Cónstruya un robot con Raspbery Pi y Arduino


 

En el video anterior en efecto vemos  un robot controlado a distancia basándose  en interfaces web usando para ello  una red  inalámbrica .Dado la potencia de la Raspberry Pi se usa esta para el soporte de Video  y  una placa  Arduino  para el control de los motores 

Se usa la Raspberry Pi pues para la gestión  de la cámara, una red Wi-Fi para la  interfaz de usuario  entre el robot u el usuario  y una placa  Arduino para controlar servos, sensores y motores.

¿Qué necesitamos para construir el robot?,pues propprcionamos a continuacion la siguiente lista de componentes:

 

En realidad dado que  todos estos módulos ya vienen montados , el esquema de conexiones es bastante sencillo ,pues se usa  un convertidor dc/dc  para alimentar  el puente  en h para los 4 motores , los 2 servos y el sensor ultrasonico  , y otro convertidor dc/dc para alimentar exclusivamente  el Arduino Nano

La comunicación entre  Raspberry Pi y Arduino se lleva  a cabo a través de GPIO TX serie / RX (/ dev / ttyAMA0) por medio de un convertidor de nivel.

Otro aspecto destcable  es que tanto el sensor ultrasonido como los dos servos son controlados por la propia placa Arduino Uno

Asimismo se  hace uso de un modulo de cámara para Raspberry Pi  , la cual va conectada con un cable de cinta  a la Raspberry Pi . La cámara se sujeta al soporte movil especial el cual  permite gracias a los dos servos  mover la cámara  en los tres ejes

Aquí puede echar un vistazo a los detalles de  ensamblaje de los componentes mas importantes:

Detalle de conexion con los servos
Raspberry Pi / Arduino y convertidor de nivel

 

Software:

El software se divide en dos secciones: software para Raspberry  Pi  y software de Arduino.

Para la Raspberry se usa dawnrobotics SD imagen para su cámara robot Pi , la cual proporciono  con una pequeña modificación  el  archivo robot_web_server.py  para permitir la comunicación serie con Arduino Nano en lugar del controlador dawnrobotics.

A continuación se detalla el código fuente empleado:

 

#include <ecat.h>
#include <Servo.h>

Servo servoP1B2; Servo servoP1B3;

#define MAX_GRAUS 170
#define MIN_GRAUS 20

String szMissatge;
Ecat ecat;
int valorServoV;
int valorServoH;

void setup(){
  ecat.setupNibbleMode(NIBBLE_H_P1,OUTPUT);
  ecat.vUltrasonicSensorP1b0b1_init();
  
  valorServoV=90;
  valorServoH=90;
  pinMode(ecat.nPinP1B2,OUTPUT);
  pinMode(ecat.nPinP1B3,OUTPUT); 
  servoP1B2.attach(ecat.nPinP1B2);
  servoP1B3.attach(ecat.nPinP1B3);
  servoP1B2.write(valorServoV);
  servoP1B3.write(valorServoH);  
  pinMode(ecat.nPinP2B7,OUTPUT);
  pinMode(ecat.nPinP2B6,INPUT);
  pinMode(ecat.nPinP2B5,INPUT);
  pinMode(ecat.nPinP2B4,INPUT);
  ecat.setupNibbleMode(NIBBLE_L_P2,INPUT);
  Serial.begin(115200);
}

void vRobotAturat(){
  ecat.vWriteHighNibbleP1(0x00);
}

void vRobotEndarrera(){
  ecat.vWriteHighNibbleP1(B00000110);
}

void vRobotEndavant(){
  ecat.vWriteHighNibbleP1(B00001001);
}

void vRobotEsquerra(){
  ecat.vWriteHighNibbleP1(B00000101);
}

void vRobotDreta(){
  ecat.vWriteHighNibbleP1(B00001010);
}



void vManageMsg(){
 
  if(szMissatge == "b"){
    vRobotEndarrera();
  }
  if(szMissatge == "f"){
    if (ecat.nUsDistanceCmP1b0b1()>7) {
        vRobotEndavant();
    }
  }
  if(szMissatge == "s"){
    vRobotAturat();
  }
  if(szMissatge == "l"){
    vRobotEsquerra();
  }
  if(szMissatge == "r"){
    vRobotDreta();
  }
  if(szMissatge == "w"){
    if (valorServoH<MAX_GRAUS) {
      valorServoH++;
    }
  }
  if(szMissatge == "x"){
    if (valorServoH>MIN_GRAUS) {
      valorServoH--;
    }
  }
  if(szMissatge == "a"){
    if (valorServoV>MIN_GRAUS) {
      valorServoV--;
    }
  }
  if(szMissatge == "d"){
    if (valorServoV<MAX_GRAUS) {
      valorServoV++;
    }
  }
}

void loop(){

  while(Serial.available()){
    delay(3);
    char c = Serial.read();
    szMissatge += c;
  }
  vManageMsg();
  szMissatge = "";
  if (ecat.nUsDistanceCmP1b0b1()<7) {
    vRobotAturat();
  }
  servoP1B2.write(valorServoV);
  servoP1B3.write(valorServoH);
}

Como estamos utilizando versión ligeramente modificada de la imagen downrobots, la Raspberry Pi está configurado para actuar como un punto de acceso Wi-Fi, por lo que para conectarse a la nueva red inalámbrica   debe aparecer llamada ‘CameraRobot’. La contraseña de la red es «raspberry».

Nota: En algunas ocasiones el dongle WiFi en el Pi no obtendrá una dirección IP (error conocido) y por lo que no será capaz de conectarse a la red (el dispositivo pasará edades autenticación y obtener una dirección IP).Este problema suele resolverse girando el robot apagado y otra vez.

 

Para la sección de Arduino Nano,  gracias a @JordiBinefa y @electronicscat se  usa su  biblioteca de e-cat .

El robot se controla con una interfaz web que significa que debería ser accesible desde la más amplia gama de dispositivos posibles. La interfaz web hace uso de HTML5 sin embargo, por lo que tendrá que utilizar un navegador hasta la fecha. Se encontró que Chrome funciona bien en todas las plataformas que se ha probado.

 

Para controlar el robot escriba la dirección IP 192.168.42.1 en la barra de direcciones.

 

 

 

Tiene conexión Wifi, por lo tanto se puede trastear con ella sin cables y eso es muy cómodo. Con éste sistema básico, se puede expandir muchísimo y quizás dar el paso con OpenCV o algún otro tipo de funcionalidad compleja gracias a la potencia que ofrece la Raspberry Pi.

El proyecto desde luego es sumamente interesante  y desde luego abre un camino para nuestra imaginación para replicarlo y mejorarlo dotándolo de nuevas modificaciones   que sin duda lo harán mucho mejor si cabe

Fuente aqui

Construyen un Pancreas artificial con una Raspberry Pi


Dana Lewis tiene diabetes tipo 1,  enfermedad  que ha tenido que hacer frente desde que tenía 14años . En la diabetes tipo 1, el páncreas no produce suficiente insulina – la hormona que hacen que la glucosa disponible para que las células del cuerpo para utilizar como combustible – o, a veces, el páncreas no funciona en absoluto.

El páncreas es responsable, entre otras funciones de producir y segregar hormonas importantes como la insulina (disminuye los niveles de glucosa sanguínea) y el glucagón (eleva los niveles de glucosa en la sangre),así que su falta o mal funcionamiento puede poner en peligro nuestras vidas excepto que puedas conectarte a un páncreas artificial.

La gente como Dana tienen que controlar los niveles de azúcar en la sangre muy de cerca con el uso de un monitor continuo de glucosa (CGM) bajo la piel de su abdomen, o pincharse un dedo 12 veces al día y medirse la glucosa en la gota de sangre resultante. La dosis de insulina se calcula entonces para que se corresponda con los niveles de azúcar en la sangre de la persona diabética. Este proceso es incómodo y puede ser difícil en algunas circunstancias: en particular, Dana encontró que la alarma era tan débil que no la oia al dormir en toda la noche. Si una persona diabética no corrige sus niveles los resultados pueden ser muy peligrosos. Así que Dana y su novio (ahora marido) de Scott Leibrand decidieron iniciar un proyecto para hacer que la alarma de CGM fuera suficientemente fuerte como para despertar a ella en la noche.
DIY Páncreas , es finalmente su dispositivo basado en una Raspberry Pi . La Raspberry Pi recibe los datos del CGM, controla un algoritmo de aprendizaje y provee de los comandos a su bomba de insulina. Ese algoritmo de aprendizaje significa que después de observarlo Dana presionando el botón que controla la bomba de insulina, el páncreas artificial a aprendido de sus hábitos, y obtiene su dosis correcta 100% del tiempo, incluso cuando está durmiendo.

pancreas

 

Desgraciadamente las normas de la FDA significa que Dana y Scott no pueden publicar instrucciones completas de como han construido su páncreas artificial   así  que  están trabajando en la fabricación de páncreas de forma casera de código abierto ( se puede encontrar más información aquí )  y de forma que haya  suficiente información disponible para que el sistema pueda ser replicado, para que otras personas con diabetes pueden beneficiarse de su trabajo. Necesitan voluntarios con todo tipo de habilidades: si usted está interesado en ayudar, se puede obtener más información sobre el proyecto aquí.

Para saber mas del proyecto Dana podemos ver en el video compartiendo la experiencia de la vida real de lo que sucede cuando una comunidad de código abierto se acopla con ambos fabricantes de dispositivos y los organismos reguladores como la FDA los EE.UU. , y lo que esto significa para el futuro de la innovación .

El vídeo está en inglés aunque es posible activar los subtítulos para seguir mejor la presentación e incluso activar la traducción simultanea al español.

 

 

Sencillamente es fascinante todo lo que se puede llegar a hacer gracias a la voluntad de una  comunidad y al uso de tecnología que nos acerca cada vez más  a tratamientos accesibles a todas las personas que lo necesiten aunque no dispongan de un presupuesto elevado que les posibilite acceder a esta tecnología a un coste mucho mayor.

Más información:

Building an Artificial Pancreas Using a Raspberry Pi


https://www.raspberrypi.org/blog/artificial-raspberry-pi-pancreas/
https://ourhealthandenvironment.wordpress.com/2015/11/13/i-am-now-a-bionic-woman/