Monte su detector de humo en 2 minutos


Un detector de humo es una alarma que detecta la presencia de humo en el aire y emite una señal acústica  de gran intensidad avisando del posible  peligro de incendio lo cual en ocasiones ,por ejemplo por la noche,  pueden salvarnos literalmente la vida, pues en estados de sueño profundo,   tardamos mucho en reaccionar ante señales evidentes  de posibles incendios. Personalmente creo que es una «inversión» (sobre  15€)   que merece la pena realizar , pues como vamos a ver,  no es para nada complicado su instalación.

 

 

Hay muchos tipos de detectores  diferenciándose sobre todos según al método de detección   implementado en la electronica  que contienen: los iónicos  y los ópticos .

Los menos usados , son los ser  iónicos  , mayormente usados para la detección de gases en ambientes industriales ,los cuales  no son visibles a simple vista .

Estos sensores constan de una cámara formada por dos placas y un material radiactivo (Americio 241), que ioniza el aire que pasa entre las placas,  generando  una pequeña corriente eléctrica permanente, que es medida por un circuito electrónico conectado a las placas, siendo esta  la condición «normal» del detector

 

iones.PNG

Este tipo de composición, los hace  especialmente sensibles a los humos que contienen pequeñas partículas presentes en  de fuego de crecimiento rápido y humo no visible, tal como el que se genera en fuegos de combustión rápida provocados por: gasolina, alcohol, aceites, plásticos, líquidos químicos, etc.  normalmente presentes en laboratorios, talleres, tiendas de pintura,etc.

 

Los  detectores ópticos  son en general  mayormente usados en la actualidad por  su gran fiabilidad   y  bajo precio  detectando humos visibles mediante la absorción o difusión de la luz , pudiendo ser   según la electronica :

  • De infrarrojos directos:   el humo obstaculiza  la luz producida por un led  infrarojo enfrentado a  un LDR generando una alarma
  • De láser : funcionan de un modo parecido al anterior  detectando  un oscurecimiento de una cámara de aglutinación con tecnología láser
  • De tipo puntual : es la tecnologia mas extendida por su gran fiabilidad,   estando  los detectores  puntuales  tanto el emisor y receptor alojados en la misma cámara ( es decir  no se ven al formar sus ejes un ángulo mayor de 90º)  y ademas  separados por una pantalla, de manera que el rayo emitido no alcanza el receptor. Cuando entra humo en la cámara, el haz de luz emitido se refracta en las partículas de humo y puede alcanzar al receptor, activándose la alarma.

sesnor.png

 

Normativa

NF EN 14604  es una normativa  de Noviembre de 2005 DI 89/106 / CE 21/12/1988 que indica la directiva sobre la aproximación de las disposiciones legales, reglamentarias y administrativas de los Estados miembros sobre los productos de construcción.

Esta norma europea especifica los requisitos, métodos de prueba, criterios de rendimiento e instrucciones del fabricante para dispositivos de alarma de humo que utilizan el principio de dispersión o transmisión de la luz, o ionización, para aplicaciones domésticas o similares.

La norma incluye requisitos adicionales para dispositivos de alarma de humo que también son adecuados para su uso en autocaravanas. Para probar otros tipos de dispositivos de alarma de humo o dispositivos de alarma de humo que operan bajo diferentes principios, esta norma debe usarse solo como guía. Las características especiales para alarmas de humo, como un enlace de radio, o características especiales diseñadas para riesgos específicos, no están cubiertas por este estándar. Este estándar permite, cuando sea apropiado, incluir en los dispositivos de interconexión de dispositivos de alarma de humo otros dispositivos de alarma de humo similares y / o incidentales, y desactivar la alarma. Cuando se incluyen dispositivos de esta naturaleza, esta norma especifica los requisitos aplicables. Esta norma no cubre dispositivos destinados a ser incorporados en sistemas que utilizan equipos de control e indicación separados.

 

Electrónica de un detector de humo

 

En la siguiente imagen podemos ver el interior de detector de humo fotoeléctrico de tipo  puntal .

 

 

detector fotoelectrico.jpg

Como podemos ver el circuito es muy sencillo   limitándose a  una  bateria de 9v  conectada  a  una pequeña placa donde van integrados el sensor fotoeléctrico ( suelen ir compactos en una carcasa opaca) , el buzzer piezoelectrico , el led de estado , el pulsador del test, el ajuste de sensibilidad (el trimmer amarillo)  y por supuesto la electronica de control (suele ser un único  chip especializado)

 

 

 

 

 

 

Instalación de un detector de incendios

Resumiendo ,los detectores de humo fotoeléctricos  en general son los utilizados para detectar incendios de pequeña  velocidad de propagación, y  que generan humo visible , como los que se generan en incendio donde tenemos combustibles como: maderas, cuero, lana, y la mayoría de los polímeros, es decir  todo aquellos materiales que tenemos  en  un ambiente domestico ( viviendas  y oficinas), Además estos detectores son menos propensos a falsas alarmas en ambientes controlados.

Ademas  no debemos olvidar  que los detectores iónicos utilizan un isotopo radioactivo de modo que existe el riesgo de un accidente y que este se mezcle con el medio ambiente, generando un problema de contaminación.Además  por su gran sensibilidad son mas propensos a falsas alarmas provocadas por acumulación de polvo y corrientes de aire  no olvidando ademas de que también tienen un coste mucho mayor.

 

Vemos   ahora paso a paso como  instalar  uno de los  detectores  mas sencillos de configurar : el detector de humo tipo GS506

 


Este detector de humo se utiliza para la detección temprana de humo peligroso de modo que tan pronto como el humo entre en el interior del dispositivo, sonará una alarma bastante potente  de 85 dB basados en un piezolectrico

Este  detector detecta el humo y no las llamas, pero es obvio que en casi todas las combustiones   hay presencia de humo  sobre todo si hablamos de ambientes domésticos

Cada 30-40 segundos, el detector de humo realiza un auto-test ,lo cual  puede ser notado por un breve destello del LED. En caso de fallo del sensor o de falta de batería lo indicaría mediante una señal audible

Este modelo para facilitar la instalación  contempla dos mejoras respecto a otros modelos convencionales :

  • Soporte magnético  : para no tener que taladrar nada y hacer mas sencilla su instalación  este detector incluye un  kit de fijación magnética de modo que se puede montar rápida y fácilmente sin el empleo de herramientas, tornillos o tacos.
  • Batería de Litio para 10 años: esto  puede parecer  excesivo , pero en realidad es una excelente decisión del fabricante pues  lo hace inmune a los mantenimientos periódicos producido por el agotamiento de la batería y por tanto mucho mas seguro

 

Estas  son la descripcion de producto:

  • Modelo: GS506 (detector de la alarma del humo)
  • Dimensiones: Ø 100x37mm
  • Rango de temperatura: 0°C a + 45°C
  • Volumen de alarma:  85 dB (A) dentro de los 3 metros
  • Certificaciones: EN 14604, NF
  • Fuente de alimentación: Batería de DC 9V (batería de litio: CR9V)
  • Autonómica : 10 años de batería a largo plazo
  • Advertencia de batería baja

 

 

Montaje del detector

Una vez desempaquetemos  este modelo ,en   primer colocaremos la batería de 9V de Litio,para lo cual eliminaremos precintos  de esta y la fijaremos al porta-pilas del detector.

Destacar que este tipo de baterías, vienen cargadas  obviamente  pero  son algo mas gruesas que la pilas convencionales ,pero aun así caben con un poco de  habilidad dentro del compartimiento de una pila convencional

 

IMG_20180317_132024_HDR[1].jpg

Normalmente ahora fijaríamos la base de sujeción  a la pared mediante dos tornillos para luego simplemente mediante un sistema de bayoneta fijaríamos a esta  el detector ,pero en este producto simplemente colocaremos  ahora la cubierta  quedando como enla siguiente imagen todo el conjunto:

IMG_20180317_132120_HDR[1]

Con este detector se adjunta un de kit de fijación magnética  de modo que se pueden montar rápida y fácilmente sin el empleo de herramientas, tornillos o tacos.
Las siguientes superficies no son adecuadas para la fijación:

  • Empapelado de vinilo
  • Poliestireno,
  • Superficies con revestimiento antiadherente,
  • Superficies siliconadas o recubiertas de teflón
  • Superficies que contienen partículas sueltas
  • Superficies que han sido pintadas varias veces

 

Ahora desprincintado el kit observe que hay dos juegos de chapas;

Tomaremos aquella que tiene los dos  imanes distinguibles por dos pequeños círculos:

IMG_20180317_132338_HDR[1]

Eliminaremos el plástico protector del adhesivo  y lo fijaremos   a la base del detector y  la otra pieza  a la pared o alguna superficie plástica  ( por ejemplo los cajetines de conexiones de la instalación eléctrica )

 

 

Pulse el botón de test   que tiene en el centro del detector para probar su funcionamiento normal . Si oye un fuerte pitido que cesa , !enhorabuena ya ha instalado el detector!

 

Realmente gracias  a los colores neutros, este tipo de sensores  quedan bastante disimulados  si se sitúan en las tapas de los registros o en cualquier parte que incluya algo de plástico ( incluso hay personas  que quitan la carcasa exterior  que suele ir a presión  y la pintan de otros colores).

IMG_20180318_175046[1]

Mantenimiento:

El detector fotoeléctrico está diseñado para detectar el humo dentro de una cámara con uno o dos leds ópticos y  uno o varios sensores  que informan cuando hay humo si detectan luz infaroja por la refracción del humo en su interior. El problema con este tipo de detector es que el polvo o suciedad lo puede llegar a leerse como humo creado falsas alarmas, por lo que si es posible  deberíamos  hacer un plan de mantenimiento para limpiar las cámaras de los detectores fotoeléctricos para mantenerlas limpias y evitar falsas alarmas en el sistema .

 

 

Como leer el pulso cardiaco


La esencia de estos circuitos es un sensor integrado de circuito de amplificación óptica y con un circuito de eliminación de ruido de la frecuencia cardíaca  todo ello alimentado  con una tensión de alimentación: 3.3V ~ 5 V

Lo ideal  para medir el pulso  es  poner  el sensor de pulso en el dedo o lóbulo de la oreja, directamente  o bien  mediante algún sistema mecánico que lo deje fijo como por ejemplo   alguno de los sistemas que mostramos a continuación:

 

soportes sensores.PNG

 

Estos sensores cuentan con una salida analógica   que se puede conectar por ejemplo a una entrada analógica de un  Arduino, para probar la frecuencia cardíaca

Estudiantes, artistas, deportistas, creadores, desarrolladore3s de juegos, o terminales móviles puedan desarrollar software o interactivos relacionado con el ritmo cardíaco, pero no obstante también existe  una aplicación de código abierto para la visualización en tiempo real de la gráfica de la frecuencia cardíaca en https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino/.

 

 

El sensor de pulso cardiaco es esencialmente un fotopletismógrafo, que es un dispositivo médico conocido que se usa para controlar la frecuencia cardíaca de forma no invasiva. Asimismo  los fotopletismógrafos miden los niveles de oxígeno en la sangre (SpO2) pero no siempre lo soportan.

La señal de pulso cardíaco que sale de un fotopletismograma es una fluctuación analógica de voltaje, y tiene una forma de onda predecible, tal como estamos acostumbrados a ver ( la representación de la onda de pulso se denomina fotopletismograma o PPG).

El Sensor de pulso  amplifica la señal bruta del Sensor de pulso anterior y normaliza la onda de pulso alrededor de V / 2 (punto medio en voltaje) respondiendo a los cambios relativos en la intensidad de la luz

Tal y como esta construido ,veremos que  la luz  interna del LED verde del sensor  se refleja de nuevo en el sensor cambiando durante cada impulso, ocurriendo las siguintes casuiticas:.

  • Si la cantidad de luz incidente en el sensor permanece constante, el valor de la señal permanecerá en (o cerca de) 512 (punto medio del rango de ADC).
  •  Más luz y la señal aumentará.
  • Menos luz, todo lo contrario: el valor de la señal analógica dismuniira

El objetivo es encontrar momentos sucesivos de latido instantáneo del corazón y medir el tiempo transcurrido entre ellos, llamado intervalo Inter Beat (IBI)  pues al seguir la forma y el patrón predecibles de la onda PPG, podemos hacer exactamente eso.

Cuando el corazón bombea sangre por el cuerpo, con cada latido hay una onda de pulso (una especie de onda de choque) que viaja a lo largo de todas las arterias hasta las mismas extremidades del tejido capilar donde está conectado el sensor de pulso. La sangre real circula en el cuerpo mucho más lentamente de lo que viaja la onda de pulso.

 

Figura 1

 

Sigamos los eventos a medida que progresan desde el punto ‘T’ en el PPG a continuación. Se produce un aumento rápido en el valor de la señal a medida que la onda de pulso pasa por debajo del sensor, luego la señal vuelve a descender hacia el punto normal. A veces, la muesca dicroica (pico descendente) es más pronunciada que otras, pero, en general, la señal se establece en el ruido de fondo antes de que la siguiente onda de pulso se filtre. 

Como la onda se repite y es predecible, podríamos elegir casi cualquier característica reconocible como punto de referencia, por ejemplo, el pico, y medir la frecuencia cardíaca haciendo cálculos matemáticos sobre el tiempo entre cada pico,pero sin embargo, esto puede dar lugar a lecturas falsas desde la muesca dicroica, si está presente, y puede también ser susceptible a la imprecisión con respecto al ruido de línea base.

Existen otras buenas razones para no basar el algoritmo de detección de latidos en fenómenos de onda arbitrarios. Idealmente, queremos encontrar el momento instantáneo del latido del corazón. Esto es importante para el cálculo preciso de BPM, la variabilidad del ritmo cardíaco ( y mida la frecuencia cardíaca haciendo cálculos en el tiempo entre cada pico.

Sin embargo, esto puede dar lugar a lecturas falsas desde la muesca dicroica, si está presente, y puede también ser susceptible a la imprecisión con respecto al ruido de línea base.

.

 

Algunos investigadores del corazón dicen que es cuando la señal alcanza el 25% de la amplitud, algunos dicen que es el 50% de la amplitud, y algunos dicen que es el momento en que la pendiente es más pronunciada durante el evento ascendente.

 

El circuito que vamos  a ver es muy simple pues solo se precisa conectar  un buzzer y el sensor de pulsos cardíacos  .

Como podemos ver en el video  , el sensor de pulsos cardíacos  se conecta a la alimentación de +5V  entre el hilo rojo(+5v)   y el naranja (GND)   y del  hilo marrón obtenemos la salida analógica que conectaremos a la primera entrada analogica (A0) de cualquier placa que  soporte entradas analogicas como pueden ser Arduino o Netduino

 

arduino.PNG

Para complementar el circuito puede ser interesante reflejar el punto maximo de nivel qeu reproduciremos mediante un buzzer  conectado al pin 11 de salida binaria

 

A continuación  en este breve  ejemplo  para Arduino se puede mostrar un pulso de latido del corazón humano en directo ayudándonos por medio de «Serial Plotter» de arduino o  por ejemplo con una aplicacion móvil usando   un modulo bluetooth coenctado a nuestro arduino

 

En este pequeño programa para Arduino qeu vamos a ver , sonará un buzzer con cada latido de tu corazón al mismo tiempo que se envia el valor de la señal de forma serie (esta es la señal directa del sensor de pulso) el cual podemos visualizar en un ordenador  o si tenemos conectado un modulo bluettoth a nuestro arduino mediante un smarptphone usando una app .

 

//Programa para capturar el pulso cardiaco

// Variable para fijar el puerto donde conectaremos el buzzer 

int buzzer = 11;

// la variable pulso contiene los datos brutos entrantes pudiendo  variar entre 0-1024

int pulso;

 

// Determina qué señal «se contará como un latido» y qué señal ignorar.

int limite = 550;

 

void setup() {

//definimos donde conectamos el buzzer , que  sonará al ritmo de su corazón

pinMode(buzzer,OUTPUT);

 

// Configura la comunicación serial a 9600 dependiendo de su adaptador bluetooth como esté configurado

Serial.begin(9600);
}

void loop() {

// Lee el valor del pin analógico 0, y Asigna este valor a la variable «pulso».
pulso = analogRead(A0);

 

//Este caracter lo filtra la aplicación en APP inventor

Serial.print(«*»);

// Envíe el valor de pulso al Plotter serial. Comentar si queremos visualizar en «serial ploter»
Serial.println(pulso);
if(pulso > limite){

// Si la señal es superior a «550», entonces suena el buzzer.
digitalWrite(buzzer,HIGH);

}

else

{

// De lo contrario, deja de sonar el buzzer.
digitalWrite(buzzer,LOW);
}

//Retardo de 35ms
delay(35);
}