Electrónica de una CNC


Cada  vez se  nos pone mas sencillo    interactuar con  el mundo físico , no solo desde el punto de vista  de complejidad, sino también debido a  la  simplicidad  conseguida gracias a  la elevada miniaturización, lo cual  que  se suele traducir en precios muy bajos y diseños sencillos, especialmente  en la parte de la electrónica necesaria.

Como ejemplo usando Arduino se pueden construir muchos tipos de proyectos CNC  gracias al ingenio de muchas personas  así como la ayuda de  la electrónica necesaria  que puede condensarse   simplemente en este escudo   con el que se   pueden  controlar  por medio de un Arduino   3 motores paso a paso gracias a que los propios  módulos de controladores pueden  insertarse en cada zócalo  proporcionando así  la capacidad al eje motor de impulsión 3 motores  paso a paso (X, Y y Z).

cnc_shield_v3_2

En este escudo  para Arduino,  los motores paso a paso se pueden conectar con conectores molex de 4 pines o también se  pueden soldar los cuatro  hilos de cada motor directamente al conector  en su lugar

A propósito de las conexiones soldadas del motor  : la conexión o desconexión de los cables de un motor paso a paso mientras el driver  está alimentado puede destruir al driver  (por ejemplo   soltando por accidente algún hilo, cruzando  entre si  hilos , etc) así que es buena idea que los cables de los  motores estén sólidamente  conectados a la placa.

Asimismo al  igual que otras controladoras, esta placa se alimenta aparte de la fuente de Arduino con una tensión continua entre 12-36V DC.  En este punto es de destacar que por el momento sólo los controladores DRV8825 pueden manejar hasta 36V , por lo que considere un  voltaje de funcionamiento menor  para  alimentar al escudo.

Respecto a los drivers de cada motor como se puede ver en la foto , son enchufables   para facilitar su remplazo en caso de avería o fallo  y   están basados en  controlados de motores paso a paso del tipo   A4988  o DRV8825. Cada driver incluye puentes para configurar el Micro-Stepping para los controladores paso a paso con cinco modos de paso seleccionables: full, 1/2, 1/4, 1/8 y 1/16. (algunos controladores como el DRV8825 pueden hacer hasta 1/32 micro-stepping)

Resumidamente estas son las características de este nuevo escudo controlador multi-driver:

  • Compatibilidad con Arduino GRBL
  • Baja salida RDS (On)
  • Se puede utilizar para una máquina de grabado
  • Es compatible con GRBL 0.9 (Firmware de código abierto que se ejecuta en un Arduino UNO que convierte los comandos de código G en señales para  los motores paso a paso)
  • Soporte de 4 ejes (X, Y, Z, A-Puede duplicar X, Y, Z o hacer un 4to eje completo con firmware personalizado usando los pins D12 y D13)

 

En la siguiente imagen  de un Arduino  vemos la correspondencia con los pines del escudo para el control de los tres motores:.

cnc_shield_v3_3

 

Excepto todos los pines  citados ,  este escudo ( Arduino CNC Shield V3.0 ) contiene otros pines que admiten más funciones:

Arduino-CNC-Shield-Scematics-V3.XX_

Arduino-CNC-Shield-V3-Layout

Las funciones de los pines extras son los siguientes:

  • Interruptor de límite de pines ha sido duplicado por que cada eje tenga un «Top / +» y «fondo /-«. Esto hace más fácil de instalar dos interruptores de límite para cada eje.(usar con un interruptor normalmente abierto)
  • EStop – estos pines se pueden conectar a un interruptor de parada de emergencia. Esto hace lo mismo que el botón RESET en la placa Arduino. ( también puede ser instalado un botón adicional de emergencia que corta la corriente a toda la maquinaria. )
  • Control del husillo y el refrigerante tiene sus propios pins.
  • Comando Pin externos GRBL  se han quitado lo que le permite añadir botones de pausa/espera, reanudar y abortar.
  • Los pines serie (D0-1) y  los de I2C (A4-5) tienen su propia salida   para futuras ampliaciones. Por ejemplo  I2C se podría implementar software para  controlar cosas como la velocidad del huso o control del calor.
  • Versión 3.00 añadió unos jumpers para configurar el eje 4 (clon el otro eje o pin D12-13), comunicaciones (RX+TX, I2C) y una cabecera de control paso a paso (todos los pines necesitan para ejecutar 4 steppers)

Instalación de hardware

Se deben observar las siguientes advertencias:

  • Inversión de la polaridad de la alimentación o conectar incorrectamente la energía destruirá el  escudo
  •  Siempre asegúrese de insertar conexiones en la a orientación correcta y en la toma adecuada  correctamente
  • El escudo de CNC Arduino es compatible con fuentes de alimentación hasta 36V. Eso significa que todos los drivers de chip paso a paso NO se deben alimentar con  ese valor pues  controladores A4988  no están diseñados para funcionar a 36V de modo que si lo alimenta con ese valor  puede destruirlos.  Alimentación de  36V son para los drivers  como la Pololu DRV8825 que pueden funcionar con + 36V

ESQUEMA CONEXIONES PARA MODULO A4988

A4988

ESQUEMA CONEXIONES PARA MODULO DRV8824/DRV8825

DRV8825

ESQUEMA CONEXIONES PARA MODULO TMC2100

TMC2100

Instalación del software

1) Obtener código GRBL en Arduino

Descargar el código GRBL desde enlace:grblmain.zip descomprimir el archivo y copiar a la carpeta de las bibliotecas de arduino IDE, haga clic en abierto arduino IDE File -> ejemplos -> grblmain -> GRBLtoArduino, elegir la mesa correcta y COM, luego cargar el código de GRBLtoArduino a UNO

2) Instalar software de controlador grbl

Descargar software de controlador grbl desde enlace:GrblController.exe , descarga e instala, abra el software de controlador grbl como sigue

grblcontroller361 (2)

Conectar el  Arduino UNO al PC con cable USB, seleccione el puerto correcto, ajustar la velocidad de Baute como «9600», haga clic en «Abrir», una vez conectado, el botón «Abrir» cambiará a «Cerrar/Reset» con color de fondo rojo. Haga clic en «seleccionar archivo» para seleccionar el archivo, haga clic en «Begin» para empezar a  el grabado  (si  es que los motores están configurados en una maquina CNC   al que se haya acoplado un diodo láser  como por ejemplo esta maquina hecha con piezas de CD’s )

Simplisimo soldador de puntos


En esencia la soldadura por  puntos  se usa intensivamente  en aplicaciones electrónicas  muy variadas destacando el ensamblaje de las células de baterías .La tecnología que hay subyacente    no es nada compleja, pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos  es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolo desde  allí , sus precios van entre los 300€ en adelante.

Puestos  a fabricar un soldador de puntos  nosotros mismos , en  youtube  se pueden ver  una gran cantidad de diseños de soldadores de puntos fabricados de forma casera usando casi siempre viejos transformadores de microondas dado  que son fácilmente obtenibles. A estos  transformadores  se les elimina el secundario de AT  y se rodea con   dos vueltas de cable de gran sección ( al menos de 8mm).Obviamente se  debe  tener  cuidado extremos si se decide seguir por ahí, pues  trabajar incluso con las piezas de  un horno de microondas es extremadamente peligroso  sobre todo por el peligro de descarga del condensador de AT. Además el resultado obtenido  aparte de peligroso  (tenga en cuenta que esta conectado  a la red de c.a) , dado el tamaño del trasnformador,   el conjunto es muy voluminoso  ,ruidoso y dificil de controlar .

Veamos un diseño muy sencillo  cuyos resultado  de  soldadura del pulso simple son igual de buenas que muchos soldadores profesionales  pudiendo llegar hasta , 210A para ser exactos.

Soldador un punto

Este diseño destaca por su simplicidad al  usar  como elemento activo únicamente  un tiristor de potencia de al menos 100 Amp para controlar la descarga del supercondensador.

Por mayor simplicidad ,  incluso en esta configuración  se ha optado  por añadir una pequeña batería  unido a un pulsador normalmente abierto para cebar al tiristor   incluyendo ambos componentes en un pedal  para activar el circuito

Obviamente  al activar el pulsador haremos que el SCR  entre en conducion    permitiendo la descarga de  condensador sobre los electrodos desde el momento en  el que el pulsador se cierre.

Claramente este esquema se puede  mejorar  usado la misma tensión de referencia  , pero dado el poquísimo consumo  y que puede ir integrado en el interruptor de pie  no es una mala opción y desde luego el circuito es bastante sencillo de construir.

Los componentes básicos  necesarios:.

  •  Fuente de alimentación de sobremesa  de 15-16v .Su amperaje depende de los rangos de carga de los condensadores (sobre 5A max ). En el esquema falta la resistencia de carga del condensador en serie (puede ser una bombilla en serie )
  •  SCR de 220v/220Amp (tiristor).Sólo  se necesita uno a menos que desee agregar un segundo conjunto de condensadores y un interruptor de láminas para la soldadura de doble pulso, pero esa opción es  mucho más cara
  • Carga resistencia control – se usa una bombilla  en serie de las usadas en un automóvil como luz de niebla (sobre 5A máximo segundo ~ 40 cargas), lo cual hara  de resistencia  de carga de la bateria de condensadores. Hay personas que eoptan por una resistencia clasica de potencia, pero desde luego una bombilla incandescente es mucho mas simple y economica
  •  Pulsador de pie ( ON/off ) para activar el SCR  para  la  soldadura (yo usé la misma fuente de alimentación de 15v para el interruptor, que está muy bien con un trabajo tan pesado SCR.)
  • Cable de tierra trenzado  terminando en Cobre sólido presentando a un punto en los extremos ( debería esta aislado  por los que sólo asegúrese de que su mano no va a estar en peligro de convertirse en parte del circuito !)
  • Condensador de  aproximadamente ~ 21 + faradios capacidad ( por ejemplo puede usar 10F uno, dos 5F y un 1F  de los usados  en  coche  para audio ). Todos los condensadores van en paralelo y con cables de sección adecuados ( mejor  sobre barras de metal)

 

Nota :  Como nos comenta Joaquin , que este diseño tiene un pequeño inconveniente  debido a que al trabajar en corriente continua  el tiristor  , una vez disparado este queda asi hasta que desconectemos la fuente de CC,  por lo que muchos diseños  para controlar  el pulso ,  optan por usar  transitores para descebar el SCR

Versión doble pulso

Basada en  el  principio  de los soldadores  de un punto , la mejora  del  circuito anterior  consiste en primer lugar en hacer una descarga más pequeña para limpiar la superficie del material de impurezas tales como el petróleo y crear una soldadura débil. El segundo impulso con más energía hace  enlace final. Con el fin de tener un pulso estable durante la descarga  se necesita pues  un condensador  mas grande para el segundo pulso.

Por tanto ademas  de los componentes anteriores , necesitara además :

  •  Segunda fuente de alimentación de sobremesa @15-16v / 5A max usando
  • SCR  220v/220A  (tiristor)
  • Rele reed
  • Condensador de  aproximadamente ~ 21 + faradios capacidad ( por ejemplo puede usar 10F uno, dos 5F y un 1F  de los usados  en  coche  para audio ). Todos los condensadores van en paralelo y con cables de sección adecuados ( mejor  sobre barras de metal)  NOTA :para el primer SCR  se usaría  una capacidad muy inferior (por ejemplo un condensador de 1F)
  • Carga resistencia control – se puede  usar tambien  una bombilla  en serie de las usadas en un automóvil como luz de niebla (sobre 5A máximo segundo ~ 40 cargas), lo cual hara  de resistencia  de carga de la bateria de condensadores. Hay personas que eoptan por una resistencia clasica de potencia, pero desde luego una bombilla incandescente es mucho mas simple y economica

En el esquema anterior como vemos se añade un control del  circuito de descarga por condensador  basado en un tiristor  y un supercondensador. La demora entre un pulso y el siguiente se basa en el retardo producido  por el rele reed al detectar la elevada corriente generada en la primera descarga pues la natural inductancia producida por el pulso de soldadura  hará que los contactos del rele reed se cierren activando el segundo SCR

Al ser un circuito tan básico no hay manera de medir el retardo entre ambos pulsos  que es aproximadamente de 1/4 segundo. Evidentemente con un circuito de demora se podría demorar mucho mas la segunda chispa pero para propósitos  caseros este diseño de  circuito es mas que suficiente

Consejos

  • Cómo electrodos de soldadura   elija un alambre  macizo y limados por el extremo. Tenga en cuenta que son muchos los factores que afectarán a la calidad de la soldadura.
  •  Limpie todas las superficies de soldadura con un limpiador no residuo como alcohol de alto %. Debe optimizar el contacto metal a metal, por lo que debe ser libre de aceites y basura
    para mantener las puntas de soldadura limpia regularmente los presentar a un punto redondeado. El tamaño de este punto afectarán su soldadura: si es  demasiado grande un punto  no soldará completamente, y si es demasiado pequeño  probablemente soplara la punta antes de soldar  el material.
  •  Jugar con diferentes  voltaje y capacidad, utilizando los valores citados  como referencia.
  • En caso de soldar células asegúrese de aplicar la presión adecuada a ambos puntos de contacto y que usted suelda  dentro de la zona centro de la batería . Si se desvía  hacia  el borde exterior de la terminal positiva puede fácilmente romper la célula. No es particularmente peligroso, pero el líquido se derramará. Según las hojas de especificaciones de materiales  células a123 , no contienen productos químicos tóxicos o peligrosos.
  •  Siempre use protección para los ojos, voy tirando chispas en tu rostro durante horas!
  •  Se recomienda la ventilación

[