Un mini ordenador por 9$


Fuente:MakeZine

 

Si pensaba que los $ 35  que cuesta  una  Raspberry Pi 2  estaban bien pagados para un equipo pequeño y barato, puede  que  no este en lo cierto, porque CHIP es la próxima placa  Open Source   creada por  Next Thing Co, que es en si  un microordenador  incluso más pequeño y sólo costará $ 9.

Como el Raspberry Pi, CHIP puede utilizarse en una variedad de maneras. Se pueden conectar los perifericos  necesarias – un teclado, ratón y una pantalla – y se convierte una computadora personal. De lo contrario, se puede convertirr en un retro emulador juegos, un  robot, centro multimedia, o lo que usted quiera  soñar (sus creadores animan a los usuarios a aprender código y buscar aplicaciones para C.H.I.P)

Como usted probablemente puede adivinar, CHIP no es un ordenador muy potente. Su procesador Allwinner A13 de 1GHz, 512MB de RAM y 4GB de almacenamiento flash interno es  lo suficiente para ejecutar aplicaciones y navegar por la web pero no para mucho más.

Tiene un puerto USB de tamaño completo, un puerto Micro USB, un conector de audio con un micrófono que funciona como una forma de salida de vídeo mediante un cable compuesto, built-in Wi-Fi 802.11 b/g/n y Bluetooth 4.0.

C.H.I.P. funciona con cualquier sistema operativo basado en Linux. Viene con un sistema operativo basado en Debian y tiene acceso a una cantidad considerable de aplicaciones Linux.

Fuera de la caja, C.H.I.P. puede conectarse  con una salida de vídeo compuesto para utilizarse con  un viejo televisor o una pantalla pequeña .No obstante si realmente quiere conectar  C.H.I.P. hasta un HDTV o pantalla de la computadora moderna, usted puede comprar un adaptador HDMI ($15) o uno distinto ,un adaptador VGA ($10) que se encaja en la computadora, estilo Lego.

También puede hacer  C.H.I.P.  portable encajándola en PocketC.H.I.P, un curioso accesorio con un pantalla táctil de 4,3 pulgadas, teclado QWERTY y una batería que dura hasta cinco horas.

 

Esta idea Open source  ha buscado financiación como tantos y tantos otros gadgets a través de crowdfunding por medio  de una campaña de Kickstarter. De acuerdo a su campaña en Kickstarter, los primeros envíos se harán en mayo 2016 pues  el proyecto ha alcanzado con éxito su objetivo de financiación de $50.000 con 29 días para lanzarse. Los primeros ordenadores C.H.I.P se esperan que comiencea  a enviarse  en diciembre de este  año ¿Algún interesado?

 

Fuente  aqui                                                                                                                                                                                                                                                          

Arduino Remoto para Windows Parte 3 de 3


Arduino remoto para  Windows es una biblioteca de componentes de tiempo de ejecución de Windows de código abierto que permite a los fabricantes controlar un Arduino mediante una conexión Bluetooth o USB. Se pretende para los desarrolladores de Windows Runtime que quieran aprovechar el poder de hardware Arduino usando las lenguajes  de tiempo de ejecución de Windows. Los desarrolladores que incluyan este componente en sus proyectos automáticamente tendrán acceso a sus funciones en cualquiera de las lenguajes soportados de  WinRT (C + + CX, C# y JavaScript).

 En un post anterior vimos cómo configurar su Arduino , vimos  como   configurar su ordenador  para añadir la biblioteca Arduino Remoto para windows a su  solución IoT y  ya por  fin en esta  ultima ocasión vamos  a  ver como desarrollar  en el nuevo entorno

En este post, usaremos WArduino remoto para  Windows para encender y apagar un LED. Aunque es un simple ejemplo, revelará el poder que la biblioteca puede dar para crear muchos proyectos más avanzados. Vamos a empezar!

Hardware

Siempre puede utilizar una conexión USB para empezar, pero vamos a cubrir gancho de un dispositivo Bluetooth y un LED que nos desviamos y apagar por Bluetooth utilizando la biblioteca de Arduino remoto Windows!

Piezas

  • Usted necesitará los siguientes componentes:
    • Un Arduino (Uno en la foto)
    • Un dispositivo Bluetooth (Plata a Mate Sparkfun en la foto)
    • Un protoboard
    • Una resistencia de 330Ω
    • Un LED
    • Algunos cables

Configurar

  • La fuente de alimentación y tierra los carriles en la Protoboard a 5V los pines GND, respectivamente, en el Arduino. Con los cables de colores (rojo y negro) hará fácil hacer un seguimiento de las conexiones de alimentación.
  • Conecte el dispositivo bluetooth en el protoboard y conectar los pines VCC y GND a los carriles de alimentación , respectivamente, en la protoboard.
  • Conectar la clavija TX-0 del dispositivo bluetooth en el pin RX en el Arduino. Del mismo modo, conectar la clavija de RX-1 del dispositivo bluetooth en el pin TX en el Arduino.
  • Aviso el cable amarillo en la imagen va desde el pin de transmisión del dispositivo bluetooth con el conector de recepción de la Arduino y viceversa para el cable naranja. Este paso es fundamental para establecer una comunicación serial entre el dispositivo bluetooth y el Arduino, permitiendo que los mensajes transmitidos desde un dispositivo ser recibidos por el otro.
  • Asegúrese de que el código ya está subido en el Arduino antes de realizar esta conexión. El Arduino Uno utiliza los mismos pines (TX y RX) serial para flashear el dispositivo, que impide que cualquier código de ser subido a él cuando otro dispositivo está conectado a estos pines serial.
  • Añadir un LED a la protoboard. Tenga en cuenta que la pata más larga (o doblada) el ánodo (positivo) y la pata más corta es el cátodo (negativo).
  • Conectar el cátodo del LED en el riel de tierra de la placa usando una resistencia de 330Ω. Una resistencia de 330Ω es a rayas naranja, naranja, marrón, oro, como se muestra en la imagen.
  • Conectar el ánodo del LED a cualquier pin I/O digital sobre el Arduino. Estamos utilizando el pin 5 en el ejemplo.
  • Configuración usted está ahora listo! Debe asemejarse a la configuración que se muestra en la imagen de abajo.

Código

Ahora que estamos todos listos, nos metamos en algún código!

  • Cree su proyecto

He configurado un proyecto llamado RemoteBlinky siguiendo los pasos de la guía de instalación. En la imagen abajo, verá el archivo de código subyacente MainPage.xaml.cs que simplemente crea un objeto de conexión Bluetooth y pasa a la clase ServiceRecord en el constructor. Usted verá que yo he especificado mi nombre del dispositivo en este ejemplo. También se pueden enumerar los dispositivos disponibles mediante la invocación de la función estática.listAvailableDevicesAsync() en la clase BluetoothSerial (y USBSerial) antes de construir el objeto.

  • A continuación, voy a agregar una función de devolución de llamada para el evento ConnectionEstablished del objeto BluetoothSerial. Esta función se llamará automáticamente cuando el dispositivo Bluetooth está conectado. Usted notará que yo no he implementado nada en esa función esta vez. Finalmente, llamada.begin() en el objeto de conexión para contarla para conectar.
  • Saltar al archivo MainPage.xaml y crear unos botones que se encenderá un LED y apagado. Usted notará he añadido las devoluciones de llamada botón para el evento Click & establece la propiedad IsEnabled en false, y usted verá por qué en el siguiente paso!
  • Se han  implementado tres funciones en este paso. En primer lugar, la función OnConnectionEstablished permite ahora los botones en el subproceso de la interfaz de usuario. Esto garantiza que los botones se activará sólo cuando la conexión Bluetooth está lista, como típicamente tarda unos segundos para esto pasara.

También se ha configurado las llamadas .digitalWrite() en las devoluciones de llamada botón OnButton_Click y OffButton_Click

  • Generar e implementar. Los botones se activarán cuando la conexión se establece, y se puede cambiar libremente su LED encendido y apagado en la voluntad.Aquí hay una captura de pantalla de este ejemplo básico en Windows Phone 10.

Realmente esperamos que  disfruten de replicar este proyecto y usarla como base para un increíble nuevo conjunto de proyectos !

Fuente aqui