Monitorización de gases con Arduino


Gracias  a la plataforma de Cayenne , de la que hemos hablado en este blog en numerosas  ocasiones, es bastante sencillo monitorizar cualquier variable física  de un modo realmente sencillo  simplemente arrastrando al panel de control de Cayenne sin escribir apenas código, tanto para el dispositivo IoT como para la parte web  o incluso la app móvil,  pues incluso proporcionan una app multipropósito para controlar su dispositivo IoT.

En esta ocasión  ejemplo  vamos a lo fácil que es crear un monitor temperatura ,humedad y humos  usando Arduino   y la plataforma Cayenne , sin tener conocimientos  de programación consiguiendo controlar o monitorizar  un Arduino o Raspberry Pi    en tan solo unos minutos.

 

En efecto   gracias  a un  framework  genérico desarrollado por  myDevices IO Project Builder llamado Cayenne , los desarrolladores , fabricantes y  también aficionados  pueden  construir rápidamente prototipos y proyectos que requieran controlar o monitorizar   cualquier cosa conectada a una  Raspberry  o un ARduino  , permitiendo con una sóla cuenta gratuita de Cayenne, crear un número ilimitado de proyectos  mediante una solución  muy sencilla  basada en arrastrar y solta.
Obviamente el punto fuerte de Cayenne  son las  capacidades de  IO  para que pueda controlar de forma remota sensores, motores, actuadores, incluidas los puertos  de GPIO con  almacenamiento ilimitado de datos recogidos por los componentes de hardware,   triggers y alertas,  pues  proporcionan las herramientas necesarias para la automatización y la capacidad de configurar alertas. 
Ademas desde el interfaz se puede crear cuadros de mando personalizados para mostrar su proyecto con arrastrar y soltar widgets que también son totalmente personalizables.

Resumidamente algunas  características clave de esta novedosa  plataforma son las siguientes:

  •  Ofrecen una aplicación móvil para configurar, el monitor y los dispositivos de control y sensores desde cualquier lugar.
  • Fácil instalación que conecta rápidamente los dispositivos, sensores, actuadores, y las extensiones en cuestión de minutos.
  • Motor de reglas para desencadenar acciones a través de dispositivos.
  • Panel personalizable con widgets de visualización de arrastrar y soltar.
  • Programación de las luces, motores y actuadores
  •  Control de GPIO que se pueden configurar desde una aplicación móvil o  desde un navegador
  • Acceso remoto instantáneo desde su smartphone o con un ordenador
  • Para construir un proyecto de la IO a partir de cero se ha logrado el objetivo de proporcionar  un Proyecto Generador de IO que reduce el tiempo de desarrollo de horas en lugar de meses.

Sabemos la gravedad que puede suponer un incendio, por lo que es sumamente importante disponer de medidas en los edificios de detección eficaces para protegerlos contra la acción del fuego.

En este post  vamos a intentar abordar el grave problema de los incendios desde una perspectiva completamente diferente usando para ello un Arduino   y  un hardware especifico consistente en un DHT22 , un detector de  gas   junto con  la plataforma  Cayenne.

Tradicionalmente los detectores de incendios difieren en función de los principio de activación siendo los mas habituales los de Tipo Óptico basado en células fotoeléctricas ,las cuales, al oscurecerse por el humo o iluminarse por reflexión de luz en las partículas del humo, disparando una sirena o alarma.Asimismo existen detectores de calor

La solución que se propone se basa en detectores termicos al ser los mas precisos ,al que se ha añadido para aumentar la fiabilidad y mejorar la flexibilidad un doble sensor permitiendo de esta manera poder modificar los parámetros de disparo con un enorme facilidad como vamos a ver aparte de poder transmitir la información en múltiples formatos y formas hasta nunca vistas.

 

Monitorización de gases con Arduino

En esta  ocasión vamos  a ver  cómo monitorizar  temperatura, humedad así como ofrecer a alertas en tiempo real  si suben  las concentraciones de gas o humo respecto al nivel normal usando la plataforma a Arduino (si no dispone de un Arduino , un    proyecto  muy similar  lo  abordamos en este blog  con una Raspberry Pi 2)

Como vamos  a ver es realmente sencillo  construir un proyecto de este tipo  usando la plataforma  Cayenne  y desde luego  muy útil , pues podemos prevenir fuego o incluso  fugas de gas  en cualquier lugar   monitorizando  ademas en tiempo real desde Internet.

El hardware  necesario para este proyecto es el  que describimos  a continuación:

  • Arduino Mega 2560(unos 12€ en Amazon)
  • Escudo Ethernet W5100 (unos 12€ en Amazon)
  • Sensor DHT22 (unos 8€ en Amazon)
  • Sensor MQ2 (unos 5€ en Amazon)

 

Sensor de Co2

Como sensor de humo se ha usado un detector de gases basado en el circuito MQ4 .Este detector se puede montar un circuito con el sensor , o bien se puede adquirir con el sensor y el modulo de disparo con un led ya soldado, lo cual por su bajo coste  (menos de 2€ en Amazon  )es la opción más recomendada. Estos módulos permiten Dual-modo de señal de salida, es decir cuentan con dos salidas diferenciadas:
  • Salida analógica : 0.1 – 0 .3 V (relativa a polución , La máxima concentración se muestra con un  voltaje de 4 V
  • Salida con sensibilidad de nivel TTL (la salida es a nivel alto si se detecta GLP, el gas, el alcohol, el hidrógeno y mas)

Estos módulos son de rápida a respuesta y recuperación ,cuentan con una buena estabilidad y larga vida siendo ideales para la detección de fugas de gas en casa o fabrica .Son ademas muy versátiles , pudiendo usarse para múltiples fines ,detectando con facilidad lo siguientes gases:

  • Gas combustible como el GLP
  • Butano
  • Metano
  • Alcohol
  • Propano
  • Hidrogeno
  • Humo
  • etc.

Algunas de las características del módulo:

  • Voltaje de funcionamiento: 5V DC
  • Rango de Detección: 300 a 10000 ppm
  • Salida TTL señal valida es baja
  • Tamaño: 32X22X27mm

 

Para conectar el  detector de gases a nuestra  placa Arduino, es esta ocasión optaremos por usar el puerto  analógico A0,  que conectaremos a la salida analógica  2 del sensor ( marcado como OUT).

La alimentación del sensor la tomaremos desde cualquiera de las dos conexiones de +5V de nuestra Arduino conectándo al pin 4 del sensor (marcado como +5v) y la conexión de masa pal pin1 del detector ( marcado como GND)

Sensor DHTXX

DHT11 y  DHT22 son dos modelos de una misma familia de sensores, que permiten realizar la medición simultánea de temperatura y humedad usando ademas un único  hilo para comunicar los datos vía serie, para lo cual  ambos  disponen de un procesador interno que realiza el proceso de medición, proporcionando la medición mediante una señal digital, por lo que resulta muy sencillo obtener la medición desde un microprocesador como Arduino o ESP8266.

Ambos son similares ( DHT11 presenta una carcasa azul  , mientras que el sensor DHT22  es blanco)  compartiendo además los mismos pines  disponiendo de  4 patillas, de las cuales usaremos sólo 3: Vcc, Output y GND.  Como peculiaridad ,la  salida la conectaremos a una entrada digital  , pero necesitaremos poner una resistencia de 10K entre Vcc y el Pin Output.

El  DHT11  puede medir temperaturas entre 0 a 50, con una precisión de 2ºC, humedad entre 20 a 80%, con precisión del 5% y con una a frecuencia de muestreo de 1 muestras por segundo (1 Hz)

En clara superioridad  con el dHT11 , el modelo DHT22 tiene unas características mucho más profesionales.
  • Medición de temperatura entre -40 a 125, con una precisión de 0.5ºC
  • Medición de humedad entre 0 a 100%, con precisión del 2-5%.
  • Frecuencia de muestreo de 2 muestras por segundo (2 Hz)

Destacar que este tipo de  sensores de temperatura  ( y, aún más, los sensores de humedad) , son sensores con elevada inercia y tiempos de respuesta elevados. Es decir, al “lentos” para reflejar los cambios en la medición.

Conectar el DHT11   o el DHT22  a  un Arduino o ESP82366  es sencillo, simplemente alimentamos desde Arduino al sensor a través de los pines GND y Vcc del mismo. Por otro lado, conectamos la salida Output a una entrada digital de Arduino como por ejemplo el pin 22  (No necesitaremos poner una resistencia de 10K entre Vcc y el Pin Output al llevarla ya  integrada la placa ).

El esquema eléctrico queda como la siguiente imagen:

 

Los sensores DHT11 y DHT22 usan su propio sistema de comunicación bidireccional mediante un único hilo , empleando señales temporizadas por lo que en general, lo normal es que empleemos una librería existente para simplificar el proceso.Por ejemplo podemos usar la librería de Adafruit disponible en este enlace.

En este ejemplo como podemos  en el esquema final ver, el pin  digital usado es el el pin 22

Como realmente  lo que buscamos es controlar los puertos del GPIO  a distancia y mediante un interfaz gráfico remoto, para comenzar la configuración de su Arduno   ,lo primero es crear una cuenta gratuita en cayenne-mydevices.com que servirá tanto para entrar en la consola web como en la aplicación móvil.

Para ello, vaya a la siguiente url  e introduzca simplemente su nombre ,dirección de correo y una clave de acceso  que  utilizara para validarse.

paso1.png

Una vez registrado , solamente tendrá que elegir la plataforma  para avanzar en el asistente. Obviamente   seleccionamos  en nuestro caso   Arduino

paso2.png

El  siguiente pasos es obtener el Token para nuestro Arduino , el cual copiaremos en nuestro skecth

 Cargar Sketch

Necesitaremos    añadir el valor del token de Cayenne al obtenido  en el paso anterior  y cargar el  siguiente código .(fuente MQ2)

«CayenneEthernet.h»
«DHT.h»

DHTPIN 22
DHTTYPE DHT22
DHT dht(DHTPIN, DHTTYPE);

char token[] = «»; //fill with your token

const int MQ2 = A0;

void setup()
{
Serial.begin(115200);
Cayenne.begin(token);
dht.begin();
}

void loop()
{
Cayenne.run();
}

CAYENNE_OUT(V0)
{
float t = dht.readTemperature();
Cayenne.virtualWrite(V0, t); //virtual pin
}

CAYENNE_OUT(V1)
{
float h = dht.readHumidity();
Cayenne.virtualWrite(V1, h); //virtual pin
}

CAYENNE_OUT(V2) {
Cayenne.virtualWrite(V2, MQ2);
}

 Configuración Cayenne

Montado ya el circuito y cargado el firmware de Arduino  ( y por supuesto conectado este a Internet ) , lo siguiente es, configurar el panel de control de  Cayenne  y  añadir un widget para sensor de gas MQ2 al pin virtual 2.

 

Si ha seguido todos los pasos anteriores tendremos en la consola de Cayenne nuestra placa Arduino  con la información en tiempo real de la temperatura o detección de gas.Ademas, por si fuera poco gracias a la aplicación móvil  de Cayenne , también podemos ver en esta en tiempo real lo que están captando los sensores que hemos instalado

Pero aunque el resultado es espectacular todavía nos queda una característica para que el dispositivo sea inteligente : el poder interaccionar ante los eventos de una forma lógica,lo cual lo haremos a través de lo triggers , los cuales nos permitirán desencadenar acciones ante cambios en las variables medidas por los sensores.

A la hora de definir triggers en Cayenne podemos hacerlo tanto desencadenado acciones como pueden ser enviar corres de notificaciones o envio de SMS’s a los destinatarios acordados o bien actuar sobre las salidas.

Para definir un disparador en myTriggers, pulsaremos “New Trigger” y nos presentara dos partes:

  • IF ; aqui arrastraemos el desecadenante, lo cual necesariamene siempre sera la lectura de un sensor ( en uestro caso el termometro o el detector de gas)
  • THEN: aqui definiremos lo que queremos que se ejecute cuando se cumpla la condición del IF. Como comentábamos se pueden actuar por dos vías : se puede activar /desactivar nuestra actuador ( el buzzer) o también enviar correos o SMS’s

En este caso   puede establecer   el trigger para MQ2 sensor de gas  si el valor supera el valor  500,  que  entonces de  una alerta a su teléfono móvil.

 

 

Es obvio que las posibilidades son infinitas ( y las mejoras de este proyecto también), pero desde luego un circuito así es indudable la gran utilidad que puede tener.¿Se anima a replicarlo?

 

Fuente  parcial  instructables.com

Construya su huerto robotico


En efecto   ya es posible  construirse   un huerto robótico ,  donde incluso el sw de gestión es open sw y cuyo cerebro no podía ser otro que una Raspberry Pi 3  .

Evidentemente para llevarlo a  la praxis realmente la barrera no es otra que el exigente hardware para controlar el huerto en si , pues este requiere  de una gran cantidad de elementos  que sin duda hacen mucho mas complejo  su construcción ,pero la buena  noticia  es que   aproximadamente FarmBot (que es la empresa que hay detrás de las idea)  prometen simplificarlo mediante diferentes kits  si esta dispuesto a  realizar una inversión entre 2595$ ( la version standard) o la 3795$ ( la version XL)

Aparte del potente hardware que funciona a modo de un puente grúa  con un cabezal multiherramienta bastante original llama la atención el sw para controlarlo bajo el concepto de arrastrar y soltar donde se puede diseñar gráficamente una granja arrastrando y colocando las plantas en el mapa  desde un interfaz que se  aprende en pocos minutos , por  lo que llevar a la plantación como podemos ver es bastante sencillo ya  que se tendrá todo previsto en todo momento cuando llegue la temporada de cultivo.

Es evidente que unos de los valores mas apreciados en el sw es que permite construir nuevas características,crear  código de propios mods personalizados o soportar  la aplicación web localmente  para ser independiente de la red. Ademas todo el software está bajo la licencia MIT en código abierto (open software)  y este esta compartido en Github , permitiéndole contribuir, copiar, modificar, redistribuir e incluso vender software FarmBot. ¿desea ayudar a crear nuevas funciones o tiene un error que reportar? ¡ Involúcrese en github!

 

En  el sw ademas  se contemplan regímenes de crecimiento  para construir pautas para el cuidado de una planta a lo largo de toda su vida mediante la programación de las secuencias a ejecutar cuando la planta es de una cierta edad. Incluso  los regímenes se pueden reutilizar, haciendo una brisa de replantación. Otro aspecto son las secuencias de construcción donde rápidamente se pude crear secuencias personalizadas para aprovechar al máximo su hardware donde ningún código es requerido. Simplemente arrastrar y soltar las operaciones básicas  ajustar los parámetros y guardar.

Ademas   el control se hace en tiempo real debido a que se pueden  utilizar  las  herramientas en tiempo real con los controles manuales. !Incluso se puede ahuyentar aves en tiempo real ordenándolo desde un smartphone  !

El Hardware ha pasado por grandes esfuerzos al diseño, fabricación y controles de calidad  siendo además, todos los modelos de CAD  públicos así que usted puede construir sus propias piezas.

Respecto  a  los elementos el hw ( que incluyen ambos kits)  estos son los elementos que lo   componen:

      • Extrusiones de aluminio para las pistas, pórtico y eje z
      • Placas de aluminio de 5mm anodizado
      • V-ruedas con rodamientos de bolas de goma sellada de acero inoxidable
      • Moldeado de inyección UV estabilizado componentes de plástico ABS
      • Tornillos de acero inoxidable, tuercas t, separadores y otros hardware
      • Cuatro motores de pasos NEMA 17 con codificadores rotatorios y cables
      • GT2 de correas y poleas de aluminio
      • Portacables de plástico durable
      • Acero inoxidable leadsrew y delrin bloque de 8mm alta tolerancia
      • Fuente de alimentación impermeable IP67 con 110 y 220V CA
      • Raspberry Pi 3 y 8GB de tarjeta microSD
      • Farmduino microcontrolador con montado y probado con controladores paso a paso
      • Caja o impermeable para la electrónica
      • Montaje de la herramienta universal, cubierta y cable de 12 hilos
      • Herramienta de inyector de semilla con bomba de vacío, tubos, compartimiento de la semilla, bandeja de la semilla y agujas de bloqueo luer adaptable (3 dimensiones)
      • Boquilla de  riego con válvula solenoide, tubos y adaptadores para manguera de jardín estándar de Estados Unidos
      • Herramienta de sensor de suelo
      • Herramienta desyerba con implementos personalizables
      • cámara  USB IP67 impermeable
      • Dos toolbays de 3 ranuras

 

En este vídeo podemos ver el equipo en funcionamiento !es impresionante!

 

Software

OpenFarm.CC fue concebido originalmente como un pequeño componente del proyecto FarmBot. A medida que se progresó, se hizo evidente que OpenFarm no tenía ninguna razón para estar atado a FarmBot, sino que podría vivir por sí solo. En septiembre de 2014, 1.605 personas respaldaron a OpenFarm en el pedal. Hoy en día, OpenFarm es una aplicación independiente, sin fines de lucro y comunidad. Puede de hecho involucrarse con OpenFarm uniendo el canal  y  contribuyendo en Github, o yendo a OpenFarm.cc y creando contenido!

Hay muchos sistemas de software que contribuyen a la funcionalidad de FarmBot. El siguiente diagrama muestra los diferentes componentes y la forma en que los datos fluyen entre ellos. Lea las breves descripciones de cada componente en las siguientes secciones para entender el sistema como un todo, y luego Sumérjase en la configuración de los componentes necesarios para su FarmBot.

 

La aplicación web FarmBot  ,como se pude ver en este  video  , permite configurar y controlar fácilmente  FarmBot desde un navegador web en su laptop, Tablet o smartphone. La aplicación cuenta con controles manuales en tiempo real y registro, un generador de secuencias para crear rutinas personalizadas para que se ejecute FarmBot y un diseñador de granjas de arrastrar y soltar para que pueda diseñar y administrar gráficamente su granja.

El broker de mensajes es una aplicación de nube que actúa como intermediario para todos los mensajes entre la aplicación web FarmBot y los dispositivos FarmBot . Maneja conexiones de socket, identificación de dispositivos y autenticación.

FarmBot Raspberry PI utiliza un sistema operativo personalizado llamado FarmBot os para mantener una conexión y sincronizar con la aplicación web a través del intermediario de mensajes. Esto permite a FarmBot descargar y ejecutar eventos programados, ser controlados en tiempo real, y cargar logs y datos de sensores. El SO se comunica con el Arduino sobre USB para enviar comandos de código G y F y también recibir datos recopilados.

FarmBot os tiene una utilidad integrada denominada Configurator que permite introducir fácilmente las credenciales de WiFi y de aplicación web desde un dispositivo habilitado para WiFi (como un ordenador portátil o un smartphone). Esto es útil para la configuración inicial con el fin de obtener su FarmBot conectado a su casa wifi.

Respecto  firmware  Farmbot para Arduino es flasheado en el microcontrolador Arduino mega 2560 de FarmBot y es responsable de operar físicamente el hardware, las herramientas, los sensores  otros componentes electrónicos de FarmBot. Recibe los códigos de G y de F del regulador del PI de la Raspberryde FarmBot vía conexión serial del USB, y después mueve los motores y Lee y escribe los pernos por consiguiente. También envía los datos recogidos de los codificadores rotatorios y el PIN Lee de nuevo a la Raspberry PI.

OpenFarm.cc es una base de datos gratuita y abierta para la agricultura y el conocimiento de jardinería. Este servicio proporciona información de cultivo y crecimiento a la aplicación web para un usuario racionalizado experimentado.

 

Hardware

FarmBot Genesis es  la plataforma de hardware de código abierto de bricolaje optimizada para la producción de alimentos a pequeña escala basada en el suelo .FarmBot Genesis , quee s la version mas económica ,  está diseñado para ser una Fundación FarmBot flexible para la experimentación, prototipado y hacking. Los factores que conducen detrás del diseño son simplicidad, manufacturabilidad, escalabilidad, y hackeabilidad.

FarmBot Genesis es una pequeña escala FarmBot principalmente construida a partir de protuberancias en V-ranura de aluminio y placas de aluminio y soportes. Génesis es conducida por cuatro motores de pasos NEMA 17 con codificadores rotativos, el microcontrolador Farmduino, y un ordenador de frambuesa PI 3. El Génesis puede variar en tamaño desde un área de plantación tan pequeña como 1m2 hasta un máximo de 4,5 m2, mientras que alberga una altura máxima de planta de aproximadamente 1m. Con el hardware y las modificaciones adicionales Anticipamos que el concepto del Génesis podría escalar a aproximadamente 50 m2 y una altura máxima de la planta de 1.5 m.

Como vemos  Farmbot no es su producto típico pues sus creadores  han pasado por grandes esfuerzos para diseñar FarmBot Genesis para ser duraderos, fácilmente ensamblados y modificados con herramientas comunes, construidos a partir de componentes en gran parte fuera de la plataforma, y fabricados con procesos y materiales fácilmente disponibles. Nada sobre FarmBot habla de obsolescencia o de propiedad.

Las pistas son uno de los componentes que realmente diferencian la tecnología de FarmBot de los tractores de ruedas tradicionales de conducción libre. Las pistas son las que permiten al sistema tener una gran precisión de una manera eficiente y sencilla. Hay muchas razones de por qué las pistas son superiores, algunas de las cuales se enumeran a continuación.

      • Las pistas proporcionan una gran precisión y permiten que el FarmBot vuelva a la misma posición repetidamente
      • Cualquier tipo de estructura de empaque de las plantas se puede crear y manejar
      • Las pistas ocupan menos área que las trayectorias para las ruedas del tractor y no compactan el suelo

El pórtico es el componente estructural que puentea las dos pistas y se mueve en la x-dirección vía un sistema de impulsión de la x-dirección. Típicamente, sirve como una guía lineal para el deslizamiento transversal y una base para el sistema de impulsión de la y-dirección que mueve el Cruz-resbale a través del pórtico en la y-dirección. También puede servir como base para el montaje de otras herramientas, electrónica, suministros y/o sensores.

La Cruz se mueve en la Y-dirección a través del pórtico. Este movimiento proporciona el segundo grado mayor de libertad para FarmBots y permite que las operaciones como la plantación se realicen en cualquier lugar del plano XY. El deslizamiento transversal se desplaza utilizando un sistema de impulsión y-dirección y funciona como la base para el montaje de la herramienta y el sistema de la impulsión de la Z-dirección.
Eje Z

El eje z se conecta a la corredera transversal y proporciona el FarmBot con movimiento de dirección z. Sirve como base para la fijación del montaje universal de la herramienta y de otras herramientas. .

Para que los FarmBots crezcan adecuadamente las plantas más altas, el pórtico, la corredera transversal, el eje Z y las herramientas deben tener una separación vertical adecuada de las plantas. Esto generalmente se puede lograr de dos maneras:

        • Usando pistas levantadas y un pórtico Low-Profile
        • Usando pistas bajas con un pórtico alto

En general, el uso de pistas bajas con un pórtico alto es el mejor diseño, especialmente para aplicaciones más grandes, ya que ahorra en costo material, es menos de una monstruosidad, bloquea menos luz del sol, y sería más fácil de mantener. Sin embargo, en el caso de un FarmBot que se está instalando en un invernadero u otra estructura, utilizando las paredes existentes para apoyar las pistas más altas puede ser una mejor solución.

 

El  Soporte universal para herramientas (universal Tool Mount o UTM)  permite a FarmBot Genesis cambiar automáticamente las herramientas para realizar diferentes operaciones. La UTM es necesaria porque no es factible tener todas las herramientas montadas en el eje z al mismo tiempo por varias razones:

      • Esto sería muy pesado y aumentaría las tensiones en todos los componentes, así como requerir un motor más grande del z-axis.
      • La mayoría de las herramientas necesitan ser la cosa «más baja» en el eje z para poder trabajar. Tener múltiples herramientas compitiendo por la posición más baja (ej: una sonda de temperatura y un inyector de semillas) no sería ideal y puede que no funcione en absoluto. El uso de mecanismos de elevación y descenso de herramientas individuales, o un mecanismo de estilo de torreta sería complejo, pesado, voluminoso y limitado en el número de herramientas que podría soportar.
      • El tamaño del eje z debe mantenerse a un mínimo para que tenga un impacto mínimo sobre las plantas, especialmente cuando no hay mucho espacio entre ellos.

La UTM es un componente de plástico que se monta en la extrusión de aluminio del eje z utilizando dos tornillos M5 y tuercas en t.Algunas de sus características:

        • 3 imanes fuertes del anillo del neodimio para sostener magnético las herramientas en el lugar vía otros imanes colocados en la misma configuración en la herramienta.
        • Pasadizos para agua, enmiendas líquidas (ej.: abono), y vacío o aire comprimido para pasar de la UTM (y el resto de FarmBot) a la herramienta.
        • 12 tornillos de resorte que hacen conexiones eléctricas con herramientas.

 

Es como vemos una de las partes cruciales del proyecto pues la que realmente actúa sobe las plantas. Precisamente en este vídeo nos explican en que consiste esta versátil herramienta;

 

Mas información en https://farm.bot/