Reconocimiento de imagenes para Raspberry Pi


La famosa librería TensorFlow fue originalmente desarrollada por investigadores e ingenieros que trabajan  dentro de la organización de investigación de la máquina de Inteligencia de Google estando el sistema  diseñado para facilitar la investigación en el aprendizaje de máquina, y para que sea rápido y fácil de transición del prototipo de investigación al sistema de producción.

Aunque se piense que es una librería consolida (la ultima versión es la 10,Release 0)  , TensorFlow no está completa, pues está construida  pensando en ser  mejorada, y extendida. El equipo de desarrollo ha hecho una versión inicial del código fuente, y en la actualidad están haciendo esfuerzos internos de desarrollo a utilizar un repositorio público de los cambios del día a día realizados por el equipo en Google. Esperan construir una comunidad de código abierto activa que impulse el futuro de esta biblioteca, proveyendo de retroalimentación y contribuyendo activamente al código fuente.

 

Nuestro cerebro hacen que la visión parecen fácil pues no se necesita ningún esfuerzo para el ser humano de distinguir un león y un jaguar, leer una señal, o reconocer el rostro de un ser humano. Pero estos son en realidad problemas difíciles de resolver con un ordenador: sólo parece fácil porque nuestros cerebros son muy buenos en la comprensión de las imágenes.

En los últimos años el campo de aprendizaje de la máquina ha hecho enormes progresos en hacer frente a estos problemas difíciles. En particular, hemos encontrado que una especie de modelo  llamado convolutional neural network  puede lograr un rendimiento razonable en las tareas de reconocimiento visual duros igualando o superar el rendimiento humano en algunos dominios.

Los investigadores han demostrado un progreso constante en la visión por ordenador mediante la validación de su trabajo contra IMAGEnet ( un punto de referencia académica para la visión por ordenador). Modelos sucesivos siguen mostrando mejoras, y cada vez que ese consigue un  logro,el  resultado nuevo mejora el estado de la técnica: QuocNet , AlexNet , Inception (GoogLeNet) , BN-Inception-v2 . Los investigadores tanto internos como externos a Google han publicado artículos que describen todos estos modelos, pero los resultados son todavía difíciles de reproducir .En este momento se esta  dando el siguiente paso mediante la liberación de código para ejecutar el reconocimiento de imágenes en nuestro último modelo, Inception-v3 .

Inception-v3 está capacitado para el IMAGEnet grande Reconocimiento Visual Challenge utilizando los datos de 2012. Se trata de una tarea estándar en la visión por ordenador, donde los modelos tratan de clasificar las imágenes completas en 1000 clases , al igual que la «cebra», «dálmata», y «lavavajillas «. Por ejemplo, aquí están los resultados de AlexNet la clasificación de algunas imágenes:

 

Para comparar los modelos, examinamos la frecuencia con que el modelo no puede predecir la respuesta correcta como uno de sus 5 mejores conjeturas mediante el denominado «top-5 índice de error» . AlexNet ha logrado mediante el establecimiento de un top 5 , llegar  a una tasa de error del 15,3% en un dataset de validaciones de  2012 . BN-Inception-v2 alcanzan el 6,66% y  Inception-v3 alcanza el 3,46%.Karpathy intentó medir su propio rendimiento y  alcanzó el top-5 tasa de error de 5,1%.

Ahora vamos a ver  un ejemplo  en Python  para cómo utilizar Inception-v3 para  cómo clasificar las imágenes en 1000 clases en Python o C ++ . También es interesante saber cómo extraer características de nivel superior de este modelo que pueden ser reutilizado para otras tareas de visión.

 

Descargue el modelo  classify_image.py  de tensorflow.org cuando el programa se ejecute por primera vez. Usted necesitará unos 200 Mbs de espacio libre disponible en el disco duro.

Las siguientes instrucciones puede ejecutarla  suponiendo  que ha instalado TensorFlow de un paquete PIP y que su terminal reside en el directorio raíz TensorFlow.

cd tensorflow/models/image/imagenet python classify_image.py

El comando anterior clasificar una imagen suministrada de un oso panda.

Si el modelo se ejecuta correctamente, la secuencia de comandos producirá el siguiente resultado:

giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca (score = 0.88493) indri, indris, Indri indri, Indri brevicaudatus (score = 0.00878) lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens (score = 0.00317) custard apple (score = 0.00149) earthstar (score = 0.00127)

Si desea suministrar otras imágenes JPEG, puede hacerlo editando el  argumento  –image_file.

Si descarga los datos del modelo en un directorio diferente, tendrá que señalar –model_dir al directorio utilizado.

 

Como ejemplo de uso  se  puede  utilizar  una combinación de OpenCV junto con la librería TensorFlow de Google para utilizar redes de neuronas en Google Cloud para entrenar un modelo de clasificación en la nube.

El japones  Kazunori Sato  ha intentado clasificar verdura ( pepinos )   con el uso de esta  librería implementada  en una Raspberry Pi junto a una webcam para analizar visualmente cada  pieza de verdura  y poder clasificarlos  por tamaños  de una manera eficiente.

Mediante una pequeña máquina casera que han diseñado, a la que  han añadido varios  servos(para expulsar las  muestra clasificadas)  junto a  una cinta transportadora  para transportar las muestras ,  todos controlados  por la raspberry pi  consiguen una eficiencia teórica de más de 95% de acierto,   si bien como se puede ver en el ejemplo, el funcionamiento es algo lento.

En el siguiente video puede ver pues una aplicación practica de uso de esta librería:

 

 

 

 

Para obtener información sobre las redes neuronales en general, de Michael Nielsen su libro online gratis es un excelente recurso. Para las redes neuronales convolucionales, en particular, Chris Olah tiene algunas buenas entradas de blog , y el libro de Michael Nielsen tiene un gran capítulo que forman parte. Para obtener más información sobre la aplicación de redes neuronales convolucionales, puede saltar a la TensorFlow redes convolucionales profunda tutorial , o empezar un poco más suavemente con nuestra principiante ML o expertos ML tutoriales MNIST de arranque. Por último, si desea ponerse al día sobre la investigación en esta área, se puede leer la obra reciente de todos los documentos referenciados en este tutorial.» Michael Nielsen es un excelente recurso. Para las redes neuronales convolucionales, en particular, Chris Olah tiene algunas buenas entradas de blog , y el libro de Michael Nielsen tiene un gran capítulo sobre estas.

Para obtener más información sobre la aplicación de redes neuronales convolucionales, puede mirar el tutorial de TensorFlow sobre  redes convolucionales  o empezar un poco más suavemente con  ML 

 

Protesis low cost


Gino Tubaro nació en 1995 en Buenos Aires.Estudió electrónica en la Escuela Técnica ORT (las Escuelas Técnicas ORT) y  está estudiando ingeniería electrónica. Como joven inventor, ha recibido muchos premios : por la Organización Mundial de la Propiedad Intelectual (OMPI / WIPO) adoptado por la ONU, Juegos Olímpicos «inventiva», JCI TOYP. «Alumno del mes» en todo el mundo por el Departamento de Estado de los Estados Unidos y la Embajada de los Estados Unidos en «reconocimiento a su liderazgo en la creación de soluciones innovadoras para ayudar a las personas con discapacidad viven sin límites,etc.

En 2012 él era un orador en TEDxRiodelaPlata donde presentó el «ladrón de Energía» y «Sound Cube». TED es una organización sin ánimo de lucro de prestigio dedicada a las «ideas vale la pena difundir». Del mismo modo TEDx ofrece la posibilidad de organizar un evento separado como en cualquier parte del mundo. También en 2014 dio su segunda charla en TEDxUTN, esta vez, hablando de su idea de «Super-hombre Darwin ‘, fue acerca de cómo podríamos tener súper habilidades de súper discapacidades físicas.

Fruto de su deseo por mejroar el mundo , Gino co-fundó una compañía / fundación llamada Darwin Investigación, con el fin de experimentar las nuevas tecnologías disruptivas que hoy en día todavía no son públicos, son la impresión en 3D, realidad virtual, criptocoins (bitcoin / litecoin), educación 2.0, entre otros tecnologías.

Gino es líder en la producción de 3D impreso dispositivos protésicos en Argentina. creando  o prótesis de mano que son completamente funcionales.

Actualmente, sigue diseñando nuevas prótesis utilizando un sistema diseñado por Gino llamada mechanomyogram, que puede «escuchar» el movimiento de los músculos, donde los sensores  no tocan la piel directamente, por lo que este nos permite estimular un músculo antagonista (opuesto a la se esta utilizando para conducir la prótesis) y darle al usuario la sensación de sostener un objeto.

Una  gran ventaja en comparación con los modelos anteriores, es que todos estos prototipos   no necesitan cirugía para colocar los electrodos.

 

Manoironman-crop.png

Como ejemplo Felipe Miranda tiene 11 años y nació sin dedos en su mano izquierda. La  prótesis que necesitaba costaba 40 mil dólares y había que importarla. Su madre Ivanna se comunicó con Gino Tubaro y Rodrigo Pérez Weiss para pedirles ayuda. Diseñaron juntos un implante para Felipe que solamente costó $2.000 pesos.

Para aquellas personas  que aun no puedan costearse  una prótesis   Gino ha creado un evento  llamado ‪#‎MANOTON‬, que hace posible construir las protesis gracias a la ayuda de voluntarios y a parners como Microsoft Argentina, Sodimac y United  a fabricar entre todos las  prótesis a personasque lo hayan solicitado .Este año  una niña  llamada  Isamara fue una de  sus primera beneficiadas del programa pues Gino junto a un grupo de voluntarios la ayudaron a montar su mano impresa en 3D por Atomic Lab en el primer MANOTON ( puede apoyar esta iniciativa  yendo a www.aka.ms/manoton )

Gino trabajó casi un año que lleva el programa nacional «Argentina en 3D», de la «Jefatura de Gabinetes de Ministros», bajo el control presidencial. Él dejó la comodidad de trabajar por el Estado para su aventura personal por Atomic Lab . Allí, él se dedica a inventar soluciones para las personas que más lo necesitan y muchas otras invenciones.

Hoy en día se enfrenta el desarrollo de varios inventos, desde el 3D más avanzada impresa prótesis de mano y el brazo, un «braille dinámico» que permite leer libros sin la digitalización de las impresoras 3D a base de pantallas de teléfonos móviles para reciclar thetecnoscrap del mundo, entre otras cosas..

 

 

Mas información   aqui