Sencillo contador de energía para hogar


Desde que cambió la normativa que regulaba el uso de limitador  de la potencia contratada , gracias a los contadores inteligentes  con tele-gestión que van instalados aparte ( normalmente centralizados en una parte de edificio aparte)y que integran ademas  la habilidad de limitar ( o mejor dicho interrumpir) el suministro la potencia desde estos en función de la potencia contratada , en muchos casos  y  en muchas viviendas ha quedado libre el hueco  donde residía el antiguo  ICP magnetotérmico  que hacia de limitador  y que  instalaba la compañía suministradora

Este hueco  en la caja ICT  que ha quedado vacante normalmente ubicado a  la derecha de la caja de distribución de corriente alterna , es ideal  para instalar  un sencillo panel  muy económico que nos va ayudar muchísimo a concienciarnos de nuestro consumo energético en tiempo real   y por supuesto realizar las acciones correctores

El panel digital ,como se observa en la imagen superior ya montado,   encaja en la parte del hueco dejado por el antiguo magnetotérmico , aunque según el tipo de caja habrá que rebajar algo mas el hueco  con una lima para que encaje perfectamente en el hueco ,   y como se puede  apreciar ,es bastante llamativo visualmente gracias  a su luz de fondo azulada  mostrando en tiempo real   las siguientes medidas:

  • Tensión en voltios de la red de suministro ca
  • Intensidad en amperios del
  • Potencia instantánea consumida en Watios
  • Acumulado de  energía consumida wn Kw/h

 

 

 

El instrumento calcula la potencia activa usando la formula  P = U * I * (Cos ) donde  (Cos ) indica  el factor de potencia .

El factor de potencia o coseno de “fi” (Cos ) representa el valor del ángulo que se forma al representar gráficamente la potencia activa (P) y la potencia aparente (S), es decir, la relación existente entre la potencia real de trabajo y la potencia total consumida por la carga o el consumidor conectado a un circuito eléctrico de corriente alterna. 

En los circuitos inductivos, como ocurre con los motores, transformadores y la mayoría de los dispositivos o aparatos que trabajan con algún tipo de bobinado, el valor del factor de potencia se muestra siempre con una fracción decimal menor que la unidad ,lo cual realmente indica  el retraso o desfase que produce la carga inductiva en la sinusoide correspondiente a la intensidad de la corriente con respecto a la sinusoide de la tensión o voltaje.

Por ejemplo un  motor de corriente alterna con un  factor  de  potencia  o  Cos  = 0,95 ,  por  ejemplo,  será  mucho  más  eficiente  que  otro  que  posea  un  Cos  = 0,85 .

Instalación 

Como panel hemos elegido el modelo  Elegiac AC        de bajo coste (18,99€ )  que  tiene un tamaño muy compacto (90x50x25mm), alimentándose directamente a la red 110V-220V ( frecuencia de trabajo: 45-65Hz) ,y  que  soporta  hasta 100A / 22000W con una precisión de  1.0.

Ademas de  presentar parámetros eléctricos función de medición (tensión, corriente, potencia activa, potencia) cuenta con una función de alarma de sobrecarga cuyo  umbral de alarma se puede preseleccionar.

Una ventaja de este panel es que no necesita  fuente  de alimentación externa al llevarla integrada  en esta , lo  que significa en la practica  que únicamente habrá que alimentarla con 220 V c.a. .

La instalación es muy sencilla :

  • Cortamos la alimentación general ( normalmente desde el mangenetotermico de entrada de la red)
  • Insertaremos el panel digital  bien en la caja ICT en los huecos libres del limitador o bien con un belcro en cualquier punto que nos resulte atractivo visualmente
  • Alimentamos el panel  directamente  con 220oV , eso si , !con mucho cuidado de no equivocarnos donde  se conectan los hilos del  toroide!  (en la foto de bajo los bornes serian los dos inferiores)
  • Se hacer pasar uno de los cables de alimentación  general  ( o circuito  a medir  ,preferiblemente la fase ) por el interior del toroide
  • Se conectan  los dos hilos del toroide a los bornes correspondientes del panel(en la foto de bajo los bornes serian los dos superiores)
  • Restituimos el suministro de ca
  • Ajustaremos los parametros de luz

Conviene recordar que por seguridad cuando trabaje en cuadros de baja tensión siempre trabaje cortando la alimentación general y asegúrese después con un polimetro o un buscapolos que efectivamente no hay tensión

Obviamente si no se tiene experiencia en cableados de baja tensión o no esta seguro de la instalación , le  recomendamos encarecidamente  que este tipo de trabajos lo realice un instalador  o un electricista pues  manejar por error tensiones de ca puede ser peligroso  .

 

 

Ajustes
1. Luz de fondo

El control de luz de fondo se puede ajustarse presionando brevemente el botón para encender o apagar la luz de fondo,de modo que quedara almacenado  el estado de retroiluminación de almacenamiento automático.

2. Reseteo de las lecturas

  • Paso 1: Pulse el botón de encendido durante 5 segundos hasta que la pantalla digital parpadee, luego suelte el botón;
  • Paso 2: Si vuelve a pulsar el botón, los datos de consumo se borran y se borran para dejar de parpadear;
  • Paso 3: Si vuelve a pulsar el botón durante 5 segundos hasta que no parpadee, los datos de carga no se borran y la salida se borra.
  1. Ajustes del valor de la alarma
  • Paso 1: Pulse el botón, cuando la pantalla LCD muestre «SET CLr» después del botón de liberación, ajuste el valor en el informe de estado de energía;
  • Paso 2: El área de potencia muestra el valor actual de la alarma de alimentación y el dígito más bajo comienza a parpadear, entonces puede presionar el botón del +1 digital, cuando no haya operación de tecla más de tres segundos, cambia automáticamente por ajuste digital corto como encima;
  • Paso 3: Después de la configuración, presione el botón más de cinco segundos para guardar y salir automáticamente, el alcance del umbral de potencia activa establecido para el 0.0 ~ 22.0kW.

 

 

 

 

 

 

Soldador de puntos sin transformador


La soldadura  por  puntos  lleva con nosotros unos 40 años, pero a pesar de su antigüedad   sigue  gozando de buena reputación en los nuevos tiempos usándose de forma intensiva  también en aplicaciones de electrónica  donde la soldadura convencional con estaño no es efectiva, como   por ejemplo  a la hora  de conectar baterías entre si con laminas de níquel,  entre  sus miles de aplicaciones más. En esencia la tecnología de la soldadura por  puntos  no es nada compleja , pues  la  configuración típica de un soldador de puntos no ha variado a  lo largo de los años,  consistiendo básicamente en  una fuente de muy baja tensión (entre 3 y 15V) de alta intensidad   conectada a un cabezal para soldar.

Desgraciadamente, a pesar de que no incluye demasiada tecnología, un soldador de puntos es uno de los pocos equipos donde la construcción casera  de este  es mucho  más barata que comprarlo montado,  incluso si se decide a comprarlo en alguno de los famosos  portales chinos, ya que incluso comprándolos  allí , su precios van entre los 200€ en adelante. Si no  estamos dispuestos  a desembolsar esa cantidad otra opción es fabricar un soldador de puntos  nosotros mismos  pues  en la red  se pueden ver  una gran cantidad de diseños de soldadores de puntos basados en viejos transformadores de microondas , a los que  se les elimina el secundario de AT  por medios mecánicos y simplemente se rodea en el interior del entre-hierro  en ese espacio que ha quedado vació de  dos vueltas de cable de gran sección ( al menos de 8 mm).

NO recomendamos construir  un soldador de puntos   basándose en un transformador   de microondas, no sólo por el voluminoso espacio  que ocupa ( y el ruido que genera) , sino, sobre todo,  por  el  peligro que conlleva extraer dicho transformador , pues esta muy cerca el condensador de alto voltaje, cuya  carga puede estar presente mucho tiempo después de que el horno de microondas esté desenchufado (y es extremadamente peligrosa una descarga de este tipo ). No confíe en la resistencia de purga interna del condensador , pues puede fallar y es muy  peligroso ( si lo va a hacer, al menos conecte dos cables de prueba de clip de cocodrilo  a la tierra del chasis de metal de microondas, asegurándose  de que los cables no estén rotos,sujete una resistencia de 10K … 1M al otro lado de un cable de prueba y descargue los dos terminales del condensador uno por uno a través de una  resistencia de   1MΩ utilizando alicates aislados ).

En los últimos años, los supercondensadores han surgido como una alternativa o complemento importante para otros dispositivos de producción o almacenamiento de energía eléctrica como las pilas de combustible o las baterías . La principal virtud del primero frente a los dos últimos es la mayor potencia que es capaz de inyectar, aunque poseen una menor densidad de energía. Otras características de los supercondensadores son la rapidez de carga y descarga, pueden proporcionar corrientes de carga altas, cosa que daña a las baterías, el número de ciclos de vida de los mismos, del orden de millones de veces, no necesitan mantenimiento, trabajan en condiciones de temperatura muy adversas y por último, no presentan en su composición elementos tóxicos, muy común en baterías.
La principal desventaja de los supercondensadores es la limitada capacidad de almacenar energía, y a día de hoy, su mayor precio. En realidad debido a sus diferentes prestaciones, condensadores y baterías no son sistemas que rivalizan entre sí, si no más bien se pueden considerar en muchas aplicaciones como sistemas complementarios donde la batería aporta la energía mientras el supercondensador aporta los picos de potencia

Si Q es la cantidad de carga almacenada cuando el voltaje entero de la batería aparece en los terminales del condensador, entonces la energía almacenada se obtiene de la integral:

Esta expresión de la energía se puede poner en tres formas equivalentes por solo permutaciones de la definición de capacidad C=Q/V.

Los materiales  usados  como electrodos para supercondensadores son principalmente de tres tipos: óxidos de metales de transición, polímeros conductores y materiales de carbono activados.

Se puede decir que, actualmente, sólo los supercondensadores basados en carbono, o también llamados condensadores de doble capa (double-layer capacitors), han conseguido llegar a la etapa de comercialización.

SOLDADOR ELECTRÓNICO  DE PUNTOS

Es la forma mas habitual de  y fácil de construir un soldador de puntos   a un precio bastante asequible.

Estas configuraciones funcionan  durante  mucho tiempo y normalmente  estas configuraciones  son  mucho mas optimas y eficientes  que los soldadores basados en transformadores de microondas modificados.

La alta temperatura destruye las baterías de litio, por lo que la soldadura  tradicional térmica no es una opción, así que esta configuración  es perfecta  , (es por eso  que hay personas que la llaman “soldadura fria” )

El circuito propuesto es el siguiente:

soldador de puntos

Como vemos en el siguiente circuito,  el principio es bastante sencillo usando 10  transistores Mosfet del tipo IRF1404 (Vdss=40V, Rds(on)=0.004ohm, Id=162A⑥) en configuración  paralelo para  controlar la descarga de un supercondensador de 120 Faradio de 15V compuesto por la asociación serie de 5 condensadores de 120F /2.7v  , el cual  almacena la energía  suficiente para producir la chispa que permita realizar   la soldadura por puntos.

Las resistencias de 1k  y 10K únicamente sirven para asegurar que pase a conducción los transistores,  motivo  por el cual se usa un pulsador para que conduzca  únicamente durante un breve espacio de tiempo  en el que se mantenga apretando el pulsador

Aunque el IRF1404 soporta hasta 200W de disipación , el motivo por el que se usan 10 transistores en paralelo  es para  evitar usar un voluminoso radiador pues en esta configuración  la disipación por elemento se divide por 10 ,lo cual hacen innecesario cualquier disipador térmico.

Alternativamente  a  los supercondensadores se pueden emplear dos viejas baterías de gel de 12V  /7Ah , aunque el conjunto ya no sera tan liviano ,pero incluso será mas efectivo dado que no es necesario cargar  los condensadores tras cada soldadura  pues las baterías almacenan  suficiente energía para bastantes soldaduras  ( en el montaje de condensadores tras varias descargas si que los es)

El circuito montado, lo podemos ver en la imagen siguiente,donde se observa una peculiaridad importante: dada la gran intensidad que va a pasar por el circuito ,los bornes  de las dos conexiones de los mosfet , deben ser metálicos de buena sección para evitar que esto se quemen por el paso de la corriente:

Asimismo los cables de salida del circuito deben ser de una sección adecuada , y deberían terminar en una punta de cobre macizo para facilitar la soldadura

En la imagen se puede ver como se puede soldar dos pequeñas laminas de níquel

Por ultimo en la siguiente imagen podemos ver una versión   del conjunto ya montado apreciándose claramente el pulsador de pie, y en este caso el uso de las dos baterías  que sustituyen a  los supercondensadores dado su mayor autonomía  y rendimiento:

Componentes

10 X  MOSFET  IRF1404

Resistencia  de  10k 1/4w

Resistencia  de 1k

6  x  Condensador  de 120F , 2.7V   (para el caso de montaje con condensadores) o  2 baterías de 12V  7AH

Pulsador normalmente abierto

Interruptor general

Voltímetro panel (para el caso de montaje con condensadores)

Fuente 15V (para el caso de montaje con condensadores)

2 x puntas de cobre