Construya una alarma de proximidad a partir de un económico foco


 

En efecto  hoy en día hay soluciones muy económicas  debido a su gran escala comercial  que son   susceptibles de ser mejoradas para complementar con notoriedad  sus prestaciones y lo mas interesante !sin coste alguno!.

En el ejemplo de hoy  vamos  a  ver como de hecho una modesta  lámpara con sensor de movimiento para uso en exteriores  ideal (almacén, garaje, clóset, etc …,con un bajo consumo de sólo 10 vatios ( aunque existen  de muchas  potencias  más elevadas ) ,y  900 lúmenes de luz  garantizados   puede usarse   además de su cometido principal de encenderse  cuando el sensor detecta movimiento  en el exterior , que  también envíe   una alarma hacia el interior, para  que tengamos constancia  si no nos  hemos percatados por la activación de la luminara   de que puede que haya personas , animales o cosas merodeando por el exterior   .

Además  hay un aspecto interesante, en esta simple  modificación  pues mantendremos el  diseño moderno y compacto de la luminaria ,  ya que vamos a hacer una sencilla modificación   que apenas ocupa más espacio ( únicamente necesitaremos  añadir una regleta )  y que además no inhabilita su protección  impermeable (IP66), una característica fundamental para aquellos que desean montar esta luminaria en el exterior.

Respecto al interior de  la luminaria , esta se aleja de las convencionales halógenas al   incorporar uno de los últimos 30 chips súper brillantes de LED  que reemplazan a los  anteriores, ofreciendo una iluminación más brillante (900 LM, blanco frío de 6000 Kelvin ) ,  con un gran ahorro en la factura de la luz y una gran durabilidad (los LED tienen una vida media de 50000 horas).

El foco integra un sensor PIR   y la electronica necesaria para activar la luminaria  , la cual por cierto va integrada en el propio receptor del PIR

En est emodelos , se puede ajustar la iluminación utilizando los 3 botones de configuración de la parte de atrás del propio modulo del PIR 

Los ajuste son los siguientes:

  • HORA ;sirve  para establecer la duración de la iluminación (6-360 s);
  • SENS; sirve para ajustar el rango de detección (1-12m);
  • LUX :ajuste la fotosensibilidad (día y noche)

 

Aparte de ajustar  el sensor de movimiento ajustable hasta 10 metros, un ajuste especialmente interesante es el ajuste LUX pues no puede permitir que el foco  ( y  por tanto la alarma ) no se active de día ,pudiéndose accionar automáticamente solo de noche  , que es cuando la mayoría de las ocasiones los dueños de lo ajeno merodean por los exteriores de los inmuebles

Con la doble función de iluminación sorpresiva ( que el producto  ya lo contempla ) y la alarma sonora ( que vamos añadir tanto interior como exterior ) la idea   que se  busca con esta mejora es   una  detección anticipada que localizar los intentos de intrusión y antes de que el intruso haya conseguido entrar : así, decidimos antes a los intrusos y, ademas  tenemos un señal audible de que ha sucedido , señal que por cierto podemos contemplar con otros sistemas como camaras, alarmas remotas , etc

Bien veamos la mejora  de este foco con sensor que podemos comprar por unos 15€

 

 

La idea  de este post  es mejorar  un asequible  foco del fabricante  CLY  para poder usarlo para activar otras cargas ( no solo la de la propia luminaria) , para lo cual tendremos que abrirlo con cuidad  para capturar la señal de salida y devolverlo al exterior . Desgraciadamente  manipulaciones del producto nos  hará  perderas la garantia , pero por el precio que tiene creemos merece la pena puesto que nos puede ser muy útil desde el interur  saber si se ha activado el foco  o por ejemplo para enviar a una central de alarma

 

Empieza la acción: Paso a paso

Empezaremos  antes de desmontar el producto  probando la luminaria pues cualquier cambio de esta en su configuración nos hará perder la garantia, asi que  es nuestra última oportunidad para  probar de que funciona perfectamente este.

Bien si funciona ok , desmontamos  los 4 tornillos de la parte posterior  y sacaremos con cuidado el cristal protector  y luego con cuidado de no toca los leds  los otros dos tornillos  del reflector 

Como se observa en la imagen de más abajo  hay dos bloques  ,   diferentes : el chip compuesto por leds( en el centro )    y el convertidor ac/dc para este ( a la derecha)

Además  se observan claramente  tres conexiones que van al módulo PIR : 

  • Cable marrón; uno de los polos de la red para dar alimentación permanente al módulo PIR
  • Cable azul : otro de los polos de la red  para dar alimentación permanente al módulo PIR
  • Cable rojo ; el cable de detección del PIR   que permite alimentar al convertidor ac/dc 

 

Hemos visto que nuestro objetivo es cable rojo  de salida del módulo de  PIR   que permite alimentar al convertidor ac/dc de la luminaria , y que por tanto nos permite obtener la salida del rele interno del modulo PIR ,así que intentaremos capturar este hilo  para lo cual descubriremos el protector plástico del empalme 

 

Es muy poco ortodoxo , pero como no queremos que el módulo pierda la estanqueidad , y normalmente  para luces exteriores las instalación no suelen contar con este cableado, utilizaremos el cable amarillo de masa del cable de salida ( más adelante si nos interesa podemos exteriormente fijarle un tornillo al chasis y volverlo a conectar)

 

 

 

Ahora solo nos queda  usar una ficha de empalme para conectar el cable amarillo de la manguera exterior con  en emplame rojo-blanco procedente de la salida del modulo PIR hacia el convertidor ac/dc

 

 

 

Ahora ya cerraremos con cuidado la luminaria  : primero el reflector  y luego la junta de estanqueidad  , el cristal  y finalmente la tapa . Ahora ya podemos conectar la c. a.  al extremo de la manguera del foco  , pero con la  importante diferencia que en el  cable amarillo ya no conectaremos la masa  sino por ejemplo un zumbador o  un testigo  que  alojaremos  en el interior de la vivienda para tener constancia  visual    o sonora   de que el foco luz se ha encendido por movimiento de objetos extraños próximos al PIR . Por cierto si se pregunta  donde conectar el otro extremos del zumbador o luz auxiliar este irá conectado al cable marrón de la manguera .

En el esquema anterior, como se puede apreciar ,se complementa con un interruptor para anular el zumbador en caso de que sea demasiado molesto  .Asimismo se recomienda otro interruptor a la entrada de ca si este va estar conectado permanentemente  a la red de ca.

 

 

Hay muchas opciones de uso para esta salida de CA , el cual por cierto no debemos cargar con mucha potencia pues corremos el riesgo de estropear lso contactos del relé interno del modulo PIR

Algunos ejemplos de lo que podemos hacer con esta salida «extra»;

  • Un  relé  de potencia con bobinado de  220v de CA para conectar cargas mayores
  • Un segundo relé de 220V pero para utilizar los contactos para alarmas
  • Un  zumbador de 220V ( los hay por 2€ en Amazon)
  • Un timbre convencional
  • etc

Bueno ,como hemos visto   quizás sean una idea un tanto atrevida , que no todo el mundo esté dispuesto a realizar,  pero desde luego !la posibilidad está ahí   ! y eso sin casi ningún coste adicional !¿se le ocurre  alguna mejora adicional ? si es así no dude en compartirla con toda la comunidad ..!!GRACIAS!!

 

NOTA;Como hemos recibido consultas , en este nueva imagen creemos que se describe mejor la modificación que pasa por soltar el cable amarillo de masa y unirlo con una regleta o un empalme con la conexión marcada como salida del relé 

Primeros pasos con NodeMCU y Firebase


Hoy en día muchos dispositivos que usamos día a día se conectan a internet como la televisión, altavoces inteligentes, refrigeradores, Aires Acondicionados , etc …, dispositivos  que extienden sus funciones primarias  permitiéndoles  interactuar con otros dispositivos en internet siendo de  este modo  posible controlar estos  remotamente.

Como  podemos ver en este blog en numeras  entradas que hablamos de dispositivos de IoT, es  relativamente sencillo construir nuestros  propios dispositivos de IoT con algunos sensores y microcontroladores  como Arduino, NodeMCU, Raspberry  Pi, etcétera , lo cual le permitirán automatizar su hogar apoyándose en estos dispositivos como por ejemplo usando el servicio de Cayenne .

Como ejemplo de lo  sencillo  que puede ser  la construcción de dispositivos   IoT desde un punto de vista más empírico , vamos a ver como usando NodeMCU ESP-12E podemos  acceder a Firebase  para encender y apagar un  LED remoto. 

 

 NodeMCU ESP-12E  es muy barato (unos 6€)   ,  y al tener  wifi incorporado para conectarse a internet,  ya tenemos los elementos suficientes  para conectarnos a  bases de datos avanzadas  gracias a un hardware tan eficiente  y por supuesto los servicios de Firebase.

En esta ocasión aunque  NodeMCU ESP-12E cuenta con un puerto analogico  denominado A0 y 13 pines digitales numerados del D0 al D12, vamos a usar un puerto  interno al que  esta conectado el led interno denominado LED_BUILTIN y  de este modo no hace falta usar ningún componte externo

 

 

NodeMCU 

ESP12E   está basado en Arduino  pero cuenta   también conectividad wifi integrando la propia antena en la placa de circuito impreso en unas  dimensiones de  25.6mm x 34.2mm .  Además, por motivos de reducción de espacio . las  versiones más antiguas  de esta placa no integraban conexión usb  ( para lo cual necesitaremos un USB FTDI   para programarlo o un  controlador Setup CH340g).

Las características principales son las siguientes:

  • Incorpora una MCU de 32-bit de bajo consumo (Tensilica L106)
  • Módulo WiFi de 2.4 GHz
  • RAM de unos 50 kB
  • 1 entrada analógica de 10-bit (ADC)
  • 17 pines de entrada y salida GPIO (de propósito general)

Dentro de los diferentes módulos del ESP8266,(ESP01,ESP03,ESP04,ESP05,…ESP12)  destaca el ESP-12 o el ESP-12E, módulo que utiliza usando NodeMCU ESP-12E para procesar la información.

Básicamente estos módulos incorpora la memoria Flash para almacenar los programas o sketchs y la antena estando internamente los pines del ESP8266 cableados hasta los pines del módulo ESP-12 siendo así más fácil su acceso. 

En todo caso,  esta familia de placas todas cuentan con 11 pines digitales de entrada / salida, todos los pines tienen interruptor / pwm / I2C / 1-wire    siendo su chip principal el  ESP8266 CH340G , siendo una gran diferencia con una placa Arduino es que sólo cuenta  con 1 entrada analógica (entrada máxima de 3,3 V)

 

Respecto al firmware necesitará  subir el código a NodeMCU, pera el cual debería   programar el NodeMCU con el IDE de Arduino,

Veamos con mas detalles  como conseguimos configurar entorno de desarrollo tanto de Arduino como Firebase para que ambos puedan interaccionar entre si

 

Configuracion IDE de Arduino

1. Vamos a usar Arduino IDE para escribir el código . Si no lo tiene instalado  puede descargar la última versión del IDE aquí.

2. Puesto que estamos usando NodeMCU que no es oficialmente compatible con IDE de Arduino, tenemos que agregar el archivo JSON del dispositivo. En el IDE de Arduino añadir esta URL en  :

Archivo  > Preferencias >Gestor de URL’s Adicionales de Tarjetas : http://arduino.esp8266.com/stable/package_esp8266com_index.json

4. Seleccione la placa  pulsando en 

Herramientas > Placa >NodeMCU 1.0

4. Para utilizar la base de datos bases avanzadas en NodeMCU puede descargar la biblioteca de bases avanzadas-arduino que abstrae la API REST de las bases avanzadas  por los qeu necesitamos descargar la librería de Firebase desde github aquí.

5. Incluir el archivo zip descargado (firebase-arduino-master.zip)  en el IDE de Arduino.

Programa > Incluir Libreria  > Añadir .zip >  Seleccionar archivo  .zip descargado en el paso anterior

6. También necesitará instalar la biblioteca de ArduinoJson que puede descargarse desde el IDE de Arduino así mismo. Tenga en cuenta que la versión de la biblioteca no debe 6.x.x  por lo que debe utilizar la última 5.x.x

Programa > Incluir Libreria  > Añadir biblioteca .zip >Buscar  ArduinoJson  por Benoit Blanchon

 

Creación de una base de datos Firebase

7. Cree un nuevo proyecto de Firebase  desde la consola (necesitará   tener  cuenta de google   para crear proyecto de FireBase) y diríjase hacia la sección de base de datos. Seleccione la base de datos en tiempo real de bases avanzadas (firebase real-time database).

8. Necesitamos copiarnos   el código secreto de la base de datos para la autenticación desde el Panel de configuración > Cuentas de servicio.>Mostrar

 
 
 
Una vez copiado la clave secreta  ( que colocaremos en el código de arduino en FIREBASE_AUTH «XXXXXXXXXXX»),  nos iremos a la opción de DataBase, y  Realtime Database

9.Ahora debemos agregar un nodo asociado  a la base de datos de firebase. Tenemos que seleccionar Realtime Database  y  pulsar el botón de +  añadiendo el campo led . POsteriormente como veremos mas  adelante,  el  valor de  este campo decidirá si activar o desactivar el LED.

 


El tipo de dato  es booleano  ya  que según lo  pongamos a true o false esto accionará el led en el  NodeMCU ESP-12E  

 

Debemos actualizar la configuración de uso compartido de datos del proyecto NodeMCU.

 
Usar la configuración predeterminada para compartir datos de Google Analytics for Firebase , lo cual tendrá las siguientes consecuencias :
  • Compartir tus datos de Analytics con todas las funciones de Firebase
  • Comparte tus datos de Analytics con nosotros para ayudarnos a mejorar nuestros productos y servicios.
  • Comparte tus datos de Analytics con nosotros para habilitar el servicio de asistencia técnica.
  • Comparte tus datos de Analytics con nosotros para habilitar las comparativas.
  • Comparte tus datos de Analytics con los especialistas en cuentas de Google.
  • Aceptar las condiciones entre responsables del tratamiento de datos. Es obligatorio marcar esta casilla si vas a compartir tus datos de Analytics para mejorar los productos y servicios de Google. Más información


Asimismo  tenemos dos opciones de modo de uso de la BBDD:en modo bloqueo  o en  modo de prueba para el caso que nos corresponde para probar la  funcionalidad
Por último apuntaremos la  instancia de firebase  de acceso  que luego  insertamos en el código de Arduino  en  FIREBASE_HOST «xxxxxxxxxx.firebaseio.com/»
 
 
 
 

Configurar el IDE de Arduino y base de datos de Firebase a trabajar juntos

Ahora que hemos realizado todos los procedimientos de configuración,  vamos a comenzar la codificación  del código que ejecutaremos en  nuestro módulo NodeMCU

Para simplificar, vamos a escribir un código sencillo para encender y apagar  el LED interno  del NodeMCU    aunque realmente seria exactamente el mismo código si decidimos usar alguno de los 17 pines de entrada y salida GPIO (de propósito general), pues simplemente tendremos que conectar un led entre masa  y uno de los pines , cambiando la constante LED_BUILTIN  por un valor entero del 0 al 16  correspondiente al  número del puerto al  que hayamos conectado el led.

 

El código empleado es el siguiente:

 

         // By CRN   mayo-2019

<ArduinoJson.h>

<ESP8266WiFi.h>  

<FirebaseArduino.h>

// Firebase

FIREBASE_HOST «xxxxxxxxxxxxxxx.firebaseio.com»

FIREBASE_AUTH «xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx»

// Wifi

WIFI_SSID «wwwwwwwwwwwww»

WIFI_PASSWORD «pppppppppppppppppppp»


void setup()

{

Serial.begin(115200); //inicializa el puerto de salida a 115200

pinMode(LED_BUILTIN, OUTPUT);   //configurar el puerto interno como salida 
digitalWrite(LED_BUILTIN, HIGH);   //enciende el led interno

// conectando a la red wifi.

WiFi.begin(WIFI_SSID, WIFI_PASSWORD);  //conexión a la red wifi

delay(2000);   //espera la  conexión

Serial.println(«Conectando…»); 

while (WiFi.status() != WL_CONNECTED)  //bucle para esperar la conexión

{

Serial.println(«.»);  //mientras pintamos un puntito que sacamos por consola

delay(3000);

}

Serial.println(«Conectado»);   // ya hemos conseguido conectar por wifi

Serial.println(WiFi.localIP());   // pintamos la ip asignada 

 

// Configurando conexión a firebase

Firebase.begin(FIREBASE_HOST, FIREBASE_AUTH);  //intentamos conectarnos a la base de datos Firebase con nuestras credenciales

//fin configuración

}

 

void loop()  //bucle principal

{

//leer estado en Firebase el valor del registro led  y observar que el valor recuperado al ser booleano se asigna directamente a la variables es booleana

bool isLedOn = Firebase.getBool(«led»); // recuperamos el valor del objeto led de la sesión firebase

 

if (isLedOn)   // condicional  para decidir en función del valor recuperado de firebase si se enciende o no el led

{

digitalWrite(LED_BUILTIN, HIGH);  //encendemos el led 
Serial.println(«LED ON «); 
delay(2000);

}

else

{

digitalWrite(LED_BUILTIN, LOW);    //apagamos el  led 
Serial.println(«LED OFF»);
delay(2000);

}

 

}

 

 

En  el código anterior     en primer lugar se incluyen las librerías  necesarias  para hacer  toda gestión de conexión con Fireabase, así como las comunes de arduino para gestionar json  y las propias del ESP8266 

 

Después  se definen cuatro variables de tipo constante para almacenar: 

  • WIFI_SSID «Nombre de Router Wifi» Cambiaremos en esa a línea  la red del router WiFi al que nos vayamos a conectar
  • WIFI_PASSWORD «Contraseña del Router» Cambiaremos en esa  línea contraseña de su router WiFi 
  • FIREBASE_HOST «xxxxxxxxx.firebaseio.com» Insertaremos quie elnombre de la instancia de Firebase asociada a su usuario, para ello haremos clic en base de datos ahora se verá el nombre de host .Pulsamos Mostrar en imagen.Copiar el nombre sin el http en el código de Arduino 
  • FIREBASE_AUTH «xxxxxxxxxxxxxxxxxxxxxxxxxxx»Insertaremos la palabra secreta de Forebase ,para ello iremos  a Configuración > configuración del proyecto > cuentas de servicio > base de datos secreta .Copiar y pegar la palabra secreta  en el código 

Ahora   toca inicializa el puerto de salida a 115200,  ,configurar el puerto interno como salida  enciende el led interno

Asimismo es necesario  conectar la red wifi, que hacemos con un bucle para esperar la conexión  mientras pintamos un puntito que sacamos por consola

La última parte del bloque de configuración es la  conexión a firebase donde intentamos conectarnos a la base de datos Firebase con nuestras credenciales

LLegamos  ahora al cuerpo  principal (loop )    donde leeremos el  estado en Firebase el valor del objeto  led   y actuaremos   según su valor en el estado lógico de  un pin del GPIO   donde es  interesante  observar que el valor recuperado al ser booleano se asigna directamente a la variables que también es booleana.

La magia  se hace   justo con   esta línea «bool isLedOn = Firebase.getBool(«led»); «  donde  recuperamos el valor del objeto led de la sesión firebase

Finalmente mediante  condicional   decidiremos  en función del valor recuperado de firebase si se enciende o no el led

 

 
 

 

Este código ,  donde  incluiremos nuestras  credenciales del Firebase  y de nuestra red wifi,    lo subiremos   desde el IDE de Arduino  Programas > Subir y en seguida  deberíamos ver el led interno luciendo o apagado en función del estado del objeto led en su base de datos Febase

 

Ahora intente cambiar el valor del objeto led en  la base de datos a verdadero y falso. El led debería  encenderse  o apagarse en función del valor que hayamos seleccionado en el objeto led en Firebase .

Por supuesto   puede ampliar este proyecto si decidimos cualquiera de  los 17 pines de entrada y salida GPIO (de propósito general)  asi  como  manejar  estos    mediante la creación de una aplicación web   o móvil   que accionará los  puertos en lugar de cambiar manualmente el valor de la base de datos Firebase.

Además en este articulo hemos hablado de leer un objeto de Firebase desde  un  NodeMCU   pero también   es posible  enviar datos desde la placa para salvarlos en Firebase  y luego leer estos mediante una aplicación móvil o web, Sin duda el limite esta en nuestra imaginación …