Cálculo resistencia de carga para sensores no invasivos de tensión


A la hora de medir con un controlador la intensidad de un circuito de ca, existen shunts , modernamente sensores hall, pero ambos adolecen de ser intrusivos porque requieren interrumpir el circuito para conectar estos. Modernamente han aparecido sensores no intrusivos basados en un núcleo partido que se puede abrir para intercalar el fase del circuito a medir. En este ámbito destacan los sensores de corriente alterna SCT-013 , los cuales podríamos clasificarlos en dos grupos: los que proporcionan una corriente o los que proporcionan un voltaje siendo la gran diferencia entre ellos que en los primeros no viene incluida una resistencia de carga y en los segundos sí (el nombre resistencia de carga o resistencia «burden» se refiere a la función que hace, no a como están fabricadas siendo su función convertir la corriente en un voltaje limitado que podamos medir, por ejemplo, con un microcontrolador).

El sensor SCT-013-000 es el único que nos proporciona una corriente y por tanto no tiene resistencia de carga. Puede medir una corriente de entre 50 mA y 100 A. El resto de la familia de sensores SCT-013 sí que tienen incluida la resistencia de carga. Podemos encontrar varios modelos pero todos tienen un voltaje de salida entre 0V y 1V.

Esta tabla nos describe las principales características de la familia de sensores SCT disponible :

Elegir uno u otro sensor SCT-013 dependerá de las necesidades reales. Como vemos en la tabla anterior, deberá elegir la intensidad de corriente que mejor se acople a sus necesidades o bien seleccionar el modelo «personalizado» SCT-013-000.

En post por tanto vamos a trabajar con el SCT-013-000 debido a que no tiene resistencia de carga lo cual nos va a permitir seleccionar la resistencia de carga más adecuada para medir con masa precisión el consumo eléctrico de un electrodoméstico en concreto como por ejemplo podria ser un frigorífico.

Para conectar un sensor CT a un Arduino, la señal de salida del sensor CT debe acondicionarse para que cumpla con los requisitos de entrada de las entradas analógicas Arduino, es decir, un  voltaje positivo entre 0 V y el voltaje de referencia ADC.

Este ejemplo vemos una placa Arduino que funciona a 5 V y el EmonTx que funciona a 3,3 V. Asegúrese de utilizar el voltaje de suministro y el voltaje de polarización correctos en sus cálculos que correspondan a su configuración.

Esto se puede lograr con el siguiente circuito que consta de dos partes principales: 

  1. El sensor CT y la resistencia de carga
  2. El divisor de voltaje de polarización ( R1 y R2 )

Basta con sumar 2,5V y estaría resuelto. Esto lo haremos a través de un circuito conocido como circuito offset en DC,lo cual básicamente consiste en poner un divisor de tensión y un condensador (el condensador tiene que ser de 10μF y unos pocos cientos de voltios lo cual hace que la reactancia sea baja y la corriente alterna evite la resistencia).

El valor de las resistencias del divisor de tensión puede ser 10kΩ siempre y cuando lo alimentemos a través de la red eléctrica, pero si su dispositivo va a funcionar con baterías utilice unas resistencias de 470kΩ para que el consumo sea mínimo.

Cálculo de un tamaño de resistencia de carga adecuado

Si el sensor CT es del tipo de «salida de corriente» como el YHDC SCT-013-000 , la señal de corriente debe convertirse en una señal de voltaje con una resistencia de carga. Si se trata de un CT de salida de voltaje, puede omitir este paso y omitir la resistencia de carga, ya que la resistencia de carga está integrada en el CT.

Este es el cálculo de la citada resistencia:

1) Elija el rango actual que desea medir

El YHDC SCT-013-000 CT tiene un rango de corriente de 0 a 100 A. Para este ejemplo, elijamos 100 A como nuestra corriente máxima.

2) Convierta la corriente RMS máxima en corriente pico multiplicando por √2.

Corriente máxima primaria = corriente RMS × √2 = 100 A × 1,414 = 141,4 A

Resultado =141,4 Amp

3) Divida el pico de corriente por el número de vueltas en el TC para obtener el pico de corriente en la bobina secundaria.

El TC YHDC SCT-013-000 tiene 2000 vueltas, por lo que la corriente pico del secundario será:

Pico de corriente secundario = Pico de corriente primario / no. de vueltas = 141.4 A / 2000 = 0.0707A

Resultado 2= 0.07Amp

4) Para maximizar la resolución de la medición, el voltaje a través de la resistencia de carga en el pico de corriente debe ser igual a la mitad del voltaje de referencia analógico de Arduino. (AREF / 2)

Si está utilizando un Arduino que funciona a 5V: AREF / 2 será de 2,5 voltios. 

Entonces la resistencia de carga ideal será:

Resistencia de carga ideal = (AREF/2) / Pico de corriente secundario = 2,5 V / 0,0707 A = 35,4 Ω

Resultado 3= 35,4 ohmios

Es fácil adivinar que 35 Ω no es un valor de resistencia común. Los valores más cercanos a ambos lados de 35 Ω son 39 y 33 Ω. Elija siempre el valor más pequeño, o la corriente de carga máxima creará un voltaje más alto que AREF. Recomendamos una carga de 33 Ω ±1%. En algunos casos, el uso de 2 resistencias en serie estará más cerca del valor de carga ideal. Cuanto más lejos del ideal esté el valor, menor será la precisión.

Aquí están los mismos cálculos que arriba en una forma más compacta:

Resistencia de carga (ohmios) = (AREF * CT TURNS) / (2√2 * corriente primaria máx.)

emonTx V2

Si está utilizando un emonTx V2 alimentado por batería, AREF comenzará a 3,3 V y disminuirá lentamente a medida que el voltaje de la batería caiga a 2,7 V. Por lo tanto, la resistencia de carga ideal para el voltaje mínimo sería:

Resistencia de carga ideal = (AREF/2) / Pico de corriente secundario = 1,35 V / 0,0707 A = 19,1 Ω

19 Ω no es un valor común. Tenemos una opción de 18 o 22 Ω. Recomendamos utilizar una carga de 18 Ω ±1%.

emonTx V3

El emonTx V3 usa un regulador de 3.3V, por lo que es V CC y por lo tanto AREF, siempre será de 3.3V independientemente del voltaje de la batería. El emonTx V3 estándar usa resistencias de carga de 22 Ω para CT 1, 2 y 3, y una resistencia de 120 Ω para CT4, el canal de alta sensibilidad. 

2) Agregar un sesgo de CC

Si tuviera que conectar uno de los cables del TC a tierra y medir el voltaje del segundo cable, con respecto a tierra, el voltaje variaría de positivo a negativo con respecto a tierra. Sin embargo, las entradas analógicas de Arduino requieren un voltaje positivo. Al conectar el cable de CT que conectamos a tierra, a una fuente a la mitad del voltaje de suministro, el voltaje de salida de CT ahora oscilará por encima y por debajo de 2,5 V, por lo que permanecerá positivo.

Las resistencias R1 y R2 en el diagrama de circuito anterior son un divisor de voltaje que proporciona la fuente de 2,5 V (1,65 V para el emonTx). El condensador electrolítico C1 tiene una reactancia baja de unos pocos cientos de ohmios, y proporciona un camino para que la corriente alterna evite la resistencia. Un valor de 10 μF es adecuado por ejemplo de 100v.

Elegir un valor adecuado para las resistencias R1 y R2:

Una mayor resistencia reduce el consumo de energía en reposo por lo que podemos usar resistencias de 10 kΩ para monitores alimentados por la red. El emonTx utiliza resistencias de 470 kΩ para mantener el consumo de energía al mínimo, ya que está diseñado para funcionar con baterías durante varios meses.

Boceto de Arduino

Para usar el circuito descrito para medir la corriente RMS, con un voltaje RMS fijo asumido (por ejemplo, 240 V) para indicar la potencia aparente aproximada, podemos usar el siguiente código en Arduino:

// Include Emon Library
#include "EmonLib.h"
 
// Crear una instancia EnergyMonitor
EnergyMonitor energyMonitor;
 
// Voltaje de nuestra red eléctrica
float voltajeRed = 220.0;
 
void setup()
{
  Serial.begin(9600);
 
  // Iniciamos la clase indicando
  // Número de pin: donde tenemos conectado el SCT-013
  // Valor de calibración: valor obtenido de la calibración teórica
  energyMonitor.current(0, 2.6);
}
 
void loop()
{
  // Obtenemos el valor de la corriente eficaz
  // Pasamos el número de muestras que queremos tomar
  double Irms = energyMonitor.calcIrms(1484);
 
  // Calculamos la potencia aparente
  double potencia =  Irms * voltajeRed;
 
  // Mostramos la información por el monitor serie
  Serial.print("Potencia = ");
  Serial.print(potencia);
  Serial.print("    Irms = ");
  Serial.println(Irms);
}


Mas info en https://openenergymonitor.github.io/forum-archive/node/156.html

Analizador de espectro con ESP32


El analizador de espectro basado en IoT / web de Mark utiliza un único microcontrolador ESP32 para crear hasta 64 canales para visualizar diferentes bandas de audio. Sólo utiliza 6 componentes externos para funcionar, y no tiene Leds o pantallas LCD o TFT. En su lugar, utiliza una página web HTML para mostrar todas las barras de frecuencia. Otros aspecto interesante es dado que el ESP32 cuenta con dos cores, en esta implementación funcionan ambos núcleos del procesador; el núcleo 1 se utiliza para ejecutar el bucle principal del programa, mientras que el núcleo 0 se utiliza para actualizar constantemente los datos de la web. Aunque el programa en sí mismo hace posible que se ejecute en un solo núcleo, el uso de ambos núcleos dará lugar a un mejor rendimiento.

¡Esto es tan fácil de construir y programar, que tienes que probarlo! Ni siquiera necesitará instalar el software de Arduino; sólo tiene que usar el programador web para cargar el archivo binario precompilado.

En efecto Mark nos presenta este gran proyecto que quiere compartir: un analizador de espectro de audio que no es complejo con un Hardware complicado, porque en la implementación solo vamos a usar un controlador esp32 con un puñado de componentes !y el resultado será absolutamente increíble!
Así que si tiene curiosidad por saber cómo puede construir su propio analizador de espectro sin gastar más de unos pocos dólares, entonces este proyecto merece la pena sobre todo cuando comprueba en el esquema de más abajo como no ha usado más sólo 10 componentes o menos.


Sobre el esquema veremos cómo programarlo y en cuanto a la programación veremos un truco especial bajo la manga, porque ni siquiera tendremos que instalar el entorno Arduino (a menos que quiera hacerlo
primero).

Antes de continuar veamos un poco sobre el audio y la transformación rápida de Fourier

EXPLICACION DEL FUNCIONAMIENTO


Para entender la forma en que escuchamos el audio simplificaremos las cosas mirando a un solo
sonido, por ejemplo, una onda sinusoidal pura de 440Hz que la oiríamos como un tono simple aunque la mayoría de los sonidos se componen de una mezcla de frecuencias.
SI agreguemos otra de 523 Hz usted puede escuchar claramente dos diferentes. Sin embargo, lo que realmente no son dos sonidos individuales, sino con dos sonidos procedentes del altavoz oirá la suma de ambos sonidos . Esto significa que a veces ambos sonidos se suman dando como resultado una mayor amplitud, mientras que otras veces los sonidos tienden a que el resultado sea una señal de aspecto casi aleatorio, aleatoria que no tiene ningún sentido y que incluso empeora en cuanto añadimos más frecuencias.

Por ejemplo, agreguemos 587 Hertz, ahora puede escuchar tres sonidos individuales. Estos sonidos individuales de nuevo los está escuchando en una señal lejos de la onda sinusoidal pura. Si tomamos un vistazo recuerde que la música o la voz o la mayoría de los sonidos son en realidad una combinación de frecuencias que interactúan resultando el sonido que escucha.

Ahora probablemente se esté preguntando cómo va a ayudarnos eso a construir un analizador de espectro. Pues bien, a la señal de audio, estamos viendo una mezcla de varias frecuencias individuales, estas frecuencias precisamente nos van a servir para construir un analizador de espectro ,pues no estamos interesados en esta mezcla, sino que queremos conocer todas las frecuencias que componen la señal, es decir queremos hacer ingeniería inversa de la mezcla para encontrar nuestras señales originales.

Esto se puede hacer utilizando un complicado algoritmo llamado Transformación rápida de Fourier. La
explicación de este algoritmo es compleja , así que para simplificar las cosas, una vez más sólo recuerde
la transformación rápida de Fourier hace todos los cálculos.
Para averiguar exactamente qué frecuencias están ocultas en su señal, ahora digamos digamos que el ancho de banda de nuestra señal de audio es de 20 Hz a 20 khz. Vamos a dividir el ancho de banda total en varias bandas individuales digamos siete y las llamaremos contenedores. Cada contenedor tiene un ancho de banda limitado y una diferente frecuencia central. Recordemos que nuestra señal de audio se compone de varios frecuencias individuales por lo que ahora el mencionado algoritmo clasificará qué frecuencia va donde y la pone en el contenedor correcto. Todo lo que queda por hacer es ver cuán lleno está cada contenedor y traducirlo a una lectura, que en nuestro caso es un gráfico de barras.

El Hardware

Para el hardware vamos a utilizar una placa de desarrollo esp32, cuatro resistencias un condensador y un interruptor y tal vez un conector de audio y eso es todo, así que con tan pocos componentes es muy fácil construir este proyecto usando una protoboard o un PCB estándar.

El esquema es sencillo, , en el centro vemos la placa de placa de desarrollo ESP32 versión 1.0 .En el lado izquierdo tenemos nuestra entrada de audio el canal izquierdo y derecho y por supuesto la tierra. Ambos canales están unidos usando resistencias La señal de audio conjunta está conectada a un lado de un condensador mientras que el otro lado del condensador está conectado a nuestra entrada ADC y también a resistencias R3 y R4.

Si echa un vistazo a la hoja de datos del esp32 verá que que la entrada del ADC sólo puede manejar un
positivo mientras que nuestra señal de audio puede ser negativa y positiva: por eso estamos creando un offset de aproximadamente 1.6 voltios usando R3 y R4.

Finalmente tenemos un botón S1 que podemos pulsar para cambiar el número de bandas o contenedores durante el tiempo de ejecución. Se puede cambiar a 8 16 24 32 o incluso 64 canales

Para facilitar las cosas, vemos dos ejemplos de cómo podemos reconstruir este dispositivo. En el lado izquierdo puede ver una placa de pruebas con todos los componentes , simplemente siga el ejemplo y debería funcionar.
También vemos el prototipo de placa de circuito impreso superior (el ejemplo está en el lado derecho)
Mire bien el ejemplo y tome nota de los lugares donde se interrumpen los carriles de cobre o donde estan unidos
Ahora que el hardware está hecho ¿está de acuerdo con lo que he dicho antes?..es realmente fácil de construir, ¿no?


El software

Ahora que el hardware está hecho vamos a pasar a la programación, para lo cual es necesario descargar el boceto de la comunidad de element 14. Puede descargar todos los archivos en la Comunidad element14! https://bit.ly/3fv0oqy

Antes de que pueda usar un esp32 con el entorno Arduino, necesita instalar las bibliotecas adecuadas
y para ello vamos al archivo hacemos clic en preferencias y luego buscamos la línea que dice
administradores adicionales de la placa . Haga clic en el icono y asegúrese de añadir esta línea . Pulse OK y de nuevo pulse OK (esto significa que la librería el enlace a la librería está instalada)

Ahora vamos a instalar la biblioteca, para ello vamos a herramientas, y hacemos clic en el gestor de placas y el gestor de placas manager. Primero tenemos que esperar hasta que se cargue y una vez cargado, (esto puede tomar algún tiempo dependiendo de la cantidad de biblioteca que tenga instalada), en la barra de búsqueda hacemos clic en esp32 y esp32 by expressive systems aparecerá). Asegúrese de instalarlo correctamente.

Bien si ya lo he hecho, el botón se pondrá en gris. Una vez que se instala asegúrese de seleccionar la placa apropiada, (una conocida es la esp32 dev kit que se encuentra en esp32 Arduino boards, pero encontrará más abajo do it esp32 def kit version , que es una de las más usadas por su bajo precio,y es la que se usa en este analizador)

El sketch se compone de dos archivos : uno de dos archivos es nuestro elemento de especificación web
que es el archivo principal y nuestra configuración , y el otro es la gestión de la entrada de audio y su correspondiente gestión con la transformada rapida de Fourier

Echemos un vistazo al elemento web primero básicamente porque no hay nada en este archivo que necesite ser cambiado a menos que quiera añadir funcionalidad o quiera hacer algunos cambios que tengan bastante impacto, pero básicamente no necesita cambiarlo. Por supuesto puede si quiere en la configuración, hay algunos parámetros que puede cambiar, puede cambiar el número de bandas, que ahora está fijado en 64 y básicamente este es el número de bandas en el arranque se puede cambiar a 8 16 24 32 o 64. Podemos definir el modo si tiene un hardware diferente o si usa un pin diferente puede cambiarlo. Asimismo hay amortiguación de ganancia y umbral de ruido, y esos dos parámetros que puede tener en cuenta, si usted ve una gran cantidad de estática, lo que significa que los gráficos de barras ya te están dando una lectura tremendamente cuando no hay señal que puede cambiar aquí, entonces tenemos la velocidad del filtro mientras que básicamente es un retraso tiempo para que las barras caigan y lo hace más suave si el número es demasiado alto entonces se convertirá en bastante
nervioso, tenemos la frecuencia de muestreo y un bloque de muestreo que ( se recomienda que se deje igual, no los cambie). Asimismo tenemos por supuesto nuestras tablas de corte de banda para cada número de canales de modo que para cada grupo hay un parámetro diferente. Tomemos el de
para ocho canales, primero se ve el en el color de la tabla y ahora es 100 Hertz, 250, 500, Etc .Usted
puede cambiarlo, pero asegúrese de que el secuencial debe ser siempre más alto que el anterior y
esta regal se mantiene sucesivamente. Asimismo tenemos las etiquetas, que por supuesto básicamente eso es lo que se mostrará en la pantalla, y lo mismo ocurre con la banda de 16, la de 24, la de 32 y 64.

Básicamente eso es todo lo que hay, si quiere profundizar en el código, Mark ha puesto
comentarios allí que nos pueden ayudar a entender un poco más los entresijos y puede leerlo.



Bueno, puede ser un poco de molestia compilar : tenemos que instalar el Arduino IIDE, las librerías, tenemos que instalar el gestor de placas adecuado, abrir el boceto compilarlo y subirlo, así que muchas cosas pueden salir mal, ¿y si hubiese otra manera más fácil? Pues la hay, con una versión de Mark que ya lo he compilado para nosotros de modo que podemos usar nuestro navegador de internet para simplemente subirlo directamente a la esp32 ( sin embargo esto solo funciona si va usando el sketch sin modificar de modo que si piensa hacer modificaciones esto no funcionara) .

En efecto para hacer modificaciones en el sketch tal vez quiera añadir una funcionalidad extra o
cambiar el ruido o los parámetros de retardo… entonces, por supuesto, usted tendra que
recompilarlo y subirlo usando el Arduino IDE pero para todos los demás, veamos la programación en el navegador web

La forma más manera más fácil de programar esp32 que jamás hayas visto, es sencilla : sólo tiene que ir a la siguiente sitio web , pulse instalar, seleccione el puerto com apropiado y asegúrese de que su
esp32 está conectado con el conector USB y presiona connect para que comience a programar.
Programar es tan fácil como eso.. !sólo esperar hasta que llegue a 100% y ya está!, eso es todo lo que hay que hacer si utilizas el navegador web para programar su esp32 es seguro decir que la
la programación fue incluso más fácil que el hardware y el hardware en sí no era difícil fue así es el momento para una demostración


¿No crees que vamos a ver lo que hemos construido ? tomemos nuestro esp32 que hemos programado y pongámoslo en la placa que acabamos de crear. Ahora todo lo que necesita hacer es encenderlo de modo que cuando lo arranque por primera vez el dispositivo, como no tiene memoria de sus redes, lo que se iniciará como un punto de acceso y tiene que conectarse al punto de acceso utilizando su teléfono móvil o cualquier otro dispositivo.En el momento en que se conecte se iniciará el gestor de Wi-Fi. Es justo ahi donde puede introducir sus credenciales como su red o contraseña y pulsar guardar. Después de un reinicio, ahora será parte de su red y podrá acceder a ella yendo a la dirección IP correspondiente

Para terminar veamos el video que ha hecho Mark donde explica en ingles todo lo que hemos visto anteriormente:

Sin duda es un proyecto muy interesante que además nos puede ayudar a comprender mucho mejor la programación con el ESP32 y por supuesto entender un poco mejor la ciencia que hay detrás del mundo del sonido.

Fuente aqui