Cómo construir un banco de energía con supercondensadores.


Recientemente se ha introducido en el mercado los «supercondensadores» o lo que es lo mismo condensadores de gran capacidad pero que mantienen prácticamente el mismo factor de forma que los condensadores electrolíticos que estamos acostumbrados a usar en electronica . 

Un aspecto muy diferenciador  de esta nueva tecnología  es que gracias a esta se puede  almacenar energía sin reacciones químicas , lo cual permite que los súpercondensadores se carguen y descarguen mucho más rápido que las baterías y debido a ello  no sufren el desgaste causado por las reacciones químicas, también durando mucho más tiempo (como sabemos a diferencia de los condensadores ordinarios, las baterías almacenan energía en una reacción química, y debido a esto, los iones se insertan realmente en la estructura atómica de un electrodo : a diferencia de un condensador, los iones simplemente “se adhieren”.)

Normalmente si  descargamos nuestra batería del coche a menudo e intentamos arrancar nuestro coche una vez más ,esto  causará más daño a la batería del coche y eventualmente  no cargará de nuevo , hasta que llegue un tiempo rodando otra vez. Sin embargo esto no es cierto para los super-condensadores: por ejemplo un condensador tradicional del tamaño de una batería de célula 18650  , tiene una capacidad de aproximadamente 20 microfaradios, pero si tomamos un supercondensador  de tamaño similar, este  puede llegar a tener una capacidad de 300 Farads lo que  significa que para la misma tensión, el supercondensador  podría en teoría almacenar hasta 15 millones de veces más energía.

 A pesar  del gran avance ,sin embargo no todo son ventajas en los condensadores pues un condensador típico de 20 microfaradios sería capaz de manejar hasta 300 voltios, mientras que un ultracondensador solo puede llegar  a soportar  2,7 voltios, lo cual significa que  si se usa un voltaje más alto, el electrolito dentro del supercondensador comienza a descomponerse  y podría por tanto llegar a destruirse: por este motivo en realidad un super-condensador tiene la capacidad de almacenar alrededor de 1.500 veces la energía de un condensador de tamaño similar.

Por todo esto los supercondensadores  aunque  el campo de aplicación es muy grande : alimentación de emergencia ideal para CMOS, RAM, VCR, radio, televisión, teléfono, instrumentos inteligentes, datos de conducción, tres ICs, relojes electrónicos, linternas LED, dispositivos inteligentes, motores de juguetes, pantalla DC, USV industrial, válvula magnética, IC, reflectores LED, etc.    deberíamos  tenemos  tener en cuenta algunas consideraciones ya comentadas antes de proceder a  usarlos.

Preparación de un supercondensador

Como hemos ya comentado los supercondensadores deben  ser cargados SIEMPRE con circuitos de carga balanceadas pues sin estos corremos el riesgo de destruirlos .No obstante si piensa que son complejos no es así puesto que  estos, circuitos son asequibles de bajo costo  , sencillos ( en realidad hablamos de  un simple circuito de conmutación que no deja pasar la tensión de carga al condensador por encima del umbral )  y  son  muy fáciles de instalar pues van encima de cada condensador ya que están diseñadas con la misma forma para colocar estos justo encima y dar continuidad eléctrica ( y carga ) al conjunto

Por ejemplo si conectamos 5 supercondensadores en serie a 12v  el  voltaje no se dividirá por igual entre los diferentes terminales de los condensadores (2.2V),lo cual ya no está dando una pista de sus limitaciones especialmente a la hora de cargarlos puesto que en caso de asociación serie ,  hasta que cada supercondensador esté completamente cargado,  el voltaje en los extremos de cada condensador subirá y bajará casi como en vumetro de leds precisamente :es precisamente esta la razón  por la que  debemos usar un circuito de protección que proteja los condensadores labor que realizan las placas balanceadoras las cuales mantiene el voltaje entre los condensadores entre 2.7V o menos , es decir los mantiene en  la zona segura de funcionamiento segura cortando la tensión de carga cuando se supera ese valor protegiendo así de este modo al supercondensador

Estas placas por tanto nos descargan de un  trabajo tedioso  pues para cargar un simple condensador de 2.7V 500F   con 2.4 v de forma segura sin usar una placa balanceadora deberíamos conectar un voltímetro y un amperímetro simultáneamente durante unos 30 minutos para llegar casi a los 2V con una intensidad de unos 0.19Amp controlando en cada  momento que no se supere  el umbral . Una vez cargado aunque baje la tensión estos se comportan manteniendo la corriente casi invariable

 

Vamos a ver como calcular la capacidad  resultante de la asociación mas tipica de 5 supercondensadores  

  • En el caso de dos condensadores serie sabemos que esta es la capacidad resultante  es  1/c= 1/c1+ 1/c2

Por tanto la capacidad resultante será : 1/Cfinal= 1/500+ 1/500  =>  Cfinal =250F  

Asimismo  las tensión final es el sumatorio de las parciales:V=V1+v2

Es decir  V= 2.7 +2.7 =5.4V                                                                                                                                                                                                                          

  • En el caso de  tres  condensadores serie sabemos que esta es la capacidad resultante  es

      1/c=1/c1+1/c2+1/c3    lo que da  Cfinal=  166.67F

        Asimismo  las tensión final es el sumatorio de las parciales:    3x 2.7V 500F =8.1v                                                                                                                                                                                                                                                                                      

  • En el caso de cuatro condensadores serie  1/c=1/c1+1/c2+1/c3 +1/c4

Por tanto la capacidad resultante será Cfinal=125F

Asimismo  las tensión final es el sumatorio de las parciales:4 x 2.7V 500F =10.8V                                                                                                                                                                                         

  • Finalmente en el caso de cinco condensadores serie 1/c=1/c1+1/c2+1/c3 +1/c4+1/c5

Por tanto la capacidad resultante será Cfinal=100F

Asimismo  las tensión final es el sumatorio de las parciales  5* 2.7V 500F =13.5V , que es justo el valor que queremos llegar        

 

 

 

 

 

Calculo final

En el calculo anterior de  5 supercondensadores serie  obtuvimos  una tensión útil de 13.5V d3l conjunto   pero con una capacidad final  muy mermada de 100F  así que para aumentarla  si tomamos dos agrupaciones de 5  condensadores en serie  en  paralelo la  capacidad aumentará manteniéndose la tensión final;

 

 

La  capacidad  de este conjunto  aumenta justo el doble tal y como nos dicen los cálculos

          1/cfinal= 1/c1+1/c2+1/c3 +1/c4+1/c5 + 1/c6+1/c7+1/c8 +1/c9+1/c10  =>

         1/cfinal= 1/500+1/500+1/500 +1/500+1/500 + 1/500+1/500+1/500 +1/500+1/500 =>

          cfinal=200F  

Asimismo  las tensión final es el sumatorio de las parciales de una agrupación al estar ambas en paralelo

Es decir  V= 10 x 2.7V = 13.5V

En resumen    tenemos  con ambas agrupaciones  un supercondensador equivalente   de 3.5V 200F

 

Como C=As/V ( AS=Amperios por segundo) , entonces AS=C+V,

 AS= 200F x 13.5V =2700 Amp/seg   

Vemos   que para nuestra agrupación  serie y paralelo de 10 supercondensadores  obtenemos pues  una capacidad en AS  de 2700 Amp/seg

 

Por otro lado como la capacidad de un acumlador normalmente se mide en  unidades  de tiempo (AH= Amperios hora)  como AH =AS/3600s

C (en Amphora) =2700 (enAmp/seg)   /3600= 0.75Ah

Vemos   que para nuestra agrupación de 10 supercondensadores  una capacidad en AH de 0.75AH  que sería la capacidad de esta agrupación , lo cual  nos hace ver en números  que con estas agrupaciones siguiendo estas fórmulas ya comentadas  necesitamos bastantes elementos (  por ejemplo  para obtener un powerbank de 15AH necesitaríamos  unos 200 supercondensadores de 2.7V 500nf)

Una vez hecho los cálculos  llega el momento de construir el  banco de supercondensadores , para  lo cual lo primero es soldar los condensadores a las placas de  protección respetando escrupulosamente la  polaridad  .

Ya montados los módulos de condensador con las placas toca interconectar estos   para obtener  los 0.75AH    . Debemos   tener en cuenta ,dada la corriente que debe pasar por estos cables  que deberemos hacer   la interconexión   con cables  de cobre   de cierto espesor . En este sentido como un cable de 1.1mm soporta  unos 99 Amp en alterna  lo ideal es usar varios cable juntos para que no haya problemas   de calentamiento de estos

Este es el resultado final del montaje

 

 

Medición  de corriente  y tensión de carga

La mejor manera de monitorear la carga de  un acumulador o una  la agrupación de supercondensadores es usar  un medidor multifuncional de panel , pero !atención !  , porque este debe ser especial  para  corriente continua, lo cual será claramente evidente cuando  sea necesario un shut  que deberemos conectar en serie con la carga  (en nuestro caso el banco de supercondensadores)

Normalmente en estos medidores  el shunt se conecta  en  el polo negativo en serie con la carga   en el que precisamente  en ambos extremos  conectaremos  los hilos de medición  siguiendo el esquema siguiente 

Este tipo de multímetros  DC 4 en 1  suelen tener  una precisión de medición de grado 1.0, combinando  la medición de voltaje, corriente, potencia y energía en un combo, súper compacto y liviano que puede ser portátil y fácil de usar.   También  suelen  tener una  función de alarma mostrando el voltaje parpadeando  la luz de fondo  simultáneamente si el voltaje va más allá del umbral de alarma   que se puede establecer si es necesario( el rango va desde   6 a los 90v ).

Además estos instrumentos almacenan automáticamente los datos de  la última prueba de modo que  cuando se  apagan  el valor energético se puede restablecer por una pulsación corta el botón de función en segundos.

En  concreto este medidor, puede medir voltios, amperios, vatios y energía individualmente contando con un shunt de 100 A / 75 mV, adecuada para mediciones de gran alcance . Cuenta  con una pantalla Digital Súper Grande de  51x30mm de  LCD azul para mostrar la tensión, corriente, potencia y la energía.  Con este medidor, puede medir voltaje 6.5V – 100V DC, amperios 0.0A – 100A y vatios 0.0w – 10Kw.

 

 

Si tiene dudas sobre su uso en este video podemos ver el medidor   en funcionamiento  usando precisamente  est  para monitorizar la carga de nuestro conjunto de 10 supercondensadores

 

Conclusión 

Realmente ya hemos visto como montar  los supercondensadores  para fabricar  un banco de energía de supercondensadores  para uso doméstico utilizando  placas de protección  para ensamblar los condensadores   de 2.7V 500F  montados en una combinación mixta de serie y en paralelo de forma segura.

El valor total de la capacidad de los  10 supercaps resultante de es  de 13.5V ,como hemos calculado es de 200F  que traducido a Ampx hora es de  0.75AH .siendo e tiempo de carga promedio para este paquete de unos 8 minutos  utilizando un  cargador lento  comercial  tradicional  de  batería del automóvil.

No nos cansaremos de repetir que las placas de carga son imprescindibles  porque  protegen los condensadores de daños por sobretensión.

 

Finalmente  en este video podemos ver el montaje de este conjunto   y su utilización practica

 

 

 

Medidor de Consumo Eléctrico CHINT + ESP8266 y Matrix Led MAX7912


En esta post  volveremos a un tema recurrente en este blog: la medición del consumo eléctrico de forma invasiva en un ambiente doméstico ,pero esta vez  usaremos  el  medidor CHINT DDS666,lo que técnicamente es un medidor residencial o residencial tradicional  pero con  una salida óptica  (también llamada   salida de pulsos)-

Precisamente por esa característica  de salida óptica, dado que en el mercado existe una amplia variedad de dispositivos con este tipo de salida   , esta propuesta que vamos a ver es perfectamente viable  también para  todo tipo de contadores con salida de pulso, como la mayoría de los contadores modernos  para uso personal  que se comercializan para fijar en carril DIN en el cuadro de distribución de c.a. cuya velocidad de flash de salida de prueba es de  500 impulsos por kWh ( es decir cada impulso corresponde a un 2W/H)

Lógicamente dado que la relación de pulsos/kwh  es diferente  según el contador , tendremos que ajustar el código de nuestro  programa para que el resultado sea exacto , pero insistimos: como esta relación es conocida  no es demasiado complejo ajustar   el código para el contador que elijamos

Advertencia: Se recomienda precaución ya que este tipos de proyectos implican riesgo eléctrico o electrocución ya que se utiliza un  equipo conectado de 220VCA -120 VCA por los que  se requieren conocimientos básicos  de electricidad , por favor esté documentado previamente en este sentido.

Conviene recordar que por seguridad cuando trabaje en cuadros de baja tensión siempre trabaje cortando la alimentación general y asegúrese después con un polímetro o un busca-polos que efectivamente no hay tensión c.a.

Obviamente si no se tiene experiencia en cableados de baja tensión o no esta seguro de la instalación , le  recomendamos encarecidamente  que este tipo de trabajos lo realice un instalador  o un electricista pues  manejar por error tensiones de ca puede ser peligroso  .

 

El circuito

 

El viejo modelo CHINT DSS66 permite la medición de energía activa o potencia activa en instalaciones domésticas. Es  un registrador ciclométrico, registrando medidas siempre positivas que evitan pérdidas fraudulentas de conexiones. Como se trata de un medidor invasivo que se requiere para abrir nuestro circuito eléctrico, se capturan los pulsos generados, Genera 3200 imp / kWh, que nos permitirá medir la potencia y el consumo de energía. El medidor tiene un optoacoplador para aislar la salida de pulso para realizar la medición. 

 Algunos medidores tienen una salida de pulso asociada con el consumo eléctrico, en el caso de este medidor específico, cada vez que se enciende el diodo led frontal, envía un pulso que activa un optoacoplador para la salida de pulsos terminales (11 +) (12 -) y el medidor integrado realiza la medición e integración de kilovatios / hora y enviando pulsos según el consumo siendo la relación de  este medidor  de 3200 imp «impulsos» / kwh,.

Este medidor tiene 2 características:

  • Es invasivo, es decir el circuito debe abrirse para colocar en serie el medidor entre la fuente y la carga
  • No tiene un protocolo de comunicación en serie, siendo la relación de salida de pulsos de 3200imp / kwh.

Gracias a la ayuda de un microcontrolador «Arduino, ESP8266 o ESP32»  podemos medir los watios consumidos. La elección precisamente de un  ESP8266 12E   o Arduino Nano Clone   , de hecho dependerá de si necesitamos enviar los datos  o no a un servidor en la nube  o simplemente queremos mostrar la información en un display 

Como contábamos al   principio de este post el modelo  DSS66 es algo anticuado por lo que es perfectamente viable usar   de contadores con salida de pulso de carril DIN , como la mayoría  que se comercializan para fijar en el cuadro de distribución de c.a. cuya velocidad de flash de salida de prueba es de  500 impulsos por kWh ( es decir cada impulso corresponde a un 2W/H)

 

 

Durante las primeras pruebas  se conectaron el GPIO directamente al medidor,dado que el medidor de mentón tiene su propio optoacoplador, pero por alguna razón cada vez que se genera un pulso, el módulo ESP8266 grababa 2 pulsos, algo que no sucedió con Arduino .

La solución para el problema es  aislar la salida del watímetro mediante la adición de un optoacoplador 4n25 y una fuente de alimentación de 5v :de esta manera sólo llegaría un pulso y ademas por seguridad se aislan los circuitos .

Para las primeras  pruebas   se propone usar un  ESP8266 y/o arduino y solo  haremos la medición de Active Power, por ejemplo  utilizando una  bombilla de 45W, para tener una carga fija que represente un «hogar».

 

Lista de componentes

  • Medidor monofasico CHINT DDS666 u otro medidor que genere pulsos
  • ESP8266 12E   o Arduino Nano Clone
  • Fuente de alimentación 5v
  • Matrix led x4 MAX7912
  • Protoboard 830 Puntos
  • Optoacoplador 4n25

 

 

Código IDE de Arduino

 

El código para el módulo ESP8266 por ahora no tiene ninguna rutina de comunicación de envio  hacia  el Cloud, así que por el momento visualizaremos la potencia con un Matrix led x4 MAX7912 pero se puede usar un display de 7 segmentos  o  simplemente la salida serie

El medidor solo tiene una salida de pulso,por lo que  para realizar el cálculo del consumo eléctrico, capturamos a través de una interrupción en el GPIO 5 (D1), técnicamente utilizando el factor apropiado del medidor 3200imp / kWh = 3.2, se calcula la potencia activa instantánea.

Una diferencia horaria entre pulsos y basada en 1 hora = 3600 s. potencia = (3600000000.0 / (pulseTime – lastTime)) / 3.2

Este cálculo se realiza en la interrupción, solo cada vez que se registra un nuevo pulso.

Inicialmente, gracias a OpenEnegyMonitor, por la documentación, el cálculo se tomó de una de las versiones anteriores de su página

 

Este es el codigo usado para probar la funcionlidad 


<SPI.h>
<bitBangedSPI.h>
<MAX7219_Dot_Matrix.h>
const byte chips = 4;

unsigned long lastMoved = 0;
unsigned long MOVE_INTERVAL = 20; // mS
int messageOffset;
int counters=0;


// 12 chips (módulos de pantalla), SPI de hardware con carga en D10


MAX7219_Dot_Matrix display (chips, 2); // Chips / LOAD

char message [64] = «mensaje  a mostrar inicial ….«;
char myCharMessage[64];
String Message;

// Número de pulsos, utilizados para medir la energía.
long pulseCount = 0;


// Se usa para medir la potencia.
unsigned long pulseTime,lastTime,diffTime;
long timeout_reset=0;


//power and energy
double power elapsedkWh,watts;

// Número de pulsos por wh – encontrado o configurado en el medidor.

//1000 pulsos/kwh = 1 pulso por wh 3200 imp = 3.2

float ppwh = 3.2     ; 

int First_pulse = 0;
///***********************************************************************************


const byte interruptPin = 5; /// pin 5 D1


<Ticker.h>
Ticker flipper;


void flip() /// displayed
{

//bucle para almacenar en un array el mensaje de bienvenida

for (int i=0;i<64;i++)
{
message[i] = myCharMessage[i];
}
updateDisplay ();

}

 

 

Y este es el cuerpo del programa_

 

 

void updateDisplay ()
{
display.sendSmooth (message, messageOffset);
// la próxima vez muestra un píxel en adelante

if (messageOffset++ >= (int) (strlen (message) * 8))
messageOffset = – chips * 8;
} // end of updateDisplay

void loop ()
{

// DEBUG SERIAL
 Serial.print(«watts = «);
 Serial.println(watts,4);

////las cadenas se deben cargar a la variable (Message) para que se visualicen en la matriz

//Message =»Power «+String(watts)+» W :)»;
Message =String(watts)+»W»;

//sacamos por consola la potencia
Serial.println(Message);

int L_Message = Message.length(); ///length String
String(Message).toCharArray(myCharMessage, L_Message+1);

/// String to char array  y scroll
flipper.attach(0.1, flip);

// restardo


delay(100);


} //fin del bucle

 

 

 

En el siguiente video  podemos ver el circuito en acción:

 

 

 

 

Mas informacion en  https://www.instructables.com/id/Electric-Consumption-Meter-CHINT-ESP8266-Matrix-Le/