¿Y  SU CUBRIMOS LAS PIEZAS ?

De acuerdo, las partes son porosas, pero ¿qué pasa si las cubrimos con pintura o resina para evitar que algo entre? Claro, esa es una opción, pero :

      • ¿qué sucede si no tiene un recubrimiento 100% sólido en toda la parte (pista: esto es difícil de hacer para geometría compleja como una máscara de respirador)?
      •  ¿qué sucede si esa capa protectora se rompe o se desgasta durante el uso normal? Las bacterias y virus  se introducirian debajo de esa capa y su problema seria aun peor porque la capa “protectora” hace que sea aún más difícil que cualquier tipo de desinfectante ingrese y desinfecte (y por supuesto  no puede ver nada de lo que esta sucediendo)

En principio,  una capa de vaselina o crema de base oleosa aplicada por el exterior debería resolver estos problemas pero no se puede garantizar. Por supuesto también seria desaconsejable  barnices, pues ademas  podrian  ser tóxicos, (aunque haya algunas propuestas interesantes involucran barnices de uso alimentario) .

Por otro lado, el profesor Jordi Torrent, de la Universidad de Girona, publicó un artículo en el cuál caracteriza el sellado de los poros de una pieza impresa en ABS con acetona   no obstante, este método requiere cierta pericia al parecer al tener que hacer un baño de vapor de acetona controlado, con recirculación del vapor con un ventilador.

Asimismo , nos llegan experiencias de que este proceso ejecutado en ámbito casero a veces resulta en una debilitación paulatina de la pieza, pero en un ambiente controlado en un fablab podría ser una solución a tener en cuenta:


Imágenes SEM antes y después del tratamiento con acetona. La línea roja indica la fusión de las capas exteriores, tapando microporos.

La conclusión es  pues que las máscarillas  impresas  en3d no son seguras ni efectivas, y la información al respecto simplemente no se está difundiendo lo suficientemente bien.

HIGIENIZACION DE  MASCARILLAS

En efecto  un  segundo  problema grave con las mascarillsa impresas ne 3d es la higienizacó de estas  pues no podemos  llevarlas a un autoclave pues se derretirían (para más detalles sobre esto, busque en google “¿es segura la impresión 3D de alimentos?”)

Pero ¿qué significa esto?Significa que su máscara impresa se contaminará, incluso después de un solo uso  pues  no podemos limpiarla  de modo que si alguien le tose, lo que sea que haya en esa tos , es más que probable que quede  fijada  en su máscara permanentemente ( ademas de todos modos, cualquier cosa que esté en su respiración mientras exhala también se incrustará en la máscara).

También , debido a que la parte es plástica, la humedad en su aliento puede condensarse en el interior de la máscara, gotear por la máscara y luego las gotas de agua que contienen virus pueden ser aerosolizadas en el aire que exhala, haciendo que el ambiente sea aún más peligroso para los demás.

¿Se puede aislar su máscara después de usarla hasta que muera algún virus? Si, pero sin embargo, COVID-19 puede seguir siendo viable en una superficie de plástico de 3 a 7 días, por lo que, a menos que tenga un suministro de máscaras impresas para una semana, no tendrá una máscara limpia todos los días con el consiguiente peligro grave de ser contagiado por la propia mascarilla.

 

HERMETICIDAD Y ERGONOMIA

Las máscaras impresas en 3d   supuestamente  tipo FFP2 deberían crear un sello hermético en la cara del usuario,función que no siempre cumplen.

Si pensamos en las  mascarillas comerciales FFP2  se deben flexionar para ajustarse alrededor de su cara cuando las bandas elásticas lo empujan. Incluso en el puente de la nariz donde la máscara no puede flexionarse por sí sola, hay una tira de metal que el usuario se dobla para formar Un sello hermético.

Sin embargo las mascarillas impresas en 3D  no hacen nada de eso pues para obtener un sello similar, se debe hacer una de dos cosas:

      • El plástico se calienta con una pistola de aire caliente y la parte tibia 
      • Flexible, se forma en  la cara del usuario específico, o una tira de sellado de espuma / goma se une alrededor de los bordes de la máscara.

No parece  que ninguna de esas técnicas haya sido clínicamente probada como tan efectiva como una mascarilla comercial FFP2 o  N95 para sellar la cara del usuario , por lo que  la parte impresa simplemente no se sellará a su cara de manera tan efectiva (o remotamente cómoda) como una comecial  N95, lo cual  elimina completamente cualquier afirmación de que las máscaras impresas pueden reemplazar a una FFP2 o  N95 pues esa certificación requiere un sello hermético.

Con su máscara impresa, el aire fluirá libremente alrededor de los bordes de la máscara, eliminando cualquier mecanismo de filtrado que incorpore.Sin embargo, ese mal sellado es algo bueno pues el aire que fluye alrededor de los bordes de la máscara, aunque posiblemente esté lleno de viroides, podría ser lo único que le impide desmayarse o morir.

Si alguna vez ha corrido o hecho trabajo de intensidad media mientras usabas una mascarilla FFP2 o usó una para un turno completo de ocho horas, entonces sabe lo difícil que es poder respirar con unas mascarillas y lo incómodo que puede ser una mala calidad durante períodos prolongados.

Con una máscara FFP2 o  N95 típica, hay una buena cantidad de resistencia al aire, por  que toda la máscara está hecha de material de filtro, lo cual se hacer  para maximizar el área de superficie por la que puede pasar el aire, permitiendo el mayor flujo de aire posible.

Es evidente que intentar respirar a través de un pequeño disco de material de filtro como con la mayoría de los diseños de máscaras impresas será como intentar respirar a través de una pajita,a menos que, por supuesto, su material de filtro no sea tan denso (léase: efectivo) como lo es en una FFp2 o  N95 .

El resultado de esta respiración forzada y la falta de flujo de aire es la acumulación de CO2, que si la máscara impresa tuviera un sello hermético en la cara, lo mataría.( desgraciadamente ni siquiera sabríamos que está sucediendo;pues  nos quedaríamos dormidos y nunca nos  despertaríamos).

 

RESUMEN 

Correcto, así que ignorando todos estos escollos, echemos un vistazo a los requisitos para hacer una máscara de respirador impresa en 3D “aceptable”:

      • El filamento de plástico,
      • Un poco de pintura o resina segura para alimentos para cubrir las piezas (y por lo tanto, un espacio de trabajo bien ventilado),
      • Bandas elásticas,
      • Algún tipo de material de sellado (muchos diseños están utilizando densa espuma de celdas cerradas / goma resistente a la intemperie),
      • Hermético resistente al agua (condensación !) adhesivo para unir el material de sellado, oh, y
      • Algún tipo de material de filtro (que probablemente no podrá reutilizar con el resto de la máscara).

Como podemos deducir todo esto  es mucho tiempo desde la impresión de la pieza hasta el procesamiento posterior y el ensamblaje.Ademas  algunos de esos elementos de la lista de materiales pueden ser difíciles de obtener si planea hacer un montón de estos , pero   a pesar  de todo , como hemos visto no son recomendables  por las  razones expuestas  de la alta porosidad, falta de higienización , falta de hermeticidad , ninguna ergonomía, etc.

 

 

MASCARILLAS CASERAS

Simplemente lleva más tiempo y esfuerzo hacer una máscara impresa en 3d, “correctamente”, que coser una quirúrgica o  simplemente fabricar una con papel de filtro de café.

Con la escasez de mascarillas que hay en este momento y el hecho de que la mayoría de mascarillas hechas en casa, sólo ayudan a que los que están contagiados no contagien a más gente, podemos  probar hacer este  tipos de mascarilla en casa  pues como vamos a ver tampoco necesitan un proceso muy complejo

Realizar   mascarillas desechables con papel de filtro  de Cafe no  cuesta más que 2 minutos  .En este  video podemos ver que el proceso es realmente sencillo

https://www.youtube.com/watch?v=UCPxx9iDuNU

Importante :  Cuide de hacer la mascarilla  con precaución si la va a donar, asumiendo que podría estar contagiado para tomar todas las precauciones necesarias para que otros más vulnerables no se contagien por usted.

Asimismo existen diseños textiles fáciles de implementar   como las mascara Olson , pico de patato o incluso diseños simples de tela plisada

 

MASCARILLAS TEXTILES 

A diferencia de las máscaras impresas, con las máscaras cosidas puede esterilizarlas completamente simplemente lavando o incluso pasandolas   por el autoclave

Sobre el tipo de tejidoa  que debemos usar  para fabricar mascarillas caseras   , según la reciente investigación, publicada en ACS NANO, la revista de la Sociedad Americana de Química, habría que tener en cuenta las propiedades de filtración mecánica y electrostática para poder contestar a esta duda   las telas “híbridas” o mezclas de telas (algodón-seda, algodón-gasa, algodón-franela) tienen potencial para filtrar más del 80% de las partículas de menos de 300 nanometros, y puyedenn filtrar más del 90% de partículas de 300 nanómetros( las mascarillas sanitarias con filtros FFP2 filtran como mínimo un 92% de las partículas, y las FFP3 deben filtrar hasta un 98% o más de dichas partículas).

Los investigadores sugieren que este gran rendimiento en las mascarillas de tela se debería precisamente a la combinación de varios tejidos, y al efecto combinado de una filtración mecánica y electrostática:

    •  La filtración mecánica implica que la tela atrapa físicamente las partículas. Telas como el algodón tienen una gran filtración mecánica por poseer muchos hilos en su interior; cuanto más pequeños son los agujeros entre el tejido, menos partículas pueden escapar.
    •  La filtración electrostática es algo relacionado con las carga electrica dado que materiales como el poliéster son muy estáticos, y lo que hacen es mantener los aerosoles dentro del entorno estático, basado en las cargas de las partículas y no en su tamaño como tal.Las mascarillas comerciales FFP2 s tienen un componente de carga estática que ayuda a atraer y adherir partículas al filtro, y esto se logra a través de complejos procesos de fabricación, lo cial es pocoo probable que no lo consiga en discos cortados de algodón o filtros HVAC 

Mascarilla Olson.

Esta mascarilla puede ser usada por profesionales de salud – en USA ya las están usando – y personas en riesgo o que tienen la salud débil en estos momentos y desean protegerse lo más que puedan. También puede ser usada por el resto 

Los  materiales y herramientas excepto el filtro son realmente sencillos de  obtener:

        • Tela de algodón (~ 0.45 m es suficiente para 2-3 mascarillas) •
        • Hilo y aguja o máquina de coser si tienen pero no es necesario (si cosen a mano, pasen doble cada puntada) •
        • 2 ligas de pelo o 2 elásticos y una cinta
        •  Tijeras 
        • Cinta adhesiva para piel doble o Gorilla tape doble
        •  Filtro HEPA para partículas de 0.3 micras (0.3 microns) 0 filtro parecido ( Hay personas qeu usan compresas ). La forma de cómo cortarlo dependerá del tipo de filtro que consigan pero tiene que ir alrededor de la boca y nariz  asi como también á de la persona que lo use
        •  Papel A4 para imprimir los patrones en tamaño real o imprimir en A3 pero asegurarse que no se seleccione el “Autofit’ al imprimir

 Instrucciones en inglés y español incluídos patrones y moldes: https://drive.google.com/open?id=1y0u…

En este vídeo podemos ver  como hacer una mascarilla protectora Olson con filtro para protegerse del Coronavirus

Por mencionar otros diseños , también existen mascarilla pico de pato  o incluso diseños simples de tela plisada : solo es cuestión en decidirse por un diseño y echarse manos a la obra

Importante :  Cuide de hacer la mascarilla  con precaución si la va a donar, asumiendo que podría estar contagiado para tomar todas las precauciones necesarias para que otros más vulnerables no se contagien por usted.

 

Finalmente, los investigadores también hacen hincapié en la necesidad de usar correctamente las mascarillas: un ajuste inadecuado puede reducir hasta un 60% la eficacia de la filtración inicial de una buena mascarilla de tela, según los investigadores

 

 

Mas información en: 

Impresoras 3D su uso en el COVID19


 El mes  pasado , 25 de ,  D. Héctor Jerez , co-fundador de E-Proform y fundador de Politólogo en Red. Licenciado en Ciencias Políticas y Sociología, especializado en Políticas Activas de Empleo, Investigación del Mercado de Trabajo y Desarrollo Local  entrevistó a  Carlos  Rodriguez Navarro  , actual bloguuer de este blog , sobre el uso de las Impresoras 3D  durante la Pandemia del Covid19. 

Hector es apasionado  por la comunicación, la tecnología y las Redes Sociales  con un  perfil profesional que abarca líneas como el análisis del mercado laboral, el fomento del emprendizaje, el trabajo en ámbitos del desarrollo local y el constante estudio de los “Social Media” como herramientas de interés para el empleo y el autoempleo . Ademas  Hector forma parte de la red de voluntariado de Andalucía Compromiso Digital, una iniciativa promovida por la Junta de Andalucía y gestionada por Cruz Roja dentro del ciclo de entrevistas tecnológicas centradas en explicar de forma breve aspectos relacionados con la tecnología, desde trámites online hasta consejos de seguridad informática, o, como el caso de hoy   sobre la tecnologua de impresion 3D

Precisamente  dentro de este ciclo de entrevistas tecnológicas vamos a ver en este post  un  extracto sobre la  entrevista del 25 de Marzo    sobre la utilidad de la impresion 3D durante la grave pandemia  en la que por desgracia aun seguimos  inmersos      mostrando algunos ejemplos   de las cosas que hemos hecho dentro del grupo de coronavirusmakers.org

 

 

 

Una impresora 3D es una máquina capaz de realizar réplicas de diseños en 3D  , creando piezas o maquetas volumétricas a partir de un diseño hecho por ordenador surgiendo  con la idea de convertir precisamente esos archivos de 2D en prototipos reales o 3D.

Comúnmente se ha utilizado en el prefabricado de piezas o componentes, en sectores como la arquitectura y el diseño industrial. En la actualidad se está extendiendo su uso en la fabricación de todo tipo de objetos, modelos para vaciado, piezas complicadas, alimentos, prótesis médicas (ya que la impresión 3D permite adaptar cada pieza fabricada a las características exactas de cada paciente), etc

 

TIPOS DE IMPRESORAS 3D

 

Respecto a los  tipos de impresoras  que existen  comercialmente disponibles ,  citamos ahora de forma resumida las mas comunes:

  • Impresoras 3D por Estereolitografía (SLA).Esta técnica fue la primera en utilizarse. Consiste en la aplicación de un haz de luz ultravioleta a una resina líquida (contenida en un cubo) sensible a la luz. La luz UV va solidificando la resina capa por capa. La base que soporta la estructura se desplaza hacia abajo para que la luz vuelva a ejercer su acción sobre el nuevo baño, así  hasta que el objeto alcance la forma deseada.Con este método se consiguen piezas de altísima calidad, aunque, por sacar un inconveniente, se desperdicia cierta cantidad de material en función del soporte que sea necesario fabricar. Algunos ejemplos de impresoras 3D que funcionan por estereolitografía son: Projet 1500, 1200 ó 3510 de 3D Systems. Puede costar unos  300€ una Anycubic Photon                                                                                                                             
  • Impresoras 3D de Sinterización Selectiva por Láser (SLS):También conocido en inglés como Selective Laser Sintering (SLS), esta tecnología se nutre del láser para imprimir los objetos en 3D.Nació en los años 80, y pese a tener ciertas similitudes con la tecnología SLA, ésta permite utilizar un gran número de materiales en polvo (cerámica, cristal, nylon, poliestireno, etc.). El láser impacta en el polvo, funde el material y se solidifica. Todo el material que no se utiliza se almacena en el mismo lugar donde inició la impresión por lo que, no se desperdicia nada.Una de las impresoras 3D más famosas que utilizan esta tecnología de impresión 3D es la EOS(+1000€).

Con las dos últimas tecnologías se consigue una mayor precisión de las piezas impresas y mayor velocidad de impresión.

  • Impresoras 3D por Inyección :Este es el sistema de impresión 3D más parecido a una impresora habitual (de tinta en folio), pero en lugar de inyectar gotas de tinta en el papel, inyectan capas de fotopolímero líquido que se pueden curar en la bandeja de construcción.

Como ejemplo de impresoras 3D por inyección destacamos X60 de 3D Systems o la Zprint 450.(+1000€)

  • Impresión por deposición de material fundido (FDM) :También conocida por FFF (Fused Filament Fabrication, término registrado por Stratasys) .

La técnica aditiva del modelado por deposición fundida es una tecnología que consiste en depositar polímero fundido sobre una base plana, capa a capa. El material, que inicialmente se encuentra en estado sólido almacenado en rollos, se funde y es expulsado por la boquilla en minúsculos hilos que se van solidificando conforme van tomando la forma de cada capa. Se trata de la típica bobina de  filamento pla, abs, etc.   Se trata de la técnica más común en cuanto a impresoras 3D de escritorio y usuarios domésticos se refiere. Aunque los resultados pueden ser muy buenos, no suelen ser comparables con los que ofrecen las impresoras 3D por SLA, por ejemplo.

La ventaja principal es que esta tecnología ha permitido poner la impresión 3D al alcance de cualquier persona con impresoras como la CubeX, Prusa o cualquier impresora de RepRap. ( a partir de 200€)

 

 

TIPOS DE FILAMENTOS

En   cuanto a los materiales necesarios para imprimir,actualmente se utilizan una gran variedad de materiales, entre los que predominan ABS y PLA.

  • PLA   : su precio ronda  entre los 15 a 20€ :EPLA o poliácido láctico es, sin duda, alguna, el material más empleado actualmente en los filamentos para impresión 3D.Se trata de un material con un origen natural (su principal materia prima es el maíz) y que es biodegradable.Entre sus cualidades destacan el ser un material reciclable, muy estable y que resulta fácil de imprimir, sobre todo para usuarios principiantes.Otra de las grandes ventajas del PLA es que no se necesita emplear cama caliente para su impresión. La temperatura del extrusor debe rondar los 200º, dependiendo de la impresora.Por contra, el filamento PLA tiene menor resistencia térmica y mecánica que otros materiales de impresión 3D. Esto hace que se pueda deformar a partir de temperaturas de 60ºC  y que no resulte apto para realizar cortes o perforaciones.
  • ABS  o Acrilonitrilo Butadieno Estireno. Su precio oscila entre los 25 a 30€ .Tras el PLA, el más utilizado probablemente sea el filamento ABS  Se trata de un material más robusto que el PLA y más resistente al mecanizado, por lo que se le pueden hacer cortes y perforaciones. También es uno de los plásticos más resistentes a las altas temperaturas.Sin embargo, el ABS también resulta un material más complejo que el PLA y que puede dar más problemas durante la impresión. Es necesario tener una cama calentada a unos 60ºC-80ºC y la temperatura del extrusor debe ser superior a la del PLA (unos 235ºC).Conseguir que las condiciones de temperatura del entorno sean adecuadas será esencial para evitar que la pieza se resquebraje. Por ello con filamentos ABS no se recomienda emplear ventiladores de capa.
  • Flexible  :su precio ronda en torno a los 32€  la bobina .Los más habituales son el TPE y TPU.Estos materiales están compuestos en base a elástómeros que les confieren una gran elasticidad. Además, son resistentes a la abrasión, tienen gran durabilidad y no se encojen al enfriarse. Tampoco se necesita que la impresora 3D posea cama caliente.Por contra, este tipo de filamento para impresión 3D resulta más difícil de imprimir ya que es necesario ajustar muy bien la temperatura y el caudal de aporte.  Entre el TPE y el TPU también existen algunas diferencias. Por ejemplo, el TPE es más transparente, mientras que el TPU tiene una mejor resistencia a grasas y aceites, por lo que suele ser usado en automoción.
  • De fibra de carbono : Su precio ronda entre entre los  42 a 115€ la bobina .Este filamento se emplea como material de apoyo para filamentos PLA, ABS o PETG. Gracias al aporte de pequeñas partículas de fibra de carbono, los materiales principales obtiene mejores propiedades en cuanto a dureza y resistencia.Una de las ventajas de la fibra de carbono es que a la hora de ajustar los parámetros de la impresión éstos serán similares a los del material principal de aporte, ya sea PLA, ABS o nylon.Hay que tener en cuenta que las partículas de fibra de carbono tienen a atascarse con mayor facilidad y a producir un mayor desgaste por abrasión en la boquilla. Para paliar esta desventaja se recomienda usar boquillas para impresoras 3D  de acero inoxidable de más de 0,4 mm. de diámetro.
  • PET (tereftalato de polietileno): Su precio  ronda en trono a los 20€ la bobina .Es otro de los materiales más empleados para filamentos de impresoras 3D. Se trata de un plástico inodoro y transparente en su origen que va perdiendo estas propiedades cuando se le aplica calor o frío.Sus principales ventajas son su elasticidad (superior a la del PLA o ABS), resistencia o facilidad para la impresión. Por contra, es higroscópico, es decir, absorbe la humedad del ambiente, por lo que es necesario guardarlo en un lugar con las condiciones de humedad adecuadas.

Podemos encontrar diferentes variantes:

      • PETG  35€ :Es una de las variantes de filamento PET. La «G» viene por el glicol, un elemento que le otorga mayor transparencia.Este tipo de filamento para impresora 3D se caracteriza por su capacidad para ser curvado en frío. Por su resistencia y flexibilidad es apto para un gran número de aplicaciones. Es uno de los plásticos más utilizados del mundo, por ejemplo se utiliza para envases de alimentos o botellas de agua.
      • PETT :El PETT es muy similar al PETG, con la salvedad de que es un poco más rígido y no tiene el aporte de glicol, por lo que no es tan transparente. Al igual que el PETG,  es inodoro y bastante duradero.Se podría decir que el filamento PET, junto con el PLA y ABS, es el más utilizado en el mundo de las impresoras 3D.
  • De nylon o poliamida: Su precio  ronda entre los  30 a 100€ la bobina :Si hablamos de la combinación de flexibilidad, resistencia o duración, probablemente el nylon no tenga competencia en el ámbito de los filamentos para impresoras 3D.

VENTAJAS : las piezas se pueden volver a calentar y deformar una vez impresas, sin que el nylon pierda ninguna de sus propiedades originales. El filamento de nylon tiene una dificultad de impresión media. Uno de los principales factores que hay que tener en cuenta es que el nylon tiene una temperatura de fusión muy alta, por lo que es necesario que la boquilla esté a unos 250º y que la cama esté precalentada a unos 80º (estas cifras pueden variar dependiendo de la impresora 3D)

DESVENTAJAS :al contrario que otros filamentos para impresión 3D como el PLA o el PET, no es un material biodegradable. Además, al calentarse el nylon emite vapores tóxicos por lo que hay que tomar precauciones durante la impresión. También hay que tener en cuenta que, al igual que el PETG es higroscópico, absorbe la humedad del aire.

  • NylonX :Al añadirle al nylon un pequeño aporte de fibra de carbono obtenemos este filamento para impresoras 3D denominado NylonX. Se trata de un tipo de filamento que combina la flexibilidad y durabilidad del nylon con la dureza y resistencia de la fibra de carbono.
  • PC  o  policarbonato ; su precio ronda los  35€ la bobina:Este filamento está compuesto de un material translúcido siendo  uno de los materiales más fuertes y resistentes, bastante por encima del nylon. De hecho se suele utilizar para elementos que requieren de una gran resistencia a impactos, como pantallas de dispositivos electrónicos o incluso para fabricar cristales a prueba de balas.
  •  PVA  o alcohol polivinílico : El precio de la bobina ronda entre los 30 a  50€:Hay algunos tipos de filamentos para impresoras 3D que no se suelen utilizar como material principal, sino como aporte complementario. Para ello sería necesario emplear impresoras 3D con doble extrusor.Este es el caso de filamento PVA, uno de los filamentos para impresoras 3D solubles en agua (por lo que es  especialmente importante guardarlo en un lugar seco). El PVA  se puede emplear como material de aporte junto a otros filamentos como PLA, ABS o nylon.
  • HIPS (poliestireno de alto impacto)  : Su precio ronda entre los  20 a1 20€ según el color .Este  filamento combina diferentes cualidades que lo hacen muy interesante como estructura de soporte. Es un polímero que tiene gran resistencia y elasticidad y que se emplea como material secundario junto con el ABS.

Sin embargo, la principal cualidad es que el HIP es soluble en un líquido llamado limoneno. Esto le permite ser utilizado como material de relleno en estructuras que necesiten un apoyo para las capas de ABS. Una vez terminada la impresión, la figura se sumerge en limoneno y se disuelven las partes de HIPS, dando como resultado la pieza definitiva de ABS.Al contrario que el PVA, que puede ser usado con ABS, PLA o nylon, el fllamento HIPS tan solo puede ser empleado con ABS ya que el resto de materiales pueden deteriorarse al ser sumergidos en limoneno.

  • PP  (polipropileno.): El precio del bobina ronda los 30€ :Este filamento ofrece  un plástico fuerte y flexible que se emplea bastante en la industria textil y en la fabricación de envases. También es el plástico con menor densidad, por lo que es útil para reducir el peso de las piezas.

Lo malo de este filamento para impresión 3D es que es un material que resulta difícil de imprimir ya que la adhesión de las capas resulta complicada y tiende a deformarse bastante.

  • De cera :El filamento de cera se suele emplear como molde para fabricar objetos de metal en sectores como la joyería. Gracias a un proceso denominado fundición a la cera perdida se obtiene un molde de cera que se derrite al ser calentada en un horno. De esta forma, se obtiene un molde que se puede rellenar con el material definitivo, normalmente un metal.
  • Glow-In-The-Dark (Ácido poliláctico) : su precio ronda los  50€  por bobina. Básicamente, se trata de una variante del filamento PLA. Este tipo de filamento para impresión 3D se caracteriza por absorber la luz y brillar en la oscuridad durante largo tiempo. Es el que conocemos como filamento fosforescente, ideal para figuras o decoraciones de carnaval o Halloween.
  • Filamento nGen (Amphora AM3300) : Su precio ronda entre los  20 a los  40€ . El nGen es un filamento para impresoras 3D de reciente creación llegando al mercado como un filamento de lujo, con unas propiedades similares a las del PETG o el PLA, pero superiores en muchos aspectos.

Una de sus grandes ventajas radica en su gran resistencia a las temperaturas extremas. También es un materia muy ligero y resistente a los impactos. Cada vez se emplea con mayor frecuencia en la construcción de piezas y elementos mecanizados.Se puede decir que es una especie de mezcla de las mejores propiedades del PLA y el ABS. La temperatura ideal de la boquilla es de unos 240ºC mientras que la cama debe estar a unos 80-85ºC. Como siempre, estos valores varían en función de la impresora 3D.

  • Conductivo :Los filamentos conductivos son filamento que pueden soportar pequeñas cargas eléctricas y que, por tanto, suelen ser usados para la construcción de circuitos electrónicos.

Este filamento se puede combinar con PLA o ABS es una impresora 3D con doble extrusión para crear circuitos eléctricos o diversas piezas conductoras de electricidad, por lo que es ideal par makers con nociones de ingeniería eléctrica.

  • PLA reforzado :Cabe destacar que el filamento PLA, además de ser el más usado, cuenta con numerosas variantes. Estos tipos de filamento PLA le añaden un nuevo material de aporte que le confiere algunas características más específicas.Existen numerosas tipos de filamentos PLA reforzados, aunque algunos de los mas frecuente son aquellos a los que se le añade acero, fibra de carbono, hierro magnético o polvo de metal.Por ejemplo, al combinar PLA con polvo de metal nos da como resultado el filamento de metal, que permite imprimir en 3D piezas con la apariencia del latón, bronce o cobre.
  • Laybrick :Es un tipo de filamento para impresión 3D bastante reciente, que se usa especialmente para decoración. Su característica principal es que confiere a los objetos un aspecto de piedra, una especie de textura de arenisca.

Dependiendo de la temperatura de extrusión, el filamento Laybrick puede tener una apariencia más o menos rugosa. Como consejo de uso, se recomienda cargar e imprimir filamento PLA después de haber usado Laybrick, para eliminar los restos que pudieran quedar en la boquilla y evitar atascos de filamento.

  •  Laywood : Su precio ronda los 30€ :Es un tipo de filamento para impresoras 3D compuesto por madera reciclada, a la cual se le añade un polímero de unión. Esto hace que, aunque no sea madera 100%, las figuras hechas con Laywood parezcan (e incluso huelan) como madera.

Este tipo de filamento se utiliza básicamente para decoración y figuras de artesanía.

  • LayCeramic :El filamento LayCeramic emplea la arcilla para crear objetos de cerámica, por lo que es ideal para la impresión 3D de platos, tazas o figuras.

El gran problema de este material es que hay pocas impresoras 3D en el mercado que sean capaces de trabajar con él. Para poder imprimir cerámica en 3D se necesita una impresora 3D de altas prestaciones con hotend de metal, un calentador de filamentos muy potente (ya que la arcilla se puede quebrar con facilidad) y un horno para el tratamiento post-impresión de la figura.

 

 

Destacar  por ultimo  como hemos vistos  que en la actualidad ya nos podemos encontrar filamentos capaces de imitar a muchos materiales, por ejemplo arcilla u hormigón  o los  alimentos    de modo que  cada  dia surge algún  nuevo filamento  que sin duda nunca nos deja  de sorprender.

 

USO  DE LA IMPRESIÓN 3D DURANTE LA PANDEMIA

Respecto a la pregunta de cuánto tarda en hacerse una pantalla protectora como las que se  han donado a lo sanitarios, a los cuerpos  de seguridad del estado   y en general a los colectivos  que lo han demandado  ,  este  un tiempo que varia según el diseño  que se haya decidido imprimir

En términos generales se suele tardar  sobre una hora o menos según el modelo elegido , asi como por su puesto de la impresora 3d a la que disponga

Luego hay que añadir el tiempo del pos-tprocesado y mecanizado  

Finalmente hay que  higienizarlas, embolsar , empaquetar y,tramitar el envio  ,gestionar la entrega a protección civil   y  actualizar el inventario

En mi caso  he impreso   mas de  250  pantallas y unas 40 salvaorejas (unos cinco  rollos 1k de PLA)

Desde estas lineas , aprovecho ademas para recordar que las mascarillas impresas en 3d  , aunque haya muchos modelos disponibles , no son recomendables pues por el propio proceso de impresión  existen microporos  por donde podría entrar el vurus    pudiendo infectar a su portador  generando sobre todo una falsa sensación de seguridad. 

 

Respecto a los  problemas que nos podemos  encontrar a la hora de imprimir la pantalla protectora podríamos englobarlos en tres  tipos:

      • Asociados a la propia impresora : obstrucciones y  bloqueos del hot-end , desajustes en la cama caliente, alinealidades en los ejes , fallos en la electrónica
      • Asociados al cambio filamento
      • Asociados al modelo seleccionado pues para cada pieza se debe seleccionar los ajustes apropiados en el programa de laminación

 

Lo mas importante  es que cualquier persona puede usar una impresora en 3d, aunque se deben tener conocimientos transversales tanto de hw como de sw  . De  todos modos los mas importante es que   se debe tener paciencia pues los resultados no son tan inmediatos que con una impresora de papel convencional

A  modo de extracto , ayudan los conocimientos siguientes:

      • Asociados al mantenimiento de la impresora pues son habituales las obstrucciones , desajustes y averías    (por eso una impresora en kit ayuda a familiarizarse)
      • Asociados al sw de laminación ( Cura, Simplify3d, PrusaSlicr3r,slicr, EasyPrint)
      • Asociados con la creación de modelos en 3d ; básico con Tinkercad o mas avanzado con Fussion 360,OpenScad, FreeCad

 

Para finalizar, como consejo par cualquier aficionado que se quiera iniciar en este mundo de la impresión  3d, es recordarle que  un mundo  apasionante  sin duda  ,donde apenas  atisbamos a comprender  hasta donde iremos a  llegar  pero no por ello exento de cierta problematica  sobre todo para todos aquellos qeu nos acercamos a este

  Si en efecto  le gusta el  tema d elaimpresion 3d    y le puede encontrar  utilidad  en su vida personal o profesional ( en mi caso  , por ejemplo como electrónico , me interesan los receptáculos para albergar la electrónica ) , se puede partir  de una impresora  3d conocida  cuyas referencias ofrezcan un aceptable relación calidad precio  ( por ejemplo la Ender 3  )  huyendo del sector profesional  sin gastarse una fortuna  , estudiando  , documentándose  y   teniendo  mucha  paciencia y perseverancia  ,  tarde  o temprano   se pueden resolver todos los problemas que vayan surgiendo  , se puede llegar a obtener resultados  realmente sorprendentes   

Amigo lector , no le quiero cansar  más  , en el siguiente  video  podemos ver la entrevista completa  por si le interesase profundizar “en vivo” los aspectos que hemos comentado en las lineas anteriores.

 

 

 

Entrevista tecnológica sobre el uso de las Impresoras 3D y su ayuda en el COVID19, presentado por Héctor Jerez Losada Técnico de la Red de Voluntariado Digital, entrevistando a Carlos Rodríguez Navarro, Ingeniero Informático en Sistemas. Andalucía Compromiso Digital, una iniciativa promovida por la Junta de Andalucía y gestionada por Cruz Roja Española. Si quieres saber más sobre Andalucía Compromiso Digital, puedes seguirnos a través de nuestras redes sociales y de la web http://www.andaluciacompromisodigital.org