Cómo conectar un display LCD a tu Raspberry-Pi


En este post Mark Wiliams  nos muestra con  todo detalle   cómo conectar y utilizar un display de   16 x 2 LCD en modo 4 bits sobre una Raspberry Pi usando la  librería WiringPi que permite programar de forma fácil dispositivos externos.

El LCD  usando es un display  OLED azul (LCD) de 16 × 2 de adafruit basado en el clásico HD44780 de Hitachi ,el cual es un standard «de facto » en cuanto a displays lcd alfanumericos.

Esta modelo de pantalla cuenta con ultra-alto contraste  ,mayor incluso que las clásicas pantallas LCD restroliluminadas, por lo que la legibilidad es excelente desde cualquier ángulo.

El LCD ,como  adelantaba utiliza el controlador HD44780 el cual  está presente en casi todas las pantallas LCD.Como es habitual en este tipo de displays que utilizan este controlador por lo general tienen 14 ó 16 pines. (En etse caso elLCD tiene 16, numerados del 0 al 16)
A veces, todos estos pines están presentes, pero alguno  no se utiliza,por ejemplo, los pines 15 y 16 son para back-light que en este modelo no se utilizan
PINES DEL HD44780  EN DETALLE
Pin 1 Ground.
Pin 2 Tensión de alimentación de OLED y la lógica
Pin 3 Por lo general está conectado a un potenciómetro para controlar el contraste de la pantalla.
Pin 4 La señal de selección de registro (RS) determina si los valores de los bits de datos se interpretan como una orden (la pantalla del claro ejemplo) o los datos (aka: un personaje para mostrar).
Pin 5 ¿La lectura / escritura pin. En el modo de lectura, este pin se utiliza para obtener información de la pantalla LCD para averiguar si la pantalla LCD se puede aceptar comandos o para indicar que está demasiado ocupado.
No necesitamos esta función podemos esperar el tiempo máximo de una orden que debe ser por escrito (200us) antes de enviar el siguiente comando.
Si la lectura está activada y Pin4 en la pantalla LCD está conectado a un pin en el Raspberry Pi, hay una posibilidad de que pueda destruir su Pi. Sólo quiero volver a escribir en el LCD, nunca queremos leer de él. Así que esto siempre debe estar conectado a tierra.
Pin 6 La patilla de habilitación (E) funciona como el comando / data enclavamiento de señales para la pantalla LCD. La pantalla LCD se enganchará en lo que está en los bits de datos y procesarlos en el flanco descendente de la señal E
Es decir, cuando este pin va de baja, la pantalla LCD se llevará a la entrada de los pines de datos en este momento.
Clavijas 7 y 14 Son los pines de datos. En el modo de pin 4, sólo se usan los pines 11 a 14.
Los contactos 15 y 16 Se utilizan para la luz de fondo si está presente.

Cableado del LCD   a tu Raspberry

A continuación se muestra cómo conectar el LCD a la Raspberry Pi. Vamos a utilizar el modo de pin 4, así que no hay necesidad de conectar los pines 7 a 10. Este LCD no utiliza los pines de luz de fondo, pines 15 y 16 . Asimismo,en el ejemplo tampoco se utiliza el pin de contraste, pin 3.

Código

En el pasado, usted habría tenido que conocer los registros utilizados por el controlador para configurar la pantalla, coloque el cursor o incluso escribir un carácter único.Hoy en día todo esto e ha simplifico muchísimo , que en el caso de la Raspberry gracias a la librería  WiringPi .

Instalación WiringPi;

@ raspberrypi pi ~ $ sudo apt-get update
@ raspberrypi pi ~ $ git clone git :/ / git.drogon.net / wiringPi
@ raspberrypi pi ~ $ cd wiringPi
@ raspberrypi pi ~ $ git pull origen
@ raspberrypi pi ~ $. / build

El código siguiente es un ejemplo muy simple de mostrar un poco de texto en la línea superior de la pantalla LCD. Hay una lista completa de todas las funciones de la biblioteca en el LCD WiringPi sitio web.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <wiringPi.h>           //WiringPi headers
#include <lcd.h>                //LCD headers from WiringPi
#include <stdio.h>              //Needed for the printf function below
//Pin numbers below are the WiringPi pin numbers
#define LCD_RS  3               //Register select pin
#define LCD_E   0               //Enable Pin
#define LCD_D4  6               //Data pin 4
#define LCD_D5  1               //Data pin 5
#define LCD_D6  5               //Data pin 6
#define LCD_D7  4               //Data pin 7
int main()
{
    int lcd;                //Handle for LCD
    wiringPiSetup();        //Initialise WiringPi
    //Initialise LCD(int rows, int cols, int bits, int rs, int enable, int d0, int d1, int d2, int d3, int d4, int d5, int d6, int d7)
    if (lcd = lcdInit (2, 16,4, LCD_RS, LCD_E ,LCD_D4 , LCD_D5, LCD_D6,LCD_D7,0,0,0,0)){
            printf ("lcdInit failed! \n");
            return -1 ;
    }
    lcdPosition(lcd,0,0);           //Position cursor on the first line in the first column
    lcdPuts(lcd, "Character LCD");  //Print the text on the LCD at the current cursor postion
    getchar();                      //Wait for key press
    lcdClear(lcd);                  //Clear the display
}
Lineas 1 y 2 se requieren ya que estos son los encabezados de la biblioteca LCD WiringPi.
Líneas 7 y 12 son las definiciones de los pines utilizados para conectar el LCD a la Raspberry Pi. Los números de pin se puede encontrar aquí.
Línea 21 sirve para  inicializar el LCD con LCDINIT ()
Los argumentos usados en la funcion lcdint() son:;
(int rows, int cols, int bits, int rs, int enable, int d0, int d1, int d2, int d3, int d4, int d5, int d6, int d7)
rows = Numero de filas del  LCD
cols = Numero de columnas del  LCD
bits = Numeros de bits usados como datos (   8 o 4).
rs = Pin de seleccion
enable =  pin activacion
d0-d7 = modo 8 o 4 bit modo. In modor 4 bit,solamente  usar  pins desde d0 a d3( como en todosl los displays HD44780). Si se utiliza el modo de 8 bits, es necesario especificar los pins del d0 a d7. En el código de ejemplo anterior, estamos utilizando el modo de 4 bits.El código siguiente es lo que se utiliza en el vídeo en la parte inferior de este post

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <wiringPi.h>
#include <lcd.h>
#include <string.h>
#include <time.h>
char level0[8] = { 0b00000, 0b00000, 0b00000, 0b00000, 0b00000, 0b00000, 0b00000, 0b11111};
char level1[8] = { 0b00000, 0b00000, 0b00000, 0b00000, 0b00000, 0b00000, 0b11111, 0b11111};
char level2[8] = { 0b00000, 0b00000, 0b00000, 0b00000, 0b00000, 0b11111, 0b11111, 0b11111};
char level3[8] = { 0b00000, 0b00000, 0b00000, 0b00000, 0b11111, 0b11111, 0b11111, 0b11111};
char level4[8] = { 0b00000, 0b00000, 0b00000, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111};
char level5[8] = { 0b00000, 0b00000, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111};
char level6[8] = { 0b00000, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111};
char level7[8] = { 0b11111, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111, 0b11111};
#define COLUMNS 16
#define LCD_RS  3
#define LCD_E   0
#define LCD_D4  6
#define LCD_D5  1
#define LCD_D6  5
#define LCD_D7  4
void uptime(void);
void memory(void);
void volume(void);
void scrollText(void);
void INThandler(int sig);
int mymillis(void);
char message[] = "WWW.MARKS-SPACE.COM";
int count =0;
int j = 0;
FILE *uptime_file, *mem_file;
char *temp;
int lcd;
int main()
{
signal(SIGINT, INThandler);
wiringPiSetup () ;
if (lcd = lcdInit (2, 16,4, LCD_RS, LCD_E ,LCD_D4 , LCD_D5, LCD_D6,LCD_D7,0,0,0,0)){
printf ("lcdInit failed! \n");
return -1 ;
}
int uptimeTimer;
while(1){
lcdClear (lcd);
volume();
sleep(1);
memory();
sleep(4);
lcdClear (lcd);
uptimeTimer  = mymillis();
while ((mymillis() - uptimeTimer) < 5000)
uptime();
sleep(1);
lcdClear (lcd);
scrollText();
}
}
void uptime(void)
{
unsigned int uptime_unsorted = 0;
unsigned char c;
unsigned int DD;
unsigned int HH;
unsigned int MM;
unsigned int SS;
uptime_file=fopen("/proc/uptime","r");
if(NULL != uptime_file)
{
while((c=fgetc(uptime_file))!= '.')
{
unsigned int i;
i = atoi(&c);
uptime_unsorted = (uptime_unsorted * 10) + i;
}
SS = uptime_unsorted % 60;
MM = uptime_unsorted / 60 % 60;
HH = uptime_unsorted / 60 / 60 % 24;
DD = uptime_unsorted / 60 / 60 / 24;
printf("\x1B[2J");
printf("Uptime:D%i,%02i:%02i:%02i\n",DD,HH,MM,SS);
lcdPosition(lcd,0,0);
lcdPrintf(lcd,"Uptime:  Days %i", DD);
lcdPosition(lcd,4,1);
lcdPrintf(lcd,"%02i:%02i:%02i",HH,MM,SS);
}
else
{
printf("Open file \"proc/uptime\" failed!\n");
}
void memory(void)
{
char MemTotal[35];
char MemFree[35];
char total[35];
char free[35];
lcdClear (lcd);
mem_file=fopen("/proc/meminfo","r");
if(NULL != mem_file)
{
fscanf(mem_file,"%*s%s%*s", MemTotal);
fscanf(mem_file,"%*s%s%*s", MemFree);
printf("\x1B[2J");
lcdPosition(lcd,0,0);
lcdPrintf(lcd,"MemTotal-%sk",MemTotal);
lcdPosition(lcd,0,1);
lcdPrintf(lcd,"MemFree -%sk",MemFree);
fclose(mem_file);
}
else
{
printf("Open file \"/proc/meminfo\" failed!\n");
}
}
void volume(void)
{
//Defined custom characters for volume display
lcdCharDef  (lcd, 0, level0);
lcdCharDef  (lcd, 1, level1);
lcdCharDef  (lcd, 2, level2);
lcdCharDef  (lcd, 3, level3);
lcdCharDef  (lcd, 4, level4);
lcdCharDef  (lcd, 5, level5);
lcdCharDef  (lcd, 6, level6);
lcdCharDef  (lcd, 7, level7);
lcdClear (lcd);
int i;
lcdPosition (lcd, 9,1);
lcdPuts (lcd, ":Volume");
for (i = 0; i < 7; i++){
lcdPosition (lcd, i, 1);
lcdPutchar  (lcd, i);
usleep(400000);
}
}
void  scrollText(void)
{
int i,n;
int h ;
int tempSpace = 0;
char scrollPadding[] = "                   ";
int messageLength = strlen (scrollPadding)+strlen(message);
for (n=0;n<messageLength;n++){
h = COLUMNS;
usleep(300000);
printf("\x1B[2J");
if ( j > messageLength )
j = 0;
for (i = 0  ; i  < j ; i ++){
scrollPadding[h-j] = message[i];
h++;
}
lcdPosition(lcd,0,0);
lcdClear (lcd);
lcdPrintf(lcd,"%s",scrollPadding);
j++;
}
}
void  INThandler(int sig)
{
lcdClear (lcd);
fclose(uptime_file);
signal(sig, SIG_IGN);
exit(0);
}
int mymillis(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (tv.tv_sec) * 1000 + (tv.tv_usec)/1000;
}

Y por último en este vídeo podemos  ver el excelente rendimiento que ofrece este display con nuestro Raspberry Pi

Fuente  aquí

Reloj gps-telefono para niños y no tan niños


Filip es uno de los primeros  dispositivo del mundo que cuenta con la voz del smartphone reinventado y tecnología de localización para los niños a través de un pequeño  reloj de pulsera colorida  de acorde con los gustos de los mas pequeños.

Para  conseguir  este novedoso   reloj con patente pendiente, se han integrado  la tecnología GPS, Wi-Fi y celular, combinadas con seguridad en un dispositivo pequeño.

Integra 4 tecnologías:

  • COMUNICACION:Filip es un teléfono celular reinventado para los niños como un dispositivo portátil. Capacidad de voz celular GSM de dos vías de gran alcance proporciona la misma calidad de cobertura que se espera de los mejores smartphones.
  • EMERGENCIA INTELIGENTE:Filip ha sido diseñado con un procedimiento de emergencia inteligente. Cuando se activa, el botón de emergencia activa una baliza de localización automática, grabación de sonido ambiente, y llama a cada uno de los cinco contactos hasta que uno se alcanza.
  • GEOLOCALIZACION:Filip Faccuracy utiliza más que GPS – que utiliza una combinación de GPS, ubicación de la torre celular y Wi-Fi triangulación para proporcionar la más precisa información de localización en interiores como en exteriores.
  • ANTENA CON CERTIFICACION FCC :Filip es potente pero seguro. Es el primer dispositivo portátil con capacidad de voz móvil completa para obtener la certificación del gobierno de la Comisión Federal de Comunicaciones (FCC). El diseño exclusivo emite energía de radio sólo cuando está activo, y lo dirige lejos del niño.

Como funcionalidades a destacar de este reloj destacan:
SIMPLE PARA LOS NIÑOS PARA LLAMAR: Con la aplicación Filip, se pre-programa de 5 números de teléfono a los que un niño puede llamar desplazándose  por los números 5 y llamando  a la que ellos quieren con el toque de un botón:es así de simple.
LLAMAR A LOS HIJOS O CONSULTE SU UBICACIÓN:Cualquiera de  5 personas que pre-autorizados puede llamar Filip  directamente. También puede ver su ubicación exacta en el mapa. Para los padres con varios hijos, se puede crear un perfil sencillo para cada niño en la aplicación Filip.
CONFIGURAR UNA ZONA SEGURA:A SafeZone es una radio virtual que se puede establecer mediante la aplicación Filip de modo que se puede utilizar el SafeZone de 2 maneras principales:

  • Estableciendo una SafeZone en torno a un destino en el que el niño está viajando a, como ‘School’.Cuando el niño llega a la SafeZone, recibirá una notificación de inserción.
  • Estableciendo una SafeZone alrededor de un área que no quiere que los niños  vallan fuera, como el parque local. Si el niñoo deje el conjunto de radio alrededor del parque, usted recibe una notificación de inserción.

RECIBIR MENSAJES DE TEXTO:También puede enviar un mensaje corto a Filip . Esta característica es una manera de comunicación entre padres a hijos, ya que envíar un mensaje de respuesta se volvería  demasiado complicado para los niños( cuando sean adolescentes ya tendran ese tiempo para hacerlo)

MANTENER A  LOS NIÑOS  PROTEGIDOS CON EMERGENCIA INTELIGENTE:Hay dos botones en el dispositivo Filip – uno que es del mismo color que la pulsera y uno que es de color rojo (el rojo  es el botón de emergencia). En caso de una emergencia, el niño  puede pulsar el botón rojo durante 3 segundos. Esto enviará un mensaje de texto al titular de la cuenta con un enlace a la ubicación actual del niño,iniciará  automáticamente una grabación de sonido ambiente alrededor del dispositivo Filip del niño y por supuesto iniciará una llamada al primer número designado y si no hay respuesta, llamará a los otros cuatro números designados en la sucesión.

¿Impresionante  verdad?

Se sabe  que Flip  saldrá a la venta en «los próximos meses», y todo parece que estará disponible solo  en EEUU con la operadora AT&T,pero quien sabe si otras operadoras europeas  seguiran el camino..

Funente aqui