Motorización de forma sostenible de su embarcación de recreo


Por poco razonable  que nos pueda resultar, la movilidad eléctrica ha llegado por sus innegables ventajas frente a los  clásicos motores de combustión interna , como puede ser la ausencia de emisiones contaminantes, nulo mantenimiento  ,altísima  fiabilidad ,ni  una  sóla pieza móvil (nada de correas, filtros, etc que complican la vida), no generan manchas de aceite, no generan gases de escape,sin ruido ni vibraciones, no hay mantenimiento,no hay monóxido de carbono,no hay depósito de combustible ( que  por cierto  seguirá aumentando de precio)  ,etc.   

Dentro de la movilidad marina , es normal  que el “movimiento a lo  eléctrico” también sea seguido con interés   por idénticos motivos , en las que como es normal destaca la mayor fiabilidad y el coste de cada milla recorrida frente a los sistemas  convencionales ,pero sin olvidar  que estaremos ayudando claramente a nuestro planeta  siempre que usemos métodos sostenibles para cargar las baterías .

En efecto las bondades de los motores electricos marinos las conocen bien los aficionados a la pesca  ya que son indispensables para desplazarse con una embarcación sin ruidos que asusten a peces ,pero la tendencia es tan clara  que no solo existen motores para maniobra eléctricos o para pesacar , sino que tambien existen motores marinos completamente operativos para reemplazar  todos los motores marinos( es decir  tanto  intraborda como fueraborda).

Hoy en día  ya de hecho  existen muchos motores  intraborda marinos que se pueden encontrar comercialmente   , normalmente para altas potencias  diseñados para reemplazar los viejos motores de  combustión diesel.

motor

En cuanto a motores intraborda resumidamente estas son algunas de  sus características:

  • Potencias :desde  6  a 100 HP
  • Alimentación : desde 36v hasta 144V
  • Corriente : desde 70 hasta 270Amps

Igualmente también existen motores fueraborda eléctricos en un abanico muchísimo mas amplio que los intraborda  dada su gran versatilidad . Como característica llamativa suelen  incorporar el controlador del motor( normalmente del tipo bruslless )  dentro de la propia carcasa y también suelen ser de menor potencia que los motores  intraborda. Incluso hay modelos que incluyen la bateria dentro del propio cuerpo del motor

La  potencia de propulsión de estos  motores  se suele medir  en empuje (Fuerza sobre el barco x velocidad del barco)   normalmente expresada en libras, siendo lo normal  valores desde  las 20 libras hasta las 90 libras o más.

Ademas del empuje medido en la hélice , es muy interesante  saber otras formas de medir la potencia:

  • Potencia de entrada:es la  potencia consumida por el motor  en watios siguiendo la fórmula de la potencia eléctrica P=V*I (intensidad x tensión) .  Para motores fueraborda de gasolina y motores fueraborda eléctricos convencionales no se suele indicar la potencia de propulsión pero este parámetro también puede determinarse para los motores fueraborda de gasolina (volumen de paso de gasolina x energía contenida en el combustible).
  • Potencia en el eje : es la potencia medida en el eje de la hélice .De hecho una  medida muy parecida usada  para la indicación de potencia de los motores fueraborda de gasolina  es el par motor x velocidad angular que se expresa en CV o en kW. No contempla las pérdidas de la hélice, que pueden oscilar entre el 30 y el 80%
  • Potencia de propulsión:indicación de la potencia en grandes embarcaciones (empuje x velocidad). Se expresa en CV o en kW  y contempla todas las pérdidas(incluidas las de la hélice), por lo que indica la potencia efectiva de un motor.

Una gran diferencia frente a los motores térmicos es que los motores eléctricos son capaces de alcanzar la misma potencia de propulsión que los de combustión con una potencia en el eje considerablemente menor porque  pueden propulsar las hélices de forma más eficiente debido a que ofrecen una excelente curva del par motor  en un intervalo más amplio del régimen de giro , por lo que son ideales para propulsar hélices con eficacia incluso en categorías bajas.
Esta cualidad permite a los motores eléctricos accionar las hélices –incluso en las gamas de potencia más bajas– de manera mucho más eficiente que los motores de combustión. Como consecuencia, es posible que el empuje de la hélice en las categorías bajas de CV sea el triple que el de un fueraborda de gasolina.

Sobre el modo  de calcular   la equivalencia en CV  aplicaremos la   formula de la potencia , dividiendo por el   equivalente a 1CV(763W)   ,multiplicando el resultado pro el rendimiento ( si se conoce)

Es decir por ejemplo para un motor de 12V que consume como máximo 80Amp, su potencia en CV seria:

P= V*I= 12 V x 80 A = 960 W

P(CV)=  960 W / 736 W/CV = 1,3 CV

Ese ultimo resultado se multiplicaría  por el rendimiento del conjunto el cual depende claramente de marca modelo del motor:

  • 44-56%  = motores eléctricos de alta eficiencia
  • 30-35%= motores eléctricos fueraborda convencionales
  • 18-22% =motores de pesca
  • 5-15% =motores fueraborda de gasolina

Elección de  la Batería

No se deben  usar  baterías de arranque de automóvil convencionales con  los  motores eléctricos  fueraborda pues las baterías de arranque están diseñadas para entregar la energía almacenada en breves descargas de alta intensidad  que se realizan de manera muy espaciada (justo en el arranque) . Si a una batería de arranque le solicitamos una entrega de por ejemplo, 25 A de manera continuada, esta batería no será capaz de entregarnos la energía que tiene acumulada (los amperios-hora) ya que esta entrega continuada la “asfixia” al cabo de un rato.

En   lugar  de usar  baterías convencionales de Pb , se deben usar  baterías de gel de plomo  o, mucho mejor de ciclo profundo, a ser posible de tecnología AGM, diseñadas para este tipo de trabajo,las cuales  sí serán capaces de entregar la intensidad     solicitada durante el tiempo previsto y durarán muchos ciclos de carga-descarga, las cuales las hace ideales para instalaciones solares  y para embarcaciones de recreo.

51AO+9H+NTL

Para calcular la intensidad en  amperios que consume su motor, se puede  usar la siguiente fórmula:

Empuje en libras / Voltaje del motor x 12 = Amperios que consume.

Por ejemplo para motores de 55 libras de empuje alimentados  a las tensiones de 12, 24 o 36  voltios  respectivamente  tendremos:

  • 55 libras de empuje /12 Voltios x 12 = 55 Amperios
  • 55 libras de empuje /24 Voltios x 12 = 27,5 Amperios
  • 55 libras de empuje /36 Voltios x 12 = 18,3 Amperios

Observe de estos datos una característica muy  interesante : para igual empuje si usamos tensiones mas altas  de alimentación  el consumo será menor

Es interesante destacar en este punto que aunque tengamos un motor de 55 libras de empuje, probablemente no lo vamos a usar continuamente al 100% de potencia, por lo que deberemos estimar el % de potencia media usada.

Asimismo en función del número de horas continuadas  que desea de autonomía,se puede calcular la batería necesaria siguiendo la siguiente formula:

Batería necesaria = consumo en amperios x % de potencia x horas de funcionamiento x 1,3

Por ejemplo: Con un motor que consume 55 Amperios, que usaremos a una media del 75% de su potencia y deseamos una autonomía de 3 horas necesitaremos una bateria de la siguiente capacidad:.

Capacidad= 55 A x 0,75 x 3 h x 1,3 = 160,88 Ah

Una ultima nota : Para mantener la capacidad de la batería y evitar estropearla, es importante recargar la batería antes de que se haya agotado completamente.

Elección del motor fueraborda electrico

A grandes rasgos , diremos que para mover una pequeña neumática de menos de cuatro metros,   con un motor eléctrico de hasta 40 libras nos bastaría. Podremos movernos con soltura incluso cargando la embarcación. Si la embarcación es mayor  como un velero de 6 o metros  o es una clásica de fibra, necesitamos los de mayores potencias para moverla sin problemas ( a mayor peso, más libras de empuje).

  • Motor de empuje de 18 libras es ideal para kayaks, canoas y bote a 6 ‘y se moverán
    a 3 o 4 mph en la mayoría de las condiciones
  • Motores de  40 libras  son ideales para el pescador en los barcos en lugares protegidos .Moverá la mayoría de los barcos pesqueros del tipo de la pesca en 3 a 4 mph en condiciones razonables
  • Motores  de 55 lb es na opción popular para los pescadores en aguas más grandes y da ese poquito extra de poder que puede ser requerido si el viento pica .Debe mover la mayoría de los barcos de tipo de pesca de tamañol 12 a 16 con una velocidad entre 4 o 5 mph en condiciones razonables
  • Motores de  62  lb es un nuevo tamaño de fueraborda y es  ideal para las aguas más grandes, el mar y la pesca más grande en barcos
  •  Los motores de 86  lb suelen ser de 24 voltios (2 baterias de 12 voltios en serie) y tienen un rango de usos comerciales y puede mover barcos grandes

Jago – Motor fueraborda eléctrico 86 lb – 2.050 kg

Como   ejemplo de motor fueraborda  de gran potencia a  un precio ajustado (140€en   Amazon)destaca  el modelo   86 LBS ETBM04-1BP  del fabricante Jago destacando por una gran  potencia de propulsión de aprox. 2050 kg( 86 libras ) .

La batería con el mismo rendimiento dura más tiempo gracias a la alta eficiencia energética del motor  ,el cual ademas puede ser monitorizado fácilmente gracias a que  lleva integrado un voltímetro con 10 LED .

El motor tiene 5 marchas hacia delante y 3 hacia atrás y se puede usar en aguas saladas pero es necesario limpiarlo minuciosamente después del uso .La hélice con profundidad de inmersión es  regulable y  la presión de la dirección también es regulable (la caja de control giratoria  rota 360º ).

También este motor  incluye sistema de inclinación rápida con  10 niveles de inclinación, ajusta el ángulo o eleva el motor sobre el agua

Resumiendo esta son las características mas destacables:

  • Tamaño (L/An/Alt): aprox. 58/19/130 cm
  • Tamaño del eje (L): aprox. 1016 mm
  • Peso: aprox. 10,27 kg
  • Voltaje: aprox. 24 V  
  • Propulsión/potencia: hasta aprox. 1.164 kW /aprox. 39,4 CV 
  • Potencia de propulsión: aprox. 2.050 kg
  • Caja de control: rota hasta aprox. 360º
  • 5 marchas hacia delante y 3 hacia atrás 
  • la velocidad de este motor se puede ajustar con más precisión que la del motor de combustión

Jilong  ETM 55 LBS 

Hablamos de un  potente motor eléctrico fueraborda   de un precio contenido ( su fabricación china lo delata) ,muy  ligero (unos 9kg ) , ideal para todas las embarcaciones de hasta 1800 kg de peso ( es decir valdria  para embarcacion  de 6 a 7mt)

Funciona con una batería de vehículo de 12 V AGM  (recomendación: mín. 80 Ah)

Cuenta con  5 marchas hacia adelante y 3 hacia atrás

Su punto fuerte es  una fuerza de empuje de 55 lbs (25 kp / 245 N)  con la que alcanzará su objetivo fácilmente

El bloqueo se lleva a cabo con 2 tornillos de tope y 2 tuercas de mariposa grande, de modo que no se precisa de herramientas para el montaje

yilon.png

Aunque puede ser discutible algunos aspectos  lo que es innegable que este modelo para la potencia que desarrollo pocos modelos encontremos en el mercado por ese precio pues este  modelo se puede conseguir  por  unos 250€ con gastos de envio incluidos  en Amazon.

Resumiendo esta son las características mas destacables:

  • Alimentación: 12 voltios
  • Consumo (potencia de entrada): 53 A
  • Potencia (potencia de salida): 636 vatio
  • Línea de producto: Jilong Watercraft
  • Potencia / fuerza de empuje:: 55 lbs
  • Control: One Hand Tiller Twist
  • Marchas: 5 hacia adelante / 3 hacia atrás

vidaXL  P37 86 libras (39 kg)

Este motor de arrastre es casi completamente silencioso y no contamina. Cada vez son más las áreas que permiten sólo a los barcos con motores eléctricos, por lo tanto, un motor eléctrico es la mejor opción.

Este silencioso motor fuera de borda tiene un empuje de 86 libras (39kg)  y una longitud del eje de 101,6 cm.

Se puede conectar fácilmente a la embarcación y conectado a una batería (no incluida) de  2 x 12V / 80A (gel o AGM), que será adecuada para unas 3-4 horas de navegación 

El motor cuenta con luces indicadoras de la batería, pudiendo ver cuando la batería está a punto de descargarse.

Otro aspecto es que el motor puede girar a 360 ° y tiene 8 velocidades diferentes, 3 de ellas inversas. Incluso para evitar problemas en aguas poco profundas, es posible plegar el motor, siendo ademas el mango de dirección ajustable.

vidaxl.png

Este modelo es uno de los mas caros de esta comparativa ( casi 300€) pero es importante destacar el acabado que  es  de los mas  destacado junto con su alta potencia de empuje

Resumiendo esta son las características mas destacables:

  • Longitud del eje: 101,6 cm
  • Fuerza de empuje: 86 libras (39 kg)
  • Motor giratorio a 360 grados: si
  • Número de velocidades de avance: 5
  • Número de velocidades inversas: 3
  • Potencia máx: 1152 W
  • Resistente a aguas saladas: si
  • Indicadores de batería: si
  • Conexión: 24 voltios

Bison –  (62 ft / lb 12v)

Este modelo aunque es de relativa media potencia  destaca  por su calidad  y  por incluir  2 hélices ( es decir lleva una hélice  de repuesto)

Cuenta con 5 marchas adelante y 3 marcha atrás sin engranajes.

Presume de estar fabricado en UK de modo que según el fabricante hablan de que es  prácticamente indestructible gracias a la  composición del eje más fuerte que el acero y que ademas flexiona en caso de impacto

Incluye un tratamiento de anticorrosión

Sobre el soporte del motor lleva e bloqueo de la palanca duradero (NO se   rompe, no se retuerce ni se oxida)  dos veces más fuerte que los soportes convencionales.

Cuenta con la función » soower Prop»   de  diseño patentado que sirve pora alejar embolsamientos o malas hierbas sin agotar la valiosa energía.bison.png
Resumiendo esta son las características mas destacables

  • Mount: Bloqueo de la palanca soporte espejo de popa ajustable
  • Control: ext Twist timón
  • Empuje Max: 62Lb/28 kg)
  • Max Amp Draw: 58 Amperio
  •  Tension alimentacion s: 12 V
  • Marchas: 5 adelante y 3 marcha atrás
  •  Peso: 12 kg

Y por cierto en este vídeo se puede ver el motor en acción

Simplisimo soldador de puntos


En esencia la soldadura por  puntos  se usa intensivamente  en aplicaciones electrónicas  muy variadas destacando el ensamblaje de las células de baterías .La tecnología que hay subyacente    no es nada compleja, pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos  es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolo desde  allí , sus precios van entre los 300€ en adelante.

Puestos  a fabricar un soldador de puntos  nosotros mismos , en  youtube  se pueden ver  una gran cantidad de diseños de soldadores de puntos fabricados de forma casera usando casi siempre viejos transformadores de microondas dado  que son fácilmente obtenibles. A estos  transformadores  se les elimina el secundario de AT  y se rodea con   dos vueltas de cable de gran sección ( al menos de 8mm).Obviamente se  debe  tener  cuidado extremos si se decide seguir por ahí, pues  trabajar incluso con las piezas de  un horno de microondas es extremadamente peligroso  sobre todo por el peligro de descarga del condensador de AT. Además el resultado obtenido  aparte de peligroso  (tenga en cuenta que esta conectado  a la red de c.a) , dado el tamaño del trasnformador,   el conjunto es muy voluminoso  ,ruidoso y dificil de controlar .

Veamos un diseño muy sencillo  cuyos resultado  de  soldadura del pulso simple son igual de buenas que muchos soldadores profesionales  pudiendo llegar hasta , 210A para ser exactos.

Soldador un punto

Este diseño destaca por su simplicidad al  usar  como elemento activo únicamente  un tiristor de potencia de al menos 100 Amp para controlar la descarga del supercondensador.

Por mayor simplicidad ,  incluso en esta configuración  se ha optado  por añadir una pequeña batería  unido a un pulsador normalmente abierto para cebar al tiristor   incluyendo ambos componentes en un pedal  para activar el circuito

Obviamente  al activar el pulsador haremos que el SCR  entre en conducion    permitiendo la descarga de  condensador sobre los electrodos desde el momento en  el que el pulsador se cierre.

Claramente este esquema se puede  mejorar  usado la misma tensión de referencia  , pero dado el poquísimo consumo  y que puede ir integrado en el interruptor de pie  no es una mala opción y desde luego el circuito es bastante sencillo de construir.

Los componentes básicos  necesarios:.

  •  Fuente de alimentación de sobremesa  de 15-16v .Su amperaje depende de los rangos de carga de los condensadores (sobre 5A max ). En el esquema falta la resistencia de carga del condensador en serie (puede ser una bombilla en serie )
  •  SCR de 220v/220Amp (tiristor).Sólo  se necesita uno a menos que desee agregar un segundo conjunto de condensadores y un interruptor de láminas para la soldadura de doble pulso, pero esa opción es  mucho más cara
  • Carga resistencia control – se usa una bombilla  en serie de las usadas en un automóvil como luz de niebla (sobre 5A máximo segundo ~ 40 cargas), lo cual hara  de resistencia  de carga de la bateria de condensadores. Hay personas que eoptan por una resistencia clasica de potencia, pero desde luego una bombilla incandescente es mucho mas simple y economica
  •  Pulsador de pie ( ON/off ) para activar el SCR  para  la  soldadura (yo usé la misma fuente de alimentación de 15v para el interruptor, que está muy bien con un trabajo tan pesado SCR.)
  • Cable de tierra trenzado  terminando en Cobre sólido presentando a un punto en los extremos ( debería esta aislado  por los que sólo asegúrese de que su mano no va a estar en peligro de convertirse en parte del circuito !)
  • Condensador de  aproximadamente ~ 21 + faradios capacidad ( por ejemplo puede usar 10F uno, dos 5F y un 1F  de los usados  en  coche  para audio ). Todos los condensadores van en paralelo y con cables de sección adecuados ( mejor  sobre barras de metal)

 

Nota :  Como nos comenta Joaquin , que este diseño tiene un pequeño inconveniente  debido a que al trabajar en corriente continua  el tiristor  , una vez disparado este queda asi hasta que desconectemos la fuente de CC,  por lo que muchos diseños  para controlar  el pulso ,  optan por usar  transitores para descebar el SCR

Versión doble pulso

Basada en  el  principio  de los soldadores  de un punto , la mejora  del  circuito anterior  consiste en primer lugar en hacer una descarga más pequeña para limpiar la superficie del material de impurezas tales como el petróleo y crear una soldadura débil. El segundo impulso con más energía hace  enlace final. Con el fin de tener un pulso estable durante la descarga  se necesita pues  un condensador  mas grande para el segundo pulso.

Por tanto ademas  de los componentes anteriores , necesitara además :

  •  Segunda fuente de alimentación de sobremesa @15-16v / 5A max usando
  • SCR  220v/220A  (tiristor)
  • Rele reed
  • Condensador de  aproximadamente ~ 21 + faradios capacidad ( por ejemplo puede usar 10F uno, dos 5F y un 1F  de los usados  en  coche  para audio ). Todos los condensadores van en paralelo y con cables de sección adecuados ( mejor  sobre barras de metal)  NOTA :para el primer SCR  se usaría  una capacidad muy inferior (por ejemplo un condensador de 1F)
  • Carga resistencia control – se puede  usar tambien  una bombilla  en serie de las usadas en un automóvil como luz de niebla (sobre 5A máximo segundo ~ 40 cargas), lo cual hara  de resistencia  de carga de la bateria de condensadores. Hay personas que eoptan por una resistencia clasica de potencia, pero desde luego una bombilla incandescente es mucho mas simple y economica

En el esquema anterior como vemos se añade un control del  circuito de descarga por condensador  basado en un tiristor  y un supercondensador. La demora entre un pulso y el siguiente se basa en el retardo producido  por el rele reed al detectar la elevada corriente generada en la primera descarga pues la natural inductancia producida por el pulso de soldadura  hará que los contactos del rele reed se cierren activando el segundo SCR

Al ser un circuito tan básico no hay manera de medir el retardo entre ambos pulsos  que es aproximadamente de 1/4 segundo. Evidentemente con un circuito de demora se podría demorar mucho mas la segunda chispa pero para propósitos  caseros este diseño de  circuito es mas que suficiente

Consejos

  • Cómo electrodos de soldadura   elija un alambre  macizo y limados por el extremo. Tenga en cuenta que son muchos los factores que afectarán a la calidad de la soldadura.
  •  Limpie todas las superficies de soldadura con un limpiador no residuo como alcohol de alto %. Debe optimizar el contacto metal a metal, por lo que debe ser libre de aceites y basura
    para mantener las puntas de soldadura limpia regularmente los presentar a un punto redondeado. El tamaño de este punto afectarán su soldadura: si es  demasiado grande un punto  no soldará completamente, y si es demasiado pequeño  probablemente soplara la punta antes de soldar  el material.
  •  Jugar con diferentes  voltaje y capacidad, utilizando los valores citados  como referencia.
  • En caso de soldar células asegúrese de aplicar la presión adecuada a ambos puntos de contacto y que usted suelda  dentro de la zona centro de la batería . Si se desvía  hacia  el borde exterior de la terminal positiva puede fácilmente romper la célula. No es particularmente peligroso, pero el líquido se derramará. Según las hojas de especificaciones de materiales  células a123 , no contienen productos químicos tóxicos o peligrosos.
  •  Siempre use protección para los ojos, voy tirando chispas en tu rostro durante horas!
  •  Se recomienda la ventilación

[