Sencillo soldador de puntos


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues está muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ). Además  hay tambien un motivo obvio : si no contamos con un  horno microondas¿  vamos a tener que comprar un transformador de microondas  ( nuevo o no)   y que tendremos que desmontar?

 

 

Bien  en un  post  anterior vimos como una alternativa  a  los soldadores de punto basados en transformadores  de microondas era  usar supercondensadores  , pero   son caros  y dificiles de conseguir , así que es bueno explorar otras alternativas como  pueden ser las  baterias de automovil ( nueva  o usada ) como fuente de energía

Como parte de un proyecto de dotar de un nueva  batería  de litio  a un precio razonable   basada  en celdas 18650  para una bicicleta de montaña eléctrica  el autor de este proyecto (Rory ) necesitaba una gran batería de litio  que encajasen  en su presupuesto según sus  especificaciones:

  • Barato: solo se planea si es a bajo  coste
  • Confiable : deberia  poder ofrecer  más de 500 pares de soldaduras por puntos para hacer
  • Fácil y rápido de hacer -:idealmente usando piezas que se pueda  disponer 
  • Relativamente seguro: No hay altos voltajes presentes

Rory necesitaba ser capaz de soldar la tira de níquel a los terminales celulares 18650 para fabricar   su soldador ocasional  .   Los soldadores  18650  de punto están ampliamente disponibles en la red y probablemente valga la pena la inversión si usted tiene la demanda para ello. Sin embargo, como Rory sólo planeaba construir una batería, realizó su propio soldador de puntos  sin tener que adquirir uno comercial.

Para situarnos ,una búsqueda rápida de YouTube nos ofrece  el canal de darkkevind  donde demuestra su soldador basado  en  una batería de coche estándar conectada a un solenoide motor de arranque de moto. El solenoide se activa mediante un pulsador que cambia la potencia a dos electrodos de soldadura hechos de clavos de cobre. Su diseño es funcional  pero como todo en este mundo  se puede mejorar para  hacer un sistema más confiable  como el que vamos a ver en las líneas siguiente con el diseño de Rory.

 

 

Soldador con bateria de 12V 

El diseño de Rory  cuenta con un solenoide de arranque DELCO 130493  como  interruptor   de potencia para conectar  momentáneamente las bornas de la batería a las puntas de soldadura .Como el lector puede adivinar  en realidad   para este proyecto en realidad   puede usar   cualquier solenoide de motor de arranque de 12V  ( incluso aunque sea para motocicleta) .

En este modelo en concreto es  muy interesante   el diseño de los terminales que pueden  ser vinculados muy bien a una abrazadera de terminal directamente a la batería y además el soporte también permite montar el gabinete de electrónica junto a este  .

Como puede apreciarse en la imagen los terminales laterales  son los de interruptor del relé, es decir las conexiones de potencia que conmutará el solenoide  .Obviamente do las  conexiones centrales  son las de la bobina del solenoide ( de ahí su menor dimensión) 

 

Como se puede apreciar los pernos de terminales solenoide de 8 mm se sujetan muy bien en los terminales de la batería y la bobina solenoide está entre el perno pequeño en el soporte derecho y el soporte de montaje

En el  montaje del Rory el  solenoide es controlado por un circuito de temporizador construido alrededor del multivibrador monoestable dual de precisión  CD14538BE  de Texas Instrument que funciona en modo «no refrigerable». 

Como rory no ha compartido la configuración del circuito  vemos   abajo  un multivibrador monoestable usando IC CD4538. Es un IC multivibrador monoestable/aestable de precisión libre de activación falsa. Esto se puede utilizar para varias aplicaciones en las que se requiere un ciclo de sincronización preciso.  CD4538 es el IC multivibrador monoestable/estable de precisión que está libre de activación falsa y es más fiable que el popular temporizador IC 555.

Aquí el IC se conecta como temporizador monoestable de corta duración usando el r1 y el C1 como componentes de sincronización. Con los valores dados, la salida de IC1 permanece baja durante tres minutos. Cambiando el valor de C1 o R1 se pueden obtener varios intervalos de tiempo, que  son los valores   que deberemos ajustar para unos 20ms   ( idealmente 10 y 110 ms a través de un potenciómetro) .

A diferencia de 555 IC en el modo monoestable, aquí en CD4530, la salida de IC se vuelve alta en el encendido y se vuelve baja cuando el pin 5 del gatillo consigue un pulso de transición bajo a alto. Cuando se presiona S1, el pulso de alta marcha activa el IC y su salida baja. Esto impulsa la carga a través del transistor PNP T1. La carga puede ser un LED, zumbador, etc.  Lógicamente para cargas más grandes ( como es en este ejemplo) no basta un simple transistor de pequeña  potencia( como en el esquem  de abajo)  pues la bobina solenoide deberia ser  accionada con un transistor de potencia  como por ejemplo  un mosfet FQP30N06L. 

En la solución final basada en el circuito anterior  y que el autor no ha compartido , además   usa algunos  componentes  pasivos adicionales para eliminar el rebote de un interruptor de pie básico . La bobina solenoide es accionada por un mosfet FQP30N06L  ( con su correspondiente diodo en paralelo)  . Además  el temporizador es ajustable entre 10 y 110 ms a través de un potenciómetro estando el circuito  alimentado por una batería separada de 9V aunque podría ser alimentado por la propia  batería del coche con el desacoplamiento adecuado.

De todos modos aunque no sepamos los valores exactos del esquema  del monoestable  que uso Roru ,    este montaje   se puede comprar ya montado  y probado  (buscar 12v DC Delay Relay Timer) por unos 6€  , lo  cual es importante no sustituye  al delco puesto qeu lso contactos del rele   de este tipo de circuitos  no supera 10A con 220V en ac (2200w) , claramente insuficiente para la corriente de soldadura que sera a 12V pero en CC  

A pesar de la conmutación lenta del solenoide, los contactos permanecerán cerrados durante la misma duración que la corriente que se suministró a la bobina. En este caso  el solenoide tarda alrededor de 5 ms para cerrarse, pero el diodo a través de la bobina mantiene el campo magnético activo, permitiendo   enviar  pulsos precisos en el ajuste mínimo de 10 ms del temporizador

Todo esto está montado en una carcasa de aluminio fundido a presión. Tenga en cuenta que la bobina solenoide está conectada entre el terminal de tornillo ‘S’ y el soporte de montaje. El terminal ‘I’ es el contacto NC del solenoide, no una conexión de bobina…

Otros aspectos interesantes constructivos  es  que los electrodos se fabrican utilizando clavos de cobre soldados a longitudes cortas de cable trenzado de 8 awg. Las uñas de cobre se pueden afilar rápidamente utilizando un archivo, por lo tanto, no requieren que sean reemplazables. Unas pocas capas de termorretráctil proporcionan aislamiento térmico y eléctrico.

 

 

Como en las primeras pruebas se hicieron con una batería nueva y la resistencia interna es muy baja, el  resultado fueron  pulsos de corriente muy altos que destruyen las tiras de níquel si el pulso superaba los 20 ms ,  Rory  experimentó con una «resistencia limitante de corriente» formada por una longitud de alambre de relleno de soldadura TIG de 1,6 mm lo cual le  permitía ejecutar pulsos de soldadura de corriente más baja y así encontró que el resultado era una soldadura mucho más fuerte con  un pulso de corriente más corto (  usó un conductor con una longitud aproximada de 50 cm).

Como después del primer pulso la resistencia estaba muy caliente, aumentando la resistencia lo que  hizo que el rendimiento no fuese fiable en las siguientes soldaduras   la solución fue sumergir el cable en agua  mediante un buen vaso de plástico Ikea ( con una base muy gruesa y algunos pernos M8 que aseguraron todo juntos y mantuvieron el agua dentro).

 

 

 

Cabe señalar algunos puntos interesantes de este montaje:

  • Un pulso de alrededor de 40ms produce las mejores soldaduras con esta  configuración. Arrancar la tira de níquel de la 18650 dejaría la parte soldada todavía unida a la batería rasgando el níquel circundante.
  • La batería del coche debe estar conectada a un cargador durante el uso si se hace una gran cantidad de soldaduras. De lo contrario, el voltaje caerá, causando corriente de soldadura poco fiable. Puede usarse  un cargador de corriente constante 5A que se puede dejar conectado durante la soldadura aunque aunque un cargador de 2A más o menos estaría bien.
  • Se requiere una presión uniforme firme en cada electrodo para hacer que cada soldadura por puntos sea de igual resistencia. Los electrodos de soldadura se calientan mucho lo cual debe tener en cuenta para no quemarse .
  • A medida que el agua que enfría la resistencia se calienta hacia su punto de ebullición, no puede eliminar el calor tan rápidamente de la resistencia debido al efecto Leidenfrost (donde las burbujas de vapor aíslan el alambre). Esto permite que la resistencia funcione más caliente, lo que reduce la corriente de soldadura. Suba  el temporizador de pulso a 50mS en este punto. El agua podría ser reemplazada, o un recipiente más grande utilizado para contener el agua de refrigeración.
  • Relativamente el proyecto es  seguro ,aunque es recomendable usar gafas de seguridad debido a las chispas  ocasionales. Guantes también sería una buena idea, así como trabajar fuera lejos de cualquier cosa inflamable.

 

 

Fuente original en  hackaday.io 

Medidor de Consumo Eléctrico CHINT + ESP8266 y Matrix Led MAX7912


En esta post  volveremos a un tema recurrente en este blog: la medición del consumo eléctrico de forma invasiva en un ambiente doméstico ,pero esta vez  usaremos  el  medidor CHINT DDS666,lo que técnicamente es un medidor residencial o residencial tradicional  pero con  una salida óptica  (también llamada   salida de pulsos)-

Precisamente por esa característica  de salida óptica, dado que en el mercado existe una amplia variedad de dispositivos con este tipo de salida   , esta propuesta que vamos a ver es perfectamente viable  también para  todo tipo de contadores con salida de pulso, como la mayoría de los contadores modernos  para uso personal  que se comercializan para fijar en carril DIN en el cuadro de distribución de c.a. cuya velocidad de flash de salida de prueba es de  500 impulsos por kWh ( es decir cada impulso corresponde a un 2W/H)

Lógicamente dado que la relación de pulsos/kwh  es diferente  según el contador , tendremos que ajustar el código de nuestro  programa para que el resultado sea exacto , pero insistimos: como esta relación es conocida  no es demasiado complejo ajustar   el código para el contador que elijamos

Advertencia: Se recomienda precaución ya que este tipos de proyectos implican riesgo eléctrico o electrocución ya que se utiliza un  equipo conectado de 220VCA -120 VCA por los que  se requieren conocimientos básicos  de electricidad , por favor esté documentado previamente en este sentido.

Conviene recordar que por seguridad cuando trabaje en cuadros de baja tensión siempre trabaje cortando la alimentación general y asegúrese después con un polímetro o un busca-polos que efectivamente no hay tensión c.a.

Obviamente si no se tiene experiencia en cableados de baja tensión o no esta seguro de la instalación , le  recomendamos encarecidamente  que este tipo de trabajos lo realice un instalador  o un electricista pues  manejar por error tensiones de ca puede ser peligroso  .

 

El circuito

 

El viejo modelo CHINT DSS66 permite la medición de energía activa o potencia activa en instalaciones domésticas. Es  un registrador ciclométrico, registrando medidas siempre positivas que evitan pérdidas fraudulentas de conexiones. Como se trata de un medidor invasivo que se requiere para abrir nuestro circuito eléctrico, se capturan los pulsos generados, Genera 3200 imp / kWh, que nos permitirá medir la potencia y el consumo de energía. El medidor tiene un optoacoplador para aislar la salida de pulso para realizar la medición. 

 Algunos medidores tienen una salida de pulso asociada con el consumo eléctrico, en el caso de este medidor específico, cada vez que se enciende el diodo led frontal, envía un pulso que activa un optoacoplador para la salida de pulsos terminales (11 +) (12 -) y el medidor integrado realiza la medición e integración de kilovatios / hora y enviando pulsos según el consumo siendo la relación de  este medidor  de 3200 imp «impulsos» / kwh,.

Este medidor tiene 2 características:

  • Es invasivo, es decir el circuito debe abrirse para colocar en serie el medidor entre la fuente y la carga
  • No tiene un protocolo de comunicación en serie, siendo la relación de salida de pulsos de 3200imp / kwh.

Gracias a la ayuda de un microcontrolador «Arduino, ESP8266 o ESP32»  podemos medir los watios consumidos. La elección precisamente de un  ESP8266 12E   o Arduino Nano Clone   , de hecho dependerá de si necesitamos enviar los datos  o no a un servidor en la nube  o simplemente queremos mostrar la información en un display 

Como contábamos al   principio de este post el modelo  DSS66 es algo anticuado por lo que es perfectamente viable usar   de contadores con salida de pulso de carril DIN , como la mayoría  que se comercializan para fijar en el cuadro de distribución de c.a. cuya velocidad de flash de salida de prueba es de  500 impulsos por kWh ( es decir cada impulso corresponde a un 2W/H)

 

 

Durante las primeras pruebas  se conectaron el GPIO directamente al medidor,dado que el medidor de mentón tiene su propio optoacoplador, pero por alguna razón cada vez que se genera un pulso, el módulo ESP8266 grababa 2 pulsos, algo que no sucedió con Arduino .

La solución para el problema es  aislar la salida del watímetro mediante la adición de un optoacoplador 4n25 y una fuente de alimentación de 5v :de esta manera sólo llegaría un pulso y ademas por seguridad se aislan los circuitos .

Para las primeras  pruebas   se propone usar un  ESP8266 y/o arduino y solo  haremos la medición de Active Power, por ejemplo  utilizando una  bombilla de 45W, para tener una carga fija que represente un «hogar».

 

Lista de componentes

  • Medidor monofasico CHINT DDS666 u otro medidor que genere pulsos
  • ESP8266 12E   o Arduino Nano Clone
  • Fuente de alimentación 5v
  • Matrix led x4 MAX7912
  • Protoboard 830 Puntos
  • Optoacoplador 4n25

 

 

Código IDE de Arduino

 

El código para el módulo ESP8266 por ahora no tiene ninguna rutina de comunicación de envio  hacia  el Cloud, así que por el momento visualizaremos la potencia con un Matrix led x4 MAX7912 pero se puede usar un display de 7 segmentos  o  simplemente la salida serie

El medidor solo tiene una salida de pulso,por lo que  para realizar el cálculo del consumo eléctrico, capturamos a través de una interrupción en el GPIO 5 (D1), técnicamente utilizando el factor apropiado del medidor 3200imp / kWh = 3.2, se calcula la potencia activa instantánea.

Una diferencia horaria entre pulsos y basada en 1 hora = 3600 s. potencia = (3600000000.0 / (pulseTime – lastTime)) / 3.2

Este cálculo se realiza en la interrupción, solo cada vez que se registra un nuevo pulso.

Inicialmente, gracias a OpenEnegyMonitor, por la documentación, el cálculo se tomó de una de las versiones anteriores de su página

 

Este es el codigo usado para probar la funcionlidad 


<SPI.h>
<bitBangedSPI.h>
<MAX7219_Dot_Matrix.h>
const byte chips = 4;

unsigned long lastMoved = 0;
unsigned long MOVE_INTERVAL = 20; // mS
int messageOffset;
int counters=0;


// 12 chips (módulos de pantalla), SPI de hardware con carga en D10


MAX7219_Dot_Matrix display (chips, 2); // Chips / LOAD

char message [64] = «mensaje  a mostrar inicial ….«;
char myCharMessage[64];
String Message;

// Número de pulsos, utilizados para medir la energía.
long pulseCount = 0;


// Se usa para medir la potencia.
unsigned long pulseTime,lastTime,diffTime;
long timeout_reset=0;


//power and energy
double power elapsedkWh,watts;

// Número de pulsos por wh – encontrado o configurado en el medidor.

//1000 pulsos/kwh = 1 pulso por wh 3200 imp = 3.2

float ppwh = 3.2     ; 

int First_pulse = 0;
///***********************************************************************************


const byte interruptPin = 5; /// pin 5 D1


<Ticker.h>
Ticker flipper;


void flip() /// displayed
{

//bucle para almacenar en un array el mensaje de bienvenida

for (int i=0;i<64;i++)
{
message[i] = myCharMessage[i];
}
updateDisplay ();

}

 

 

Y este es el cuerpo del programa_

 

 

void updateDisplay ()
{
display.sendSmooth (message, messageOffset);
// la próxima vez muestra un píxel en adelante

if (messageOffset++ >= (int) (strlen (message) * 8))
messageOffset = – chips * 8;
} // end of updateDisplay

void loop ()
{

// DEBUG SERIAL
 Serial.print(«watts = «);
 Serial.println(watts,4);

////las cadenas se deben cargar a la variable (Message) para que se visualicen en la matriz

//Message =»Power «+String(watts)+» W :)»;
Message =String(watts)+»W»;

//sacamos por consola la potencia
Serial.println(Message);

int L_Message = Message.length(); ///length String
String(Message).toCharArray(myCharMessage, L_Message+1);

/// String to char array  y scroll
flipper.attach(0.1, flip);

// restardo


delay(100);


} //fin del bucle

 

 

 

En el siguiente video  podemos ver el circuito en acción:

 

 

 

 

Mas informacion en  https://www.instructables.com/id/Electric-Consumption-Meter-CHINT-ESP8266-Matrix-Le/