Automatizacion del hogar con twitter


 En efecto es posible escribir  un ‘tuit’ y accionar cualquier dispositivo eléctrico por ejemplo una cafetera  y  ademas el sistema para conseguirlo es bastante sencillo

En  el caso del cafe , sólo necesita  una cafetera eléctrica , un interruptor electronico( basicamente un relé sólido ) , un ordenador  , una placa Arduino ,  un script en python  y convertir su cuenta de Twitter (como desarrollador) en una cuenta que accione lo que desee.

En el ejemplo qeu nos proponen desde Instructables,  vemos como es posible hacer que su cafetera  se encienda cuando esté en la cama o en el autobús solamente escribiendo un ‘tuit’. Además de ahorrar tiempo, podrá presumir de que su cuenta del pájaro azul es más inteligente que las demás.

Por supuesto esta idea es extrapolable a cualquier otro sistema que quiera acccionar o liberar de forma remota, como  puede ser un  calentador eléctrico,la calefacción de casas,o simplemente  una  lámpara para simular actividad en su vivienda.

Veamos un vídeo de la cafetera accionada por twitter:

 
Como vemos Tweet-a-pot es una sencilla aplicación  para el control de dispositivos a distancia que usa muy  poco de código y también muy poco  hardware, para tener su propia cafetera accionada  por twitter.

Para hacer su propio Tweet-a-pot  necesitará la siguiente:

  • 1 interrruptor electronico :esto es básicamente un relé que se utiliza para interactuar con el voltaje de corriente alterna mediante una pequeña señal de control de 5VDC
  • 1 placa Arduino (cualquiera sirve)
  • 1 Equipo que ejecute el IDE de Arduino y Python
  • 1 Cafetera goteo

 

Lo primero que necesitará será  configurar su ordenador como receptor.

Para interconectar entre el Arduino y Twitter, vamos a utilizar pyton. Hay una biblioteca que ya está elaborada, que nos permite utilizar la API de Twitter. Se llama pitón-twitter .

Después de haber instalado Python , instale la biblioteca de Python-twitter y todas sus dependencias. Si se encuentra con problemas consultela documentación en el sitio web de python-twitter.

A continuación, instalar el IDE de Arduino para que pueda programar el Arduino y comunicarse con él a través del puerto serie.

Una vez que ambos se configuran y  funcionan , es tiempo para ir a tomar sus credenciales de twitter.com

Interactuar con Twitter solía ser fácil, todo lo que tenía que hacer era poner su nombre y contraseña en su código  y ya funcionaba.  Ahora Twitter se lo ha tomado más en serio mediante OAuth, y  debiendo registrar su aplicación con twitter y obtener una clave de API.

En primer lugar, cree  una cuenta de twitter para este proyecto que edeberia estar separado de su cuenta principal de Twitter. En el ejemplo es , driptwit.

Luego, vaya a dev.twitter.com y registre su aplicación, esto le permitirá tomar 4 piezas importantes de información:

-Access Token
-Access Token Secret
-Consumer Key
-Consumer Secret

Se necesitarán estos tokens en el código python más tarde para interactuar con la API de Twitter. Una vez que tenga los 4 códigos, usted ya puede  continuar.

En primer lugar vamos a repasar nuestro código Python. El código python básicamente utiliza la biblioteca de python -twitter para pedir a Twitter los estados de usuario » x » , despues toma el último estado y busca el término » #driptwit » .
Si se encuentra » #driptwit »  envía el valor ASCII del 1 al puerto serie (  para Arduino ) , y  si se encuentra «#driptwitstop» , envía un valor ASCII de 0 .
Por último se realiza un bucle que comprueba la cuenta de twitter cada 15 segundos en busca de cambios .

Como se puede ver , también en el código  es donde se introducen las claves que obtuvo de Twitter en el último paso .

Aquí está el código real :

#******************************************#
# Tweet-a-Pot by Gregg Horton 2011 #
# Please email changes or #
# updates to [email protected] #
# *****************************************#

##Import Libraries

import twitter
import serial
import time

##authenticate yourself with twitter
api = twitter.Api(consumer_key=’consumerkeyhere’, consumer_secret=’consumersecrethere’, access_token_key=’accesskey’, access_token_secret=’accesssecret’)

##set to your serial port
ser = serial.Serial(‘/dev/ttyUSB0’, 19200)

## check serial port
def checkokay():
ser.flushInput()
time.sleep(3)
line=ser.readline()
time.sleep(3)

if line == ‘ ‘:
line=ser.readline()
print ‘here’
## Welcome message
print ‘Welcome To Drip Twit!’
print ‘Making Coffee..’
def driptwit():
status = [ ]
x = 0

status = api.GetUserTimeline(‘X’) ##grab latest statuses

checkIt = [s.text for s in status] ##put status in an array

drip = checkIt[0].split() ##split first tweet into words

## check for match and write to serial if match
if drip[0] == ‘#driptwit’:
print ‘Tweet Recieved, Making Coffee’
ser.write(‘1’)
elif drip[0] == ‘#driptwitstop’: ##break if done
ser.write(‘0’)
print ‘stopped, awaiting instructions.’
else:
ser.write(‘0’)
print ‘Awaiting Tweet’

while 1:
driptwit() ## call driptwit function
time.sleep(15) ## sleep for 15 seconds to avoid rate limiting

CODIGO ARDUINO

La única conexión entre el código python y Arduino es un valor único del puerto  serie. Python envía esto como un valor ASCII , por lo que Arduino interpreta esto como un número de bit , en nuestro caso 1 = 49 .

 

Aquí está el código:

/*
Tweet-a-pot Gregg Horton 2011
Please email changes to [email protected] so i
can improve this code!

Enables blinking/relay control over twitter, using python code
Based off of Blink and Serial demo code

*/

int relayPin = 13; // LED connected to digital pin 13
int incomingByte = 0; //declare incoming byte
// The setup() method runs once, when the sketch starts

void setup() {
// initialize the digital pin as an output:
pinMode(relayPin, OUTPUT);
Serial.begin(19200); // set up Serial library at 19200 bps

Serial.println(«Arduino is ready!»);
}

// the loop() method runs over and over again,
// as long as the Arduino has power

void loop()
{
if (Serial.available() > 0) {
// read the incoming byte:
incomingByte = Serial.read();
Serial.println(incomingByte);
if (incomingByte == 49){
digitalWrite(relayPin, HIGH);
} else {
digitalWrite(relayPin, LOW);
}

// say what you got:
Serial.print(«I received: «);
Serial.println(incomingByte, DEC);
}
}

El hardware requerido es bastante simple, ya que el control de voltaje de CA está siendo manejado por el interruptor electrónico.

El interruptor  electronico ( llamado tambien relé sólido) le permite conectando sólo 2 cables, uno a tierra y otro para la señal de control de Arduino, poder encender y apagar el relé  y como se ve en el código, todo lo que necesita es una simple señal de control  baja / alta.

Conecte el Arduino al ordenador y asegúrese de que el puerto serie está configurado,  y conecte al interruptor electrónico  el terminal 13 y tierra de Arduino

A continuación conecte la cafetera al interruptor  electrónico y conecte el interruptor electrónico a una toma de corriente normal. Lógicamente la  cafetera tiene que tener el café y el agua en ella,  antes de empezar.

Si el mensaje contiene la palabra #driptwit el café comenzará a hacerse ,pero  si recibe #driptwitstop,se detendrá.

A continuación, ya sólo le queda disfrutar de su taza de café bien caliente accionada por un tweet.

Esta  idea  tambien  puede emplearse   en  cualquier otro sistema que quiera acccionar o liberar de forma remota, como  puede ser un  calentador eléctrico, la calefacción de casa, un control de acceso ,la puerta  electrica del grage   o como deciamos al principio simplemente  una  lámpara para simular actividad en su vivienda.

 

 

Fuente  aqui,

Un robot con su Raspberry Pi


En efecto , con un mando Wiimote de Nintendo (en Amazon  cuesta menos de 16€ ), junto con  su  Raspberry Pi 2 Model B  puede  crear su propio «robot mayordomo» eso si usando  una plataforma que le de movilidad al conjunto .

2016-03-27_18h23_36     2016-03-27_23h10_21

Evidentemente la forma del robot quedara sujeta a sus gustos, a los materiales que emplee y por supuesto a su creatividad ,pero el resultado siempre sera muy interesante sobre todo por el alto grado de personalización al que puede llegar  . Lógicamente, ademas  de la Raspberry  y el mando wiimote , también necesitará comprar un chasis  con las dos orugas motorizadas   para que el robot pueda moverse.

Aunque el resultado probablemente no este a la altura de los grandes desarrollos de   robots industriales , al hacer este robot aprenderá cómo utilizar Bluetooth para comunicarse con su Raspberry Pi, cómo conectar una tarjeta de robótica básica usando los pines GPIO ( y controlarlos con Python)  ,así como también cómo utilizar una Nintendo Wiimote para controlar su Raspberry Pi ( también usando  Python)

Para empezar ,siempre es bueno descomponer proyectos complejos en otros mas  pequeños proyectos  , ya que esto  hace que sea mucho más fácil de resolverlos. Es decir: si hace este proyecto de una sola vez y no funciona , ¿cómo saber si es la tarjeta del motor , los motores , la conexión Bluetooth o el programa el culpable del fallo?

Como referencia ,los pasos a  seguir en la construcción podrían ser los siguientes:

  1. Configurar y probar la tarjeta del motor y los motores
  2. Configurar y probar la conexión Bluetooth
  3. Configurar y probar el Wiimote
  4. Escribir el programa definitivo
  5. Construir el cuerpo de su robot  usando su creatividad

Montaje inicial

Para poder controlar los motores del grupo motor , necesitará un escudo  que tendrá que intercalar entre los pines del GPIO  de su Raspberry   y los cables de alimentación de los dos motores DC. Para ello simplemente  ponga la placa  encima de  los pines del GPIO de su Raspberry PI cuidando el orden . Debería  tener un aspecto como este:

 

2016-03-26_19h38_28

Un vez conectado el escudo, el siguiente paso es conectar los cables  de uno de los  motores al conector azul marcado J3 / M1 , utilizando cables pelados en cada extremo o cables  usando un conector macho – macho . Obviamente  también debe conectar el otro motor para J2 / M2 .

El Rover 5 utiliza 2 motores independientes , cada uno con un codificador de cuadratura óptica y la caja de cambios . El montaje de la caja de cambios completo puede hacerse girar a incrementos de 5 grados para diferentes configuraciones de despacho . Puede incluso sustituir a las orugas de los tanques con ruedas tradicionales .

Esto no es una base de robot endeble :con un peso de más de 2,5 libras sin baterías , esta base es resistente y puede pasar por encima de casi  todo.

No importa  en qué forma conecta cada motor individual en este punto (si es un motor gira en la dirección equivocada entonces simplemente puede intercambiar los cables de otro ). Ademas en este punto también puede conectar la alimentación  que simplemente puede  proporcionarse por un portapilas de 6 pilas AAA de 1,5V , el cual  proporcionara los 6V necesarios para el escudo Ahora tiene una batería conectada a los motores del robot a través de la tarjeta de control del motor .

Atención :tenga cuidado con la polaridad: el cable rojo del portapilas debe conectarlo al terminal +VCC   del escudo  y el cable negativo al terminal GND o 0V del escudo.

El aspecto final debería ser algo similar al siguiente :

2016-03-27_00h27_54

El ultimo paso es conectar  la Raspberry  Pi al escudo  con lo que ya tendríamos conectados   todos los elementos del  robot.

Ahora  lo siguiente que toca es dotar del sw necesarios en la  Raspberry Pi para controlar cómo y cuándo los motores reciben energía .


Prueba de motores

La placa  Ryanteck se controla mediante los pines  GPIO  17 , 18, 22 y 23 de la Raspberry  Pi . Si establece el pin  17 a nivel alto  , un motor va hacia la derecha , mientras que si se activa a nivel alto el pin 18 , el  motor  gira en sentido antihorario . Los  pines  22 y 23 dan  control del motor 2 funcionando de un modo idéntico a los pines 17 y 18 pero con el motor 2.

Con todo el conjunto conectado a  su Raspberry Pi  vamos a escribir un pequeño script en Python para probar  el  funcionamiento de la base motorizada .

En la línea de comandos  escriba  test_motors.py tipo nano .

Ahora escriba en el siguiente programa:

import RPi.GPIO as io
import time

io.setmode(io.BCM)
pins = [17, 18, 22, 23]
for pin in pins:
  io.setup(pin, io.output)

#Los motores de prueba  giran a  un lado y luego al otro con retardo de 0,5 segundos .
for pin in pins:
  print ('Testing pin ' + str(pin))
  io.output(pin, 1)
  time.sleep(0.5)
  io.output(pin, 0)

Presione Ctrl-O y luego Enter para guardar . Pulse CTRL – X para salir de la línea de comandos . Ahora ejecute el programa de prueba : sudo test_motors.py pyton .

Si la prueba no se ejecuta como se esperaba , compruebe todas las conexiones así como la batería y vuelva a intentarlo .

 

Prueba  bluetooth

Otro modulo que usted necesitará es un adaptador Bluetooth . Teniendo conectividad Bluetooth se puede utilizar para transferir archivos y para la comunicación , pero  también le permite utilizar dispositivos de juego como en la Nintendo Wiimote y el controlador de PS3 para aplicaciones de  robótica .No todos los adaptadores funcionan en el Pi ; no se puede recomendar específicamente cualquier Inateck pero el adaptador de Bluetooth 4.0 que estamos utilizando funciona muy bien.

Para la prueba  del mando de  la Nintendo es habitual usar  el dongle Inateck Bluetooth Adaptador USB 4.0 con LED | Dongle inalámbrico con inactivo inteligente y Wake-Up | Compatible con Windows XP / Vista / 7/8 / 8.1 | Soporte EDR y A2DP estéreo | Broadcom Chipset – Negro , el cual usa un chip Broadcom 20702, el chip Bluetooth más reconocida en Europa y América; Nivel 1, la distancia de transmisión de hasta 10 m; Velocidad de transmisión máxima de 3 M / S.Ademes.Este dongle emite una señal de Bluetooth 4.0, es estable y fuerte,  usa modo dúplex  y  tiene un  bajo consumo de energía.Ademas cuenta con  ahorro de energía a través de los modos inteligentes de sueño y despertar, evita la interferencia de monitoreo CRC de 24 bits y usa  modulación de frecuencia automática contra superposiciones

2016-03-27_18h41_12

 

Enchufe el adaptador Bluetooth en el puerto USB de la Raspberry Pi , arránquela y   conectese  a esta  .

Procedeamos a instalar el sw necesario,para ello desde línea de comandos debería instalar el driver usando el siguiente comando:

>sudo apt-get install –no-install-recommends bluetooth

Una vez instalado el software ,debería ver el bluetooth está en marcha,para ello escriba:

>sudo service bluetooth status

Deberia dar el mensaje bluetooth is running.

Si no es así, reinicie la Raspberry Pi   y vuelva a intentarlo .

Para probar el dongle  escriba

>hcitool  scan

Cualquier dispositivo detectable  por  Bluetooth en la zona aparecerá en la pantalla ; lo cual indicará  que ahora está listo para usar Bluetooth en el Raspberry Pi . Si no se ve nada , asegúrese de que usted tiene un teléfono u otro dispositivo compatible con Bluetooth cerca del Pi y pruebe a  detectarlos.

 

Prueba de conexión  del mando  .

Antes de continuar,  debe tener Bluetooth instalado y funcionando en su Raspberry Pi  ( habiendo seguido todos los pasos  anteriores ).  El hecho de que el servicio de Bluetooth esté en funcionamiento y pueda ver otros dispositivos no significa que el dongle bluetooth sea capaz de ver el Wiimote( de hecho también puede tener problemas si está utilizando un mando Wiimote diferente del oficial).Así que no hay reglas seguras y rápidas; puede que tenga que probar diferentes configuraciones si tiene problemas.

Escriba desde linea de comandos:

>hcitool scan

Ahora pulse los botones ‘1’ y ‘2’ en su Wiimote al mismo tiempo:los LEDs azules deben parpadear en el Wiimote y debería ver algo como esto en la pantalla:

Scanning … 00:1E:02:8A:CD:A1 Nintendo RVL-CNT-01

También puede ver otros dispositivos Bluetooth que están dentro del alcance, pero obviamente  puede hacer caso omiso de ellos.

Si todo ha ido correctaemmnte ,ahora se sabe que la función Bluetooth está funcionando y  puede comunicar el Wiimote con su Raspberry Pi.

El último paso es asegurarse de que podemos hablar con el Wiimote usando Python.,para lo cual debe instalar el módulo CWIID ,con objeto de que desde Python puede hablar con el Wiimote. 

>sudo apt-get install python-cwiid.

 

El siguiente programa probará que el Wiimote puede comunicarse con el Raspberry Pi. En la línea de comandos teclee

>nano wii_remote_1.py

Luego escriba o copie y pegue el código siguiente:

#!/usr/bin/python
#+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
#|R|a|s|p|b|e|r|r|y|P|i|-|S|p|y|.|c|o|.|u|k|
#+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
#
# wii_remote_1.py
# Connect a Nintendo Wii Remote via Bluetooth
# and  read the button states in Python.
#
# Project URL :
# http://www.raspberrypi-spy.co.uk/?p=1101
#
# Author : Matt Hawkins
# Date   : 30/01/2013

# -----------------------
# Import required Python libraries
# -----------------------
import cwiid
import time
#import RPi.GPIO as io

#io.setmode(io.BCM)
#pins = (2,3,4,17)
#for i in pins:
#  io.setup(i,io.OUT)

button_delay = 0.1

print 'Press 1 + 2 on your Wii Remote now ...'
time.sleep(1)

# Connect to the Wii Remote. If it times out
# then quit.
try:
  wii=cwiid.Wiimote()
except RuntimeError:
  print "Error opening wiimote connection"
  quit()

print 'Wii Remote connected...\n'
print 'Press some buttons!\n'
print 'Press PLUS and MINUS together to disconnect and quit.\n'

wii.rpt_mode = cwiid.RPT_BTN
 
while True:

  buttons = wii.state['buttons']

  # If Plus and Minus buttons pressed
  # together then rumble and quit.
  if (buttons - cwiid.BTN_PLUS - cwiid.BTN_MINUS == 0):  
    print '\nClosing connection ...'
    wii.rumble = 1
    time.sleep(1)
    wii.rumble = 0
    exit(wii)  
  
  # Check if other buttons are pressed by
  # doing a bitwise AND of the buttons number
  # and the predefined constant for that button.
  if (buttons & cwiid.BTN_LEFT):
    print 'Left pressed'
    time.sleep(button_delay)         
    #io.output(2, True)

  if(buttons & cwiid.BTN_RIGHT):
    print 'Right pressed'
    time.sleep(button_delay)          
    #io.output(3, True)

  if (buttons & cwiid.BTN_UP):
    print 'Up pressed'        
    time.sleep(button_delay)          
    #io.output(4, True)
    
  if (buttons & cwiid.BTN_DOWN):
    print 'Down pressed'      
    time.sleep(button_delay)  
    #io.output(17, True)
    
  if (buttons & cwiid.BTN_1):
    print 'Button 1 pressed'
    time.sleep(button_delay)          

  if (buttons & cwiid.BTN_2):
    print 'Button 2 pressed'
    time.sleep(button_delay)          

  if (buttons & cwiid.BTN_A):
    print 'Button A pressed'
    time.sleep(button_delay)          
    #for i in pins:
      #io.output(i, False)    

  if (buttons & cwiid.BTN_B):
    print 'Button B pressed'
    time.sleep(button_delay)          

  if (buttons & cwiid.BTN_HOME):
    print 'Home Button pressed'
    time.sleep(button_delay)           
    
  if (buttons & cwiid.BTN_MINUS):
    print 'Minus Button pressed'
    time.sleep(button_delay)   
    
  if (buttons & cwiid.BTN_PLUS):
    print 'Plus Button pressed'
    time.sleep(button_delay)

 

 

Cuando haya terminado: Presione Ctrl-O y luego Enter para guardar Presione CTRL-x para salir de la línea de comandos .

Ahora ejecute el programa de prueba tecleando

>sudo python wii_remote_1.py

Siga las instrucciones y debería ver la pantalla respuestas a todas sus pulsaciones de botón  así que ha llegado hasta aquí, ya sólo le queda probar todo el conjunto.

 

A continuación  vamos  a ver  el programa principal que le permitirá controlar el vehículo con el Wiimote

En la línea de comandos escriba lo siguiente:

>nano robot.py

Ahora puede  escribir  , o cortar y pegar, el siguiente  programa .

#!/usr/bin/python
#based on Matt Hawkins' code http://www.raspberrypi-spy.co.uk/?p=1101
#Re written by Ryan Walmsley

import cwiid
import time
import RPi.GPIO as io

io.setmode(io.BCM)
#Motor 1 is designed to be the motors on the left, Motor 2 is designed to be on the right
#If one motor is in the wrong direction you can swap the pins around to save you having to re-wrire the robot.
m1a = 17 #Motor 1 Forwards
m1b = 18 #Motor 1 Backwards
m2a = 22 #Motor 2 Forwards
m2b = 23 #Motor 2 Backwards
pins = (m1a,m1b,m2a,m2b)
for i in pins:
  io.setup(i,io.OUT)

for i in pins:
  io.output(i,False)

button_delay = 0.1

print 'Press 1 + 2 on your Wii Remote now ...'
time.sleep(1)

# Try to connect to the Wiimote & quit if not found
try:
  wii=cwiid.Wiimote()
except RuntimeError:
  print "Can't connect to Wiimote"
  quit()

print 'Wiimote connected'
wii.rpt_mode = cwiid.RPT_BTN
 
while True:
  buttons = wii.state['buttons']
  if (buttons & cwiid.BTN_UP):
    #Forwards
    time.sleep(button_delay)    
    io.output(m1a, True)      
    io.output(m2a, True)
   
  elif (buttons & cwiid.BTN_DOWN):
    time.sleep(button_delay)  
    io.output(m1b, True)
    io.output(m2b, True)
  
  elif (buttons & cwiid.BTN_LEFT):
    time.sleep(button_delay)         
    io.output(m1a, True)
    io.output(m2b, True)
   
  elif(buttons & cwiid.BTN_RIGHT):
    time.sleep(button_delay)          
    io.output(m1b, True)
    io.output(m2a, True)
  
  else:
    io.output(m1a, False)
    io.output(m1b, False)
    io.output(m2a, False)
    io.output(m2b, False)
   

    
#press button A to stop all motors
  if (buttons & cwiid.BTN_A):
    time.sleep(button_delay)          
    for i in pins:
      io.output(i, False)    

 

Cuando haya terminado : Presione Ctrl-O y luego Enter para guardar pulse CTRL – x para salir de la línea de comandos .

Ahora ejecute el programa :

>sudo python robot.py.

Si todo funciona correctamente usted debería ser capaz de controlar su vehículo con el Wiimote . Si no es así , vuelve a atrás y compruebe que cada paso está funcionando correctamente ..

Ahora usted ya tiene un robot con control remoto , que es completamente funcional  , pero obviamente acaba de empezar , pues tendrá que pensar en el contenedor  donde lo va a ubicar  ( tendrá que usar su imaginación ) así  como si le va a añadir algún accesorio más :por ejemplo sonido, algún tipo de luz, sensores ultrasonidos , etc

 

2016-03-27_23h10_21

Por cierto  el código completo esta disponible en su pagina oficial de Github

 

Fuente  aqui