Cómo probar una tira de leds WS2801


Es muy frustrante adquirir  una costosa tira de leds  WS2801 ( ni importa que sea SMD o en formato «luces de navidad») ,  adherirla y fijarla  con mucho esmero a nuestro TV o monitor ,siguiendo  cuidadosamente los muchísimos tutoriales que hay en Internet (por ejemplo para simular  con esta  el famoso  sistema ambilight ),   y al final no conseguimos obtener nada  quizás porque nuestro hardware esta mal conectado (o tenemos algo estropeado)  o bien no hemos  configurado el sw ,o una mezcla de ambas cosas.

Antes de abandonar veamos  con la ayuda de una placa Arduino Uno conectada a nuestro PC  , vamos  a ver algunas pautas que seguro  nos resuelven el misterio:

 

En primer lugar usaremos una  placa Arduino UNO , para lo cual usaremos sólo  tres cables para  conectar a uno de los  extremos de la tira de leds a Arduino . Las conexiones estandarizadas que haremos sea cual sea la modalidad de la tira de leds son las siguientes:

  • CK de la tira WS2801  al pin GPIO 13(reloj del SPI)
  • SD de la tira WS2801  al pin GPIO11 (SPI MOSI).
  • GND de la tira WS2801 al GND de Arduino
  • +5v   de la tira WS2801  a  una fuente de alimentación aparte de mínimo 2Amp ,5VDC

En algunas tiras formato «luces de navidad» el hilo azul es  GND , el . Verde  es CK  y amarillo es SD ,y el cable rojo es +5V ,  pero esto no es norma porque las tiras SMD   suelen tener un cable rojo para CK, otro verde para SD , el negro para GND  y un violeta para +5V  , lo cual como vemos no sigue para nada la pauta anterior

Aunque no es necesario  también se puede utilizar un Arduino Mega, conectando  reloj del SPI al pin 52   ,  conectando SD al   pin 51 SPI MOSI  y por supuesto las masas.

Es importante destacar que los cables extra rojo y azul son para conectar  5V DC   de al menos 2 Amp ( en función del numero de leds que vayamos a conectar)  lo cual no deberíamos extraer de la placa Arduino sino de una fuente auxiliar DC de 5V    no  olvidando de unir ambas masas ( la de Arduino y de la fuente externa).

En el siguiente esquema podemos ver claramente este montaje.
led_pixels_wiring-diagram.png

Para probar   la tira  de leds    necesitamos si aun no lo tenemos dos herramientas :

  • El IDE de Arduino :Si no lo tiene ya instalado , descargar el Arduino IDE (entorno de desarrollo integrado) de la Web de Arduino. Seleccione la versión del software para su tipo de computadora: Windows, Mac o Linux   Es un poco diferente para cada uno de los tres sistemas operativos.
  • El IDE de Processing:A continuación, descargue el IDE de processing del sitio de procesamiento.Descomprima el fichero y cópielo al  directorio  c:\archivos de programa\ . Es importante que descargue la versión processing 2.2 pues la  versión 3.0  con el codigo Adalight  tendra  errores con él.
El IDE de Arduino y Processing  son  muy similares pero son dos programa muy distintos para diferentes funciones como vamos a  ver

Descargar Adalight ZIP

Por último, visite la página Adalight en Github y descargue el archivo ZIP. El botón de descarga está cerca de la parte superior izquierda de la página:

Después de descomprimir el archivo ZIP, necesitará mover algunos archivos en su lugar.

Si ha ejecutado el Arduino o el IDE de processing  debería haber  dos  correspondientes carpetas llamadas «Arduino» y de «Procesing» dentro de su carpeta personal de «Documents» (o «Mis documentos» en Windows). En ese caso, mover el contenido de la Arduino y procesando carpetas desde el archivo ZIP de Adalight en las carpetas correspondientes de documentos.

Si las carpetas de Arduino y Processing todavía no existen en el sistema,  puede copiar estas desde el archivo ZIP de Adalight a la carpeta de documentos.

Los otros archivos y carpetas en el archivo ZIP pueden ser ignoradas ya  que son para usuarios avanzados y no son esenciales para su uso.

Salga del Arduino y Processing  si se están ejecutando  pues las carpetas recién instaladas no serán visibles hasta la siguiente vez que inicien  estos programas.

Programar Arduino

Para  probar la tira de leds  en caso de que no lo tenga instalado deberá instalar  el IDE de Arduino.Si no lo tiene instalado el IDE de Arduino conecte la placa Arduino al ordenador con un cable USB A-B. Cuando conecta por primera vez, Windows los usuarios le pedirá que para instalar a un controlador.

Iniciar el IDE de Arduino. Después de un momento, debería ver una ventana azul y blanca simple con algunos botones.

En el menú archivo , seleccione Sketchbook,   y elegir  LEDstream. .

En el menú herramientas , seleccione la  placa  luego Arduino Uno (o tipo de cualquier placa Arduino que está usando).

En el menú herramientas , seleccione el Puerto Serial y luego el puerto correspondiente a su placa de Arduino.

Haga clic en el botón de subir cerca de la parte superior izquierda de la ventana:

ledsstreamarduino

Después de que el código sea cargado, si los LEDs están conectados correctamente conectados y la fuente de alimentación está conectada, todos  los LEDs deben encenderse en una secuencia  primero todo todos en flash rojo, luego  verde y después en azul aproximadamente un segundo cada uno, y luego se apagan todos. Se trata de un diagnóstico que indica el LED Arduino están trabajando correctamente y ahora están en espera de datos de que se  envíen desde nuestro ordenador con otro sw.

Gracias    a que el Arduino almacena el programa en memoria no volátil, sólo necesita hacer este proceso de carga una vez, no cada vez que desee utilizar Adalight.

Si los LED no parpadean, asegúrese de que el cableado coincide con la página anterior, y que la fuente de alimentación está conectada.
Si persiste el error  deberíamos probar la salida digital de los  pines 11 y 13 por si estuviesen defectuosas, para lo cual conecte dos leds normales  entre GND  y los pines 11 y 13  y cargue en Arduino el siguiente código de ejemplo:
void setup(){
pinMode(13, OUTPUT);
pinMode(11, OUTPUT);//10 ok 11 ok
}void loop(){digitalWrite(13,HIGH);
digitalWrite(11,LOW);delay(1000);

digitalWrite(13,LOW);
digitalWrite(11,HIGH);

delay(1000);

Al subir el código anterior en nuestro Arduino ,  ya deberían parpadear ambos leds , lo cual sera un claro indicio que la placa Arduino esta bien:

led13

 

Una vez hayamos probado que la placa Arduino esta correcta  con el simple test anterior,  lo que nos queda es volver a cargar el sketch de  probar LedStream cargado inicialmente pues  hay evidencias  de que algún (o algunos) modulo(s)  mal que esta bloqueando el resto de módulos

En el caso de que sólo los primeros pocos LEDs respondan  y ,el resto permanece apagado o parpadea aleatoriamente o incluso no se encienda ninguno, tendrá que estudiar cual de  los módulos esta mal  .

Dentro de cada píxel  hay  una pequeña placa de circuito con el CI WS2801   el led RGB   y algunos componentes adicionales . Si no funciona  el primer píxel apretar las conexiones  donde el cable de cinta se une a la placa  e intente comprobar la conexión ,Si no  funcionase , puede recortar  ese modulo , conectando las conexiones al siguiente  píxel   y seguir la  dirección de conexión ( en el montaje SMD  llevan una flecha  que indica claramente el orden de conexiones)

ws2801

Si consigue que algunos  leds  funcionen pero aún así  algún  led posterior  parpadea ,y fallan después todos los siguientes en la cadena ,también  es muy  posible que ademas  haya algún  otro chip defectuoso  más ,  así que el proceso  anterior lo  deberá repetir  cortando el  led asignado a ese  IC defectuoso y restituyendo las conexiones soldando cablecillos entre el modulo anterior y el siguiente .

img_20170219_222107

Obviamente este proceso tendrá  que repetirlo  hasta que  el test de leds ejecutado desde el  sketch de ledstream haga que se enciendan completamente todos los ledss de un color en las tres secuencias.

Ejecutar el Software de Processing

Este paso debe realizarlo solo cuando el  test de ledStram muestre la secuencia de arranque de rojo, verde y azul apagándose todos después.

Inicie  el programa Processing ejecutando el archivo «C:\Program Files\processing-2.2.1-windows64\processing-2.2.1\processing.exe». Después de un momento, debería ver una ventana simple de blanca y gris  muy similar al IDE de Arduino.

En el menú archivo , seleccione carpeta de bocetos,  y seleccionar el último primero: Colorswirl.

 

color
Es muy importante anotar el numero de leds( en el ejemplo 88)   tras el primer import:

import processing.serial.*;int N_LEDS = 88; // Max of 65536

Haga clic en el botón Ejecutar cerca de la parte superior izquierda de la ventana: si el Arduino esta arrancado con el sketch (LedStram ) y por supuesto conectada la tira de leds a este  y alimentada con la tensión de 5V  se  debería ver un arco iris colorido de animación sobre los LED.

Si  no pasa nada , entonces usted tendrá que editar el código alrededor de la línea 26, buscando esta declaración:

myPort = serie new (this, Serial.list() [0], 115200);

Necesitaremos cambiar el código  que abre la conexión serie con el Arduino. Una ruta es a través de ensayo y error: tratar  Serial.list() [1], entonces Serial.list() [2]y así sucesivamente, volver a arrancar el programa cada vez para ver si funciona.

Para un enfoque más científico, añadir una nueva línea de código antes de ejecutar el sketch:

println(Serial.list());

Cuando se ejecuta, muestra una lista de todos los puertos serie o dispositivos. Si sabe que dispositivo o puerto COM corresponde al Arduino, puede cambiar la línea original para incluir estos datos.

Por ejemplo, ahora se puede leer:

myPort = serie new (this, «COM6», 115200);

Obviamente esto será diferente en cada sistema, por lo que dependerá de cada situación..

Si aun tiene dudas ,otra manera de localizar el nombre del puerto, es en el IDE de Arduino, pues  el puerto seleccionado se ve  en el menú Tools→Serial Port antes de programar el chip.

Una vez conseguido este efecto sobre los leds , este resultado es sinónimo que absolutamente todos los leds son direccionables por lo que ya puede usar su conjunto de tiras de leds  para cualquier aplicación con la certeza de que ya  le debería funcionar.
Si planea organizar los LEDs de manera similar a los ejemplos  entonces tendrá nada más que cambiar  el software. Si utiliza un diseño diferente, necesitará realizar algunos ajustes en el código  para identificar su distribución concreta

Como nota ultima :Antes de montar los LEDs detrás del monitor o TV , nunca se olvide de ejecutar el software con los LEDs sueltos en su escritorio para confirmar que todo funciona. !Esto ahorrará tiempo y angustia en el raro evento que un led vuelva a estar mal  tenga que sustituirlo!.

img_20170219_225945

 

Aplicaciones de los supercondensadores


Lo cierto es que hablamos de un componente que lleva con nosotros casi media década pues ya en 1957 ingenieros de General Electric  experimentaron con una versión temprana de supercondensador  de 1 Faradio ,aunque se desconocen  aplicaciones comerciales conocidas de aquella época.

Mas adelante en 1966,se redescubrió el efecto del condensador de doble capa por accidente mientras trabajaba usando aceite estándar en diseños experimentales la pila de combustible. La doble capa mejoró grandemente la capacidad de almacenar energía pero GE  no comercializaría  la invención por haberlo licenciando a NEC, que en 1978 comercializaría  la tecnología como «supercapacitor» para respaldo de memorias de computadoras. No fue hasta la década de 1990 donde gracias a los avances en materiales y métodos de fabricación   dirigida a mejorar el rendimiento y bajar el costo comenzando  a fabricarse de forma masiva hasta el momento actual donde el reto mayor es abararatarlos  y mejorarlos . .

Prometen ser la próxima generación de almacenamiento de energía,pues de hecho   y actualmente  están  reemplazando  las baterías en muchas aplicaciones.Son muy similares a los condensadores normales, excepto que tienen una capacidad de almacenamiento de energía enormemente mayor  y entres sus ventajas sobre las baterías destacan:

  • Puede ser cargado y descargado mucho más rápidamente que las baterías (casi instantáneamente en la mayoría de las aplicaciones)
  • No le afectan  las temperaturas extremas
  • Vida virtualmente ilimitada (más de un millón de ciclos de carga / descarga)
  • No necesitan ningún controlador de carga complejo:  sólo debe asegúrese de que el voltaje nunca excede la tensión nominal de la unidad de 2.7V
  • Otra ventaja de los supercondensadores está en su composición, debido a que no presentan elementos tóxicos

Los condensadores en general  almacenan energía por medio de una carga estática frente a una reacción electro química de forma que aplicando un diferencial de voltaje en las placas positivas y negativas se carga el condensador.

Hay tres tipos de condensadores:

  • El más básico es el condensador electrostático con un separador de seco. Este condensador clásico tiene muy baja capacidad  y se utiliza principalmente para sintonizar frecuencias de radio y filtrado. Su valor  varía entre unos pico-faradios (pf) a unos pocos  microfaradios (μF).
  • El condensador electrolítico proporciona mayor capacitancia que el condensador electrostático y se mide en microfaradios (μF), que es un millón de veces más grande que un pico faradio. Estos condensadores desplegan un separador húmedo y se utilizan para el filtrado, almacenamiento en búfer y acoplamiento de la señal. Similar a una batería  cuentan por la capacidad electrostática con un polo positivo y otro negativo que deben respetarse , pero a cambio soportan   una tensión superior en los bornes  respecto a las baterias u otros condensadores.
  • El tercer tipo es el supercondensador  que se diferencia de un condensador ordinario que ofrecen e una capacidad muchísima mas  alta que otrss  condensadores  (existen de  hasta 5000F)  .Han  ha evolucionado  cruzándose en tecnología de la batería mediante el uso de electrodos especiales y electrolitos. Mientras que la básica electroquímica doble capa condensadores (EDLC) depende de la acción electrostática, el condensador  electroquímico asimétrico de capa doble (AEDLC) utiliza electrodos de  batería para obtener una mayor densidad de energía . Los supercondensadores comerciales actuales son de base carbono con un electrolito de metal alcalino o alcalinotérreo.Electrodos de grafeno prometen mejoras  pero estos desarrollos son a largo plazo.

supercap

El supercondensador  puede ser cargado y descargado un número prácticamente ilimitado de veces  lo cual le da una vida util muy superior al de las baterias . A diferencia de la pila electroquímica, que tiene una ciclo definido de vida, hay poco desgaste en  un supercondensador.. En condiciones normales, un supercondensador se desvanece respecto a la capacidad original del 100 por ciento a un 80 por ciento en 10 años(aplicar voltajes mayores que los especificados, acortaran la vida). Asimismo  es indulgente en temperaturas frías y calientes, una ventaja que las baterías no pueden cumplir de la misma manera .

Ciclo de carga

El tiempo de carga de un supercondensador es 1 a 10 segundos  siendo unos de sus puntos mas fuertes  y  no está sujeto a sobrecarga y no requiere detección de carga completa (la corriente simplemente dejara de fluir cuando esté lleno).

En carga, la tensión aumenta linealmente y la corriente cae por defecto cuando el condensador  está cargado sin la necesidad de un circuito de detección de carga completa.

La tensión aumenta linealmente durante una carga de corriente constante. Cuando el condensador está lleno, la corriente cae por defecto.

Ciclo de descarga

La descarga de un supercondensador es sustancialmente mayor que la de un condensador electrostático y algo mayor que una batería electroquímica;contribuyendo  el electrolito orgánico a esto. El supercondensador se descarga de 100 a 50 por ciento en 30 a 40 días. Baterias de Plomo y de n litio, en comparación, la autodescarga alrededor del 5 por ciento por mes.

La energía específica de las gamas de la supercondensadores es  de 1Wh/kg 30Wh/kg, 10-50 veces menos de iones de litio  lo cual es una clara desventaja

La curva de descarga es otra desventaja:mientras que la batería electroquímica ofrece una tensión constante en la banda de potencia utilizable, la tensión de la supercapacitor disminuye en una escala lineal, reduciendo  el espectro de energía utilizable.

.En la descarga, el voltaje disminuye linealmente. Para mantener un nivel de potencia constante como las caídas de tensión, un  convertidor DC-DC  es necesario (el extremo de descarga se alcanza cuando ya no pueden cumplirse los requisitos de carga).

Source: PPM Power

En la siguiente tabla podemos ver una  comparación  entre un  supercondensador con  baterías de  Li-ion .

Función

Supercondensador

Ion de litio (general)

Tiempo de carga

Ciclo de vida

Voltaje de la celda

Energía específica (Wh/kg)

Potencia específica (W/kg)

Costo por kWh

Vida de servicio (industrial)

Temperatura de carga

Temperatura de descarga

1 a 10 segundos

1 millón ó 30.000 h

2.3 a 2. 75V

5 (típico)

Hasta 10.000

$10.000 (típico)

10-15 años

-40 a 65 ° C (– 40 a 149 ° F)

-40 a 65 ° C (– 40 a 149 ° F)

10 – 60 minutos

500 y más

3.6V nominales

120 – 240

1.000 – 3.000

$250-$1.000 (sistema grande)

5 a 10 años

0 a 45° C (32 ° a 113° F)

– 20 a 60 ° C (-4 a 140 ° F)

Resumen  ventajas y limitaciones  de los supercondensadores

Supercondensadores son ideales cuando se necesita una carga rápida  para cubrir una necesidad de energía a corto plazo , mientras que las baterías son preferidas  para proporcionar energía a largo plazo.La combinación de los dos en una batería híbrida satisface pues ambas necesidades y reduce la tensión de la batería, que se refleja en una mayor vida útil.

En el otro lado de la balanza  los supercondensadores tienen baja energía específica y son mas costosos en términos de costo por vatio.

A continuación resumimos las ventajas y limitaciones del condensador.

Ventajas 

  • Prácticamente ilimitada ciclo de vida; puede ser un ciclo de millones de tiempo
  • Elevada potencia específica; baja resistencia permite corrientes de carga alta
  • Cargas en segundos; no hay terminación de fin de carga necesaria
  • Carga simple: cargan sólo lo que necesita; no están sujetos a sobrecarga
  • Excelente rendimiento de carga y descarga de baja temperatura
  • No contienen productos químicos ácidos o corrosivos

Limitaciones 

  • Baja energía específica; tiene una fracción de una batería regular
  • Tensión de descarga lineal impiden que utilizen el espectro completo de energía
  • Alta autodescarga; superior a la mayoría de las baterías
  • Bajo voltaje de la célula, requiere serie conexiones con tensión de equilibrio
  • Alto costo por vatio

Aplicaciones

El supercondensador r es utilizado para el almacenamiento de energía, sometidos a frecuentes ciclos de carga y descarga en alta corriente y corta duración

Sus características lo hacen muy útil para las siguientes aplicaciones:

  •  Apoyo energético:Suavizado de la energía. Cubrir picos de demanda sin sobrecargar la red eléctrica.Cubrir interrupciones de suministro de poca duración.Estabilizador de la tensión suministrada por los paneles solares fotovoltaicos.
  • Dispositivos de carga momentánea.
  • Como fuente de energía para el arranque de grandes motores de tanques de guerra y submarinos.
  • Camiones diesel y en locomotoras, funcionando además como freno regenerativo.
  • Uso en vehículos híbridos, por su gran capacidad y su descarga rápida a 5 kW/kg, siendo viable su uso en sistemas de hidrógeno.
  • Supercondensadores son más eficaces colmar lagunas de energía duran desde unos segundos a unos minutos y puede ser recargadas rápidamente. Un volante con cualidades similares, y una aplicación donde el supercapacitor compite contra el volante es el Long Island Rail Road (LIRR) en Nueva York. LIRR es uno de los ferrocarriles más concurridos en América del norte.
  • Para evitar voltaje durante la aceleración de un tren y para reducir el uso de la potencia de pico, un banco de supercapacitor de 2MW está siendo probado en Nueva York contra los volantes que entregan 2.5MW de poder. Ambos sistemas deben proporcionar potencia continua durante 30 segundos en su capacidad respectiva megavatios y recargar completamente en el mismo tiempo.Ambos sistemas deben tener bajo mantenimiento y por último 20 años.
  • Japón también emplea grandes supercondensadores en edificios comerciales para reducir el consumo de la red en horas de demanda pico y la facilidad de carga. Otras aplicaciones son iniciar generadores backup durante cortes de energía y proporcionar energía hasta que se estabiliza el paso de esta.
  • En sistemas de propulsión eléctrica gracias a la virtud de carga ultra rápida durante el frenado regenerativo de corriente alta en aceleración haciendo que el supercondensaror sea  ideal como un potenciador de la carga máxima para los vehículos híbridos, así como para aplicaciones de celdas de combustible. Su rango de temperatura amplio y larga vida ofrece una ventaja sobre la batería  tradicional.

Ejemplo  practico

Todos los condensadores tienen límites de tensión:mientras que el condensador electrostático puede  soportar alto voltajes, el supercondensador  se limita a 2.5 – 2.7V por lo que  para obtener voltajes más altos se necesitan varios condensadores  conectados en serie .

En asociaciones de mas de tres  supercondensadores se  requieren un voltaje de equilibrio para evitar que cualquier célula de a tensión sobrepase la tensión de 2.5 a 2.7   pueda dañarla  (las baterías de iones de litio comparten la misma problemática ) por lo que para poder usar supercondensadores necesitaremos un  circuito de protección adecuado a las capacidades que vayamos a emplear-

Para construir    un arrancador de coches , que  debería proporcionar  entre 12-15V y que incluso pueda servir para suministra corriente continua para otros usos,   se necesita  pues  una   asociacion de supercondensadores

Con  una asociación de 6 condensadores de 400 faradios de   2.7V , en total  la tensión final sera  6x 2.,7= 16V, tensión mas que suficiente  para esta aplicación

 

En cuanto a  la placa de protección una placa muy tipica es la placa  SOLN1-2000. Estas placas  tienen el positivo y el negativo separados uno a cada lado pudiéndose  soldar directamente los supercondensadores a esta . También puede agregar más soldadura para menos resistencia e incluye un led por placa indicador de carga de celda.

balanceadorLas  características de esta placa :

  • Tensión máxima 6 caps 2.7V cada uno en la serie: 16V
  • Corriente de carga máxima: (verifique las especificaciones del superconensador)
  • Máxima corriente de descarga: (verifique las especificaciones del supercondensador)
  • Corriente de ecualización: ≤1A
  • Resistencia DC: ≤ 8mΩ
  • Luz LED roja de equilibrio
  • Tamaño: 240 x 40mm

 

A esta placa ,lógicamente le conectaremos 6 supercondensadores 400F /2.7V.

Un ejemplo de este tipo de condensador es el PowerStor   con las siguientes especificaciones:

 

Capacidad: 400 F;

Tolerancia: + 10%,

Indice: -5%;

Voltaje: 2.7 V;

 

Terminales: Quick Connect,

 

ESR: 0.0032ohm;

Temperatura de funcionamiento: 65 °C;

MSL mínima: -40 °C;

Capacitancia Tolerancia: + 10%, ± -5%;

Rango de temperatura de funcionamiento: -40 °C a + 65 °C

supercap

 

Y como ejemplo ,en el siguiente vídeo podemos ver montado la placa  con los supercondensadores     a la que se han conectado unas bornas para la salida de 16V  junto a un enchufe de mechero  standard   y  lo mas sorprendente: una pequeña dinamo para cargar todo el conjunto en pocos segundos:

 

 

Esta caja es  pues fácil y segura de de hacer al no utiliza baterías, pero como vemos todavía puede alimentar un montón de cosas.

Realmente es un dispositivo muy versátil siendo el gadget  perfecto a tener a mano en caso de  emergencia pues los usos pueden ser muy variados.