Acceso web de Sensores Analogicos para Raspberry Pi (parte 3)


En un post anterior veíamos algunas de las posibilidades de  conexión de sensores digitales  a nuestra Raspberry Pi como puede ser añadir sensores I2C con el CI DS1820 , sensores de Co2 basados en el Mq4, sensores genéricos,sensores de presión con el BMP180,sensores de temperatura basados en el TMP102, sensores de proximidad basados en el VCNL 4000o  o los sensores de luminosidad basados en el  TSL2561.

Como todos sabemos  existen también una cantidad muy alta de sensores cuya salida no es digital , los cuales en principio no se podrían conectar directamente a nuestra Raspberry, pero esto no es exactamente así porque si podemos conectarlos por medio de convertidores A/D y D/A y otros circuitos  como empezamos a  ver en  post anteriores

Hoy acabamos la entrega de conexiones analógicas  a nuestra Raspberry Pi  usando  algunos de los circuitos que se  explicaron viendo precisamente  conectándolos por fin  aun un un mundo infinitos de posibilidades.

Vemos a continuación algunos de ellos:

Termistor

 

Un termistor es un sensor de temperatura por resistencia basandose su funcionamiento en la variación de la resistividad que presenta un semiconductor con la temperatura. El término termistor proviene de Thermally Sensitive Resistor. Existen dos tipos de termistores:

  • NTC (Negative Temperature Coefficient) – coeficiente de temperatura negativo  .
  • PTC (Positive Temperature Coefficient) – coeficiente de temperatura positivo (también llamado posistor).

Cuando la temperatura aumenta, los tipo PTC aumentan su resistencia y los NTC la disminuyen, razon por la cual lo mas habitual es usar NTC’s  en todas las aplicaciones.

Un par de notas antes de comenzar:

  • Para poder utilizar un sensor análogo con la tenemos que utilizar un convertidor de analógico a Digital .Para este ejemplo vamos a utilizar el MCP3008 para esta tarea.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una linea de alimentación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

Use el siguiente diagrama para conectar un termistor.

Paso 1

Conecte la línea de alimentación para el termistor a través de la resistencia  de 10K.

Paso 2

Conecte la línea de tierra para el termistor.

Paso 3

Conectar el termistor a uno de los 8 canales de la MCP3008. Para este ejemplo, CH0.

Paso 4

¡Listo! Ahora puede Agregar el termistor a su panel de control de Cayenne  usando canal del MCP3008

 

VCNL4000

Hablamos de un doble sensor de  proximidad y sensor de luminosidad integrado en una sola placa  y cuya salida puede ser procesada directamente por nuestra Pi.

Un par de notas antes de comenzar:

  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una linea de alimentación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

 

Use el siguiente diagrama para conectar un VCNL4000 de proximidad y sensor de luminosidad.

Paso 1

Conecte las líneas de energía. Conecte el 3.3V 3.3V encendido el VCNL4000 perno de la fuente (3.3) y 5V al pin emisor de IR (IR +).

Paso 2

Conectar toma de tierra de laPi a VCNL4000 (GND).

Paso 3

Conecte las clavijas SDA de la VCNL4000  a la Pi.

Paso 4

Conecte los pines SCL de la VCNL4000  a la Pi.

Paso 5

¡Listo! Ahora puede agregar el sensor de VCNL4000 en el panel de Cayenne

Fotoresistor

 

Una fotorresistencia también llamada LDR  por ssu siglas en ingles inglés light-dependent resistor  es un componente electrónico cuya resistencia disminuye con el aumento de intensidad de luz incidente. Puede también ser llamado fotorresistor, fotoconductor, célula fotoeléctrica o resistor dependiente de la luz.

Su cuerpo está formado por una célula fotorreceptora y dos patillas siendo el valor de resistencia eléctrica  bajo cuando hay luz incidiendo en él (puede descender hasta 50 ohms) y muy alto cuando está a oscuras (varios megaohmios).

Un par de notas antes de comenzar:

  • Para poder utilizar un sensor análogo con la frambuesa Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado. Consulte el Tutorial de MCP3008 si necesita ayuda con la parte.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una lienea de alimentación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

 

Use el siguiente diagrama para conectar el fotoresistor.

Paso 1

Desde el pastel de Pi para alimentar la fotorresistencia.

Paso 2

Conecte la fotorresistencia a tierra a través de un resistor de pull-down de 10K.

Paso 3

Conecte la fotorresistencia a uno de los 8 canales de la MCP3008. Para este ejemplo, CH0.

Paso 4

¡Listo! Ahora puede agregar  la fotorresistencia a tu panel de control, utilizando el canal de MCP3008 0 para leer valores desde el sensor.

Carga analógica

 

 

Vamos  a a ver como procesar  la salida analógico  de los sensores de fuerza resistivo circular (fsr)

Un par de notas antes de comenzar:

  • Para poder utilizar un sensor análogo con la frambuesa Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado. Consulte el Tutorial de MCP3008 si necesita ayuda con esa parte.
  • Dependiendo del sensor de presión utilizado, se requiera componentes adicionales para calibrar correctamente el sensor. Un ejemplo de utilizar amplificadores operacionales para calibrar un sensor de fuerza flexibles vea el siguiente video.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una linea de alimentación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

 

Use el siguiente diagrama para conectar el Sensor de presión analógico.

Paso 1

Alimentar al sensor de presión.

Paso 2

Conectar toma de tierra para el sensor de presión, a través de la resistencia.

Paso 3

Conecte el sensor de presión a uno de los canales de entrada en el MCP3008, el canal 0 para este ejemplo.

Paso 4

¡Listo! Ahora puede añadir el sensor de presión analógico a su tablero de instrumentos, usando el  canal o de MCP3008  para leer el sensor.

 

GP2Y0A21YK

 

Hablamos ahora del   Sensor de proximidad por infrarrojos de Sharp (GP2Y0A21YK).

Este dispone de un conector JST de 3 pines y proporciona un valor analógico (voltaje) según la distancia del objeto detectado.
La salida proporciona 3,1V a 10cm hasta 0,4V a 80cm por lo que cualquier microcontrolador con una entrada ADC disponible puede fácilmente interpretar su señal sin necesidad de componentes externos como vamos a ver .

Un par de notas antes de comenzar:

  • Para poder utilizar un sensor análogo con la frambuesa Pi tenemos que utilizar un convertidor de analógico a Digital. Para este ejemplo utilizaremos el MCP3008 para esta tarea. Este tutorial asume que usted ya tiene el MCP3008 conectado. Consulte el Tutorial de MCP3008 si necesita ayuda con la parte.
  • Asegúrese de que Raspberry Pi está apagado al conectar los cables.
  • Cuando utilice un cable de cinta GPIO, asegúrese de que está conectado el cable (es un color diferente que los otros) en la esquina de la Raspberry Pi y la parte superior de tu pastel de Pi.
  • El diagrama proporcionado es sólo un ejemplo de cómo conectar el sensor. Hay muchas maneras para conectar sensores y extensiones, así que trate de lo que funciona mejor para usted!
  • Algunas  placas de prototipos (usados en los diagramas a continuación) tienen una lienea de alimentación que se separa en el medio. Si este es el caso, asegúrese de que sus sensores están conectados en la misma mitad de la placa como su  Pi.

 

Use el siguiente diagrama para conectar el Sensor de proximidad analógico.

Paso 1

Desde el Pi alimentar el sensor de proximidad (rojo).

Paso 2

Conectar la tierra del  Pi en el sensor de proximidad (negro).

Paso 3

Conecte la salida del Sensor de proximidad (amarillo) a uno de los canales de entrada en el MCP3008, el canal 0 para este ejemplo.

Paso 4

¡Listo! Ahora puede añadir el Sensor de proximidad analógicos a su tablero de instrumentos, usando canal o de MCP3008  para leer el sensor.

 

 

!!Y eso  es  todo amigos!!

Con este ultimo post  sobre el tema ,  hemos intentado cubrir  toda la serie de posibilidades que nos ofrecen  algunos circuitos Integrados para poder conectar a nuestra Raspbbery Pi un infinito abanico de sensores analógicos,,,

 

IoT con LattePanda


Muy resumidamente LattePanda es un un mini ordenador completo con Arduino integrado   que ejecuta la versión completa de Windows 10. Incluye todo lo que un PC normal tiene  pudiendo hacer cualquier cosa que hace un PC normal. Es ademas compatible con casi todos los aparatos que conoce como  impresoras, joysticks, cámaras y más. Todos los periféricos que funcionan en su PC funcionaran en LattePanda.

Ademas LattePanda viene pre-instalado con una edición completa  pre-activada de Windows 10.


Utilizando las API existentes, puede desarrollar sus propios proyectos de software y hardware en LattePanda como lo haría en un PC normal usando  C #, JavaScript, Ruby y así sucesivamente de modo que no necesita su ordenador portátil  para construir una aplicación con el

Pero no sólo puede ser utilizado como un ordenador normal de bajo costo con  Windows pues LattePanda también está diseñado con un compatible co-procesador Arduino, lo que significa que se puede utilizar para controlar y detectar el mundo físico, al igual que una placa Arduino!

Si usted es un desarrollador de Windows, un desarrollador de la IO, un fanático de hardware de bricolaje, diseñador interactivo, robótica genio o un fabricante, LattePanda puede ayudar a su proceso creativo con los proyectos informáticos físicos!

LattePanda puede ejecutar la versión completa de Windows 10 y Ubuntu.

ESPECIFICACIÓNES

  • Procesador: 1,8 GHz Intel Cherry Trail Z8300 Quad Core
  • Funcionamiento del sistema: Pre-instalado preactivado completa edición de Windows 10 (versión Inicio)
  • Ram: 2 / 4GB DDR3L
  • Capacidad de almacenamiento: 32 / 64GB
  • USB: 1 x USB 3.0, USB 2.0 x 2
  • HDMI de salida de vídeo y el puerto Ethernet
  • 3,5 mm de salida de audio jack
  • Ranura para tarjeta Micro SD
  • Toque y Conector de pantalla
  • Plug and Play Conectores de sensor
  • WiFi y Bluetooth 4.0
  • Coprocesador: ATmega32u4
  • GPIO: 2 GPIO de chips Intel, 20 GPIO para Arduino
  • Potencia: 5v / 2A
  • Dimensiones: 3.46 «x2.76»
  • Peso: 100 g

 Pines

Debajo de cuadros es un diagrama básico que muestra todos los pines del bus de expansión:

LattePanda pines

 

Distribución de los pines en el área U1 se asignan a la base de X-Z8300. Por el momento, no hay información disponible.

Distribución de los pines en el área de U2 se asignan al núcleo ATmega32u4.Cada uno de los 20 pines digitales (A0 – A5, D0 – D13) en la zona de U2 se puede utilizar como una entrada o salida, cada uno operando a 5 voltios. Cada salida puede fijar o recibir 40 mA y cada uno tiene una resistencia de pull-up (desconectada por defecto) de 20-50k ohmios.

Precaución: Superior a 40 mA en cualquier pin de E / S puede causar daños permanentes en el ATmega32u4.

Algunos pines tienen funciones especializadas:

Entradas analógicas: A0 – A5, A6 – A11 (en D4, D6, D8, D9, D10, D12 y). El LattePanda tiene 12 entradas analógicas, etiquetados A0 a A11, todos los cuales también pueden ser utilizados como I / O digital. Cada pin tiene una resolución de 10 bits (es decir, 1024 valores diferentes). Por defecto se miden desde el suelo a 5 voltios.

De serie: D0 (RX) y D1 (TX). Se utiliza para recibir (RX) y transmitir datos en serie (TX) TTL.

Las interrupciones externas: D3 (interrumpir 0), D2 (interrumpir 1), D0 (interrumpir 2), D1 (interrumpir 3) y D7 (interrumpir 4). Estos pines pueden ser configurados para desencadenar una interrupción en un valor bajo, un flanco ascendente o descendente, o un cambio en el valor.

PWM: D3, D5, D6, D9, D10, y D13 proporcionan salida PWM de 8 bits.

SPI: D16 (MOSI), D14 (MISO), D15 (SCK).

LED: D13 Hay un LED integrado impulsado por pin digital 13. Cuando el valor del pin es alto o bajo

TWI: D2 (SDA), D3 (SCL).

Otros pines de la placa:

Reset: Lleva a este BAJA línea para reiniciar el microcontrolador. Normalmente se utiliza para añadir un botón de reinicio para escudos que bloquean la una en la mesa.

¿Cuál es el propósito de este proyecto?

En este ejemplo  vamos a aprender, cómo nos comunicamos entre Arduino (chip de Arduino interna en LattePanda) y Microsoft Visual Studio y envían los datos desde el Arduino para utilizar una aplicación de Windows. Aquí vamos a medir la temperatura y humedad ambiental y enviar los datos del sensor de DHT Thingspeak.

Cómo acceder a la disposición de patillas de Visual Studio

LattePanda.Firmata es una biblioteca de código abierto Firmata proporcionada por LattePanda, que es adecuado para aplicaciones de Windows desarrollado en Visual Studio. Esta clase le permite controlar Arduino GPIO desde aplicaciones de Windows, con funciones que incluyen:

  • La lectura y escritura a los pines digitales
  • La lectura de las entradas analógicas
  • El control de servomotores
  • El envío de datos a los dispositivos y los dispositivos de recepción de formularios de datos a través del bus I2C

Para este proyecto, he hecho algunos cambios en la biblioteca Firmata de datos del sensor DHT leer o cualquier otro sensor.

3 pasos para su proyecto Arduino remoto

  • Descarga e instalación de Visual Studio 2015
  • Configurar el Arduino (Es pre-instalado, a menos que cambiara el programa de Arduino)
  • Crear un proyecto o utilizar el proyecto de ejemplo

Descarga e instalación de Visual Studio 2015

En el primer paso, es necesario instalar Visual Studio en LattePanda. No se instala por defecto.

  • Descargar Visual Studio 2015 e instalarlo.
  • Activar el modo de programador en su sistema operativo, para este fin, vaya a Configuración> Actualización y seguridad> en la sección para desarrolladores> Selección de Modo desarrollador

Estableció el Arduino

  • Descargar este archivo y abra el archivo en Arduino. (Este archivo reemplaza con StandardFirmata . Algunos cambios se han hecho en este archivo)
  • Agregar biblioteca sensor de Adafruit DHT a Arduino.
  • Seleccione Arduino Leonardo del Board sección. A continuación, seleccione el puerto COM correcto, cargar el último boceto.

Cableado

El objetivo de este proyecto es leer los datos de temperatura y humedad por el sensor DHT11 conectado a LattePanda(se puede utilizar en lugar de DHT21 o DHT22).

El sensor  se  debe conectar como en la imagen  siguiente ,es decir el pin de la izquierda (Data) al terminal D7 de LattePanda, el terminal central del sensor al pin +5V de LattePanda  y por ultimo el terminal de la derecha al ping de GND de LattePanda.

 

 

Leer Temperatura y Humedad

Descargar este archivo y abra el archivo con Microsoft Visual Studio.Registrarse en Thingspeak y crear un nuevo canal con dos campos. ( Field 1de la temperatura y Field 2 de la humedad). Después Save Channel , en la API Keys pestaña, copia Key valor y pegar en Program.cs archivo en lugar deTHINGSPEAK_KEY_HERE .

Guardar el archivo y haga clic Start botón. La salida será como se muestra a continuación:

Al final, los datos se pueden ver en el  servidor deThingspeak  apareceran  como se muestra a continuación:

Recursos

Fuente   aqui